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Abstract: We describe recent progress on the quantum description of the Kerr black hole. Previous descriptions of black hole microstates have relied
on the existence of near-horizon regions with conforma symmetry, and hence have only worked for extremal or supersymmetric black holes. We
argue that the states of non-extremal black holes can also be understood in terms of a conformal symmetry, the difference being that this symmetry
is not geometrically realized. Thus a Kerr black hole is an excited state of a conformal field theory. By making certain (natural) assumptions about
the nature of this dual CFT we can compute its density of states. This gives a microscopic computation of the Bekenstein-Hawking entropy of aKerr
black hole with arbitrary mass and angular momentum.
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Overview
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The Problem:

Can we understand the quantum states of a realistic black hole?

String theory provides an accounting of the microstates of certain
extremal black holes. These differ qualitatively from astrophysical

black holes. They have M = Q or M = J? and zero Hawking
temperature.

Today | will discuss realistic black holes, with arbitrary mass M
and angular momentum J.

| will argue that the states of 3 + 1 dimensional Kerr are described
by a dual two dimensional conformal field theory.

This allows us to derive the Bekenstein-Hawking entropy
microscopically, provided the CFT satisfies certain (reasonable)
criteria.
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The ldea:

Every derivation of Black Hole entropy in string theory can be
understood in terms of AdS/CFT.

The near-horizon region of a non-extremal black hole is Rindler
space, not AdS.

Nevertheless, the states of quantum gravity still organize
themselves into representations of the conformal group. The
difference is that the conformal symmetry is not geometrically
realized.

Aside from this, the computation proceeds in the exact same way
as for extremal black holes. This works far from extremality.

But many features of this CFT remain mysterious.
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Plan for Today:

e The “Near” Region

e Conformal Structure

e Counting States
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Extremal Black Holes (A Caricature)

For an extremally charged (M = Q) or rotating (M = J?) black
hole we define the near horizon region by

r— fhor << M

The geometry of the near horizon region includes an AdS factor.

The isometry group of AdS is the same as the conformal group in
one less dimension; this symmetry group acts as conformal
transformations on the asymptotic boundary of the near horizon

geometry.
So the Hilbert space of states is that of a conformal theory.

Brown & Henneaux, Maldacena, ...

irsa: 10060020 Page 7/34




INon-Extremal Black Holes

A non-extremal black hole is unstable, but this does not preclude a

CFT description. It just means that the CFT must be coupled to
external degrees of freedom.

What is the analog of the “near-horizon” region?

For an extremal black hole the near-horizon region
r— rpor << M
is the part of the geometry probed by low energy modes
w<< M1

For non-extremal black holes these two definitions do not coincide.
The first definition gives Rindler space.
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The Near Region

Probe a non-extremal black hole by low energy modes
w<< M1

These modes do not live near the horizon. But we can define the

“near” region by
r<<w!

This definition is probe-dependent, so is not a limit of the
geometry.

When w i1s small it includes

» The inner and outer horizons at r = r+
» The ergosphere
» Regions outside the black hole
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Matching Surface

Since w << M~ the two regions

» Near: r << w !
» Farr r>> M

overlap. We divide the geometry into near and far regions, and
match together along a matching surface at

M << Fngee << W

This surface plays the same role as the boundary of AdS (or
NHEK) in the extremal case.

Claim: Physics in the near region has a conformal symmetry which
is realized as conformal transformations of the matching surface.
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Kerr Metric

A Kerr black hole with mass M and angular momentum J has
inner and outer horizons at r = r+ given by

M=r+;r_, %=ﬁ/r+r_53

In Boyer-Lindquist coordinates the Kerr metric is

((FP+3%)d¢—adt)?

_P A . 2 . 3 sin” 6

A=(r—rn)r-r.), pP»=r+acos’0
The Ergosphere is at p = 0.
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The Wave Equation

Consider a field ¢ in the Kerr background.
¢ = e“¢(r,0,9)
In the limit r << w™! the Kerr Laplacian is
VZ=H?4+L+1)=H*+€£+1)

where
H? = —H2 + {Hh,H_1}

Thus states organize into representations of

SL(2,R), x SL(2,R)gr = SO(2,2)

- thye rigid conformal group in 1 + 1 dimensions.

is the Casimir of SL(2,R) and £(£ + 1) is the S? Laplacian.
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IConformal Action

The generators act as conformal transformations on the matching
surface. If we let

e F—£8
W+ = _ﬁEZFTR(ﬂ, w = _ﬁgw'ﬁ_:b—t/m

then the SL(2, R) generators are

i — il
. 1
Ho = i(w™ 8+ + 5ydy)
Hy = (w0 +wtyd, —y°0_)

where y is a3 “radial” coordinate

y= JLF — - eﬂ'(T;_-l-—TR]tb—i
e
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The Wave Equation

Consider a field ¢ in the Kerr background.
¢ = e“¢(r,0,9)
In the limit r << w™! the Kerr Laplacian is
VZ=H?4+f+1)=H*+£L+1)

where
H?> = —H2 + {Hy, H_1}

Thus states organize into representations of

SL(2,R), x SL(2,R)gr = SO(2,2)

~ thye rigid conformal group in 1 + 1 dimensions.

is the Casimir of SL(2,R) and £(£ + 1) is the $? Laplacian.
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IConformal Action

The generators act as conformal transformations on the matching
surface. If we let

/f i S
W+ = _ﬁe}ﬂ‘?—ntb! w — _ﬁg'ﬂ‘rg_(b—tfzﬂ‘

then the SL(2, R) generators are

H1 - 13+
: 1
Ho = i(w d:+ iyay)
Hy = i(w™8s+wyd, —y®8.)

where y is a3 “radial” coordinate

y= Jr'f- — - e‘ﬂ'(T;_-%—TR]tb—&'
e
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A CFT

This argument works for any field, including the graviton. It also
extends to local conformal symmetries Virg x Virg.

These conformal transformations are not geometrically realized,
but they still act on the phase space of the theory.

More precisely, they act on the sector of the phase space defined
by the “near” limit.

So states of the near region organize into representations of the
conformal group, just like in AdS/CFT.

To describe the black hole microstates we need to know

» which state describes the black hole
» the central charge of the CFT
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IConformal Action

i — g —K
it = / 3 r+ e2-n'TR¢, N ; r+ eZITLo‘J—t/ZM

Hy

then the SL(2, R) generators are

= il

: 1
Ho = i(w" 0+ + Eyay)
= (w8, +w'yd, —y%a_)

H_1

where y is 2 “radial” coordinate

-

e e™(Ti+Tr)o— 35

e

The generators act as conformal transformations on the matching
surface. If we let
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A CFT

This argument works for any field, including the graviton. It also
extends to local conformal symmetries Virg x Virg.

These conformal transformations are not geometrically realized,
but they still act on the phase space of the theory.

More precisely, they act on the sector of the phase space defined
by the “near” limit.

So states of the near region organize into representations of the
conformal group, just like in AdS/CFT.

To describe the black hole microstates we need to know

» which state describes the black hole
» the central charge of the CFT
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Finite Temperature

To find the state, note that because
O~ @Q+2w

the conformal generators are not globally defined. We must
identify

- 42 Tq W+
?

w ~e _weWTLw'

w

These identifications define a state a finite temperature

= N — == ANy o
L7 W 4w, /rir—

The state breaks SL(2,R) x SL(2,R) down to U(1) x U(1).

The theory is conformally invariant but the state is not.
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IConformal Action

The generators act as conformal transformations on the matching
surface. If we let

r—r = r—r -
wh = —* g . + 2xTio—t/2M
e e

then the SL(2, R) generators are

Hy = idt
. 1
. — :(w+3++§y6y)
H_y = (w0 +w'yd, —y°0_)

where y is 3 “radial” coordinate

- \/r+ — I (Tt TR)o— 35
iy -
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Finite Temperature

To find the state, note that because
o~ @+2w

the conformal generators are not globally defined. We must

identify

+ 472 Tpr -
]

w' ~e _~e4”2T'-w_

w

These identifications define a state a finite temperature

; 5 —K o 0+
L7 Y 4, [rir—

The state breaks SL(2,R) x SL(2,R) down to U(1) x U(1).

The theory is conformally invariant but the state is not.
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IConformal Action

The generators act as conformal transformations on the matching
surface. If we let

ot — _’ﬂez-.-rrm, w— = T 2xTio—t/2m
r—r_ r—r_
then the SL(2, R) generators are
Hi = idt
Ho = i(w*ds + 5ydy)
Hi1 = i(w™20.+w'yd, —y?d.)

where y is a3 “radial” coordinate

y= Jr-f- — - er(T;_-i—TR)qb—ﬁ
i
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A CFT

This argument works for any field, including the graviton. It also
extends to local conformal symmetries Virg x Virg.

These conformal transformations are not geometrically realized,
but they still act on the phase space of the theory.

More precisely, they act on the sector of the phase space defined
by the “near” limit.

So states of the near region organize into representations of the
conformal group, just like in AdS/CFT.

To describe the black hole microstates we need to know

» which state describes the black hole
» the central charge of the CFT
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IConformal Action

The generators act as conformal transformations on the matching
surface. If we let

[r—r B r—ry -
it — '_+92“'TR¢, e e21rT;_¢—t/2M
e e ——

then the SL(2, R) generators are

i — i
. 1
Ho = i(w™ 8+ 5ydy)
Hy = i(w™8. +w'yd, —y%8.)

where y is a3 “radial” coordinate

y= Jr-f' — - eﬂ‘(TL-f-TR)tb—ﬁ
e
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Finite Temperature

To find the state, note that because
O~ o+2m

the conformal generators are not globally defined. We must
identify

= e41rzTRw+, - e41r2T;_w—

w w

These identifications define a state a finite temperature

— B —I = A o A
4w [rir—’ 4x./rer_

The state breaks SL(2,R) x SL(2,R) down to U(1) x U(1).

The theory is conformally invariant but the state is not.
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ICentral Charge

We need to find a vacuum state invariant under the symmetries.
If we set Tp = 0 the black hole is extremally rotating M = J2:

» The “near” region is the “near-horizon extremal Kerr”
geometry of Bardeen & Horowitz

» the SL(2,R)g is unbroken and geometrically realized.

The algebra of charges which generate Virgp diffeomorphisms is the
Virasoro algebra, with central charge

CR=12J

This is the “Kerr/CFT" used to describe extremal black holes of
Guica, Hartman, Song & Strominger.
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IConformal Action

The generators act as conformal transformations on the matching
surface. If we let

fr il F—
W+ a - r+ e2‘H‘TR¢’ w = = r+ GZITLt}b—t/ZM

then the SL(2, R) generators are
i = O
. 1
Ho = i(w™8s++ 5ydy)
H.y = i(w™d.+w'yd, —y%d.)

where y is a3 “radial” coordinate

szr-i-_r— e‘ﬂ'(T;_-l-TR)qfo—ﬁ
i
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Finite Temperature

To find the state, note that because
O~ Q+2w

the conformal generators are not globally defined. We must
identify

42 an

w o~ e 'wemnw'

w

These identifications define a state a finite temperature

o s —r = Ay o
Av. /rir— 4, /rir—

The state breaks SL(2,R) x SL(2,R) down to U(1) x U(1).

The theory is conformally invariant but the state is not.
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ICentral Charge

We need to find a vacuum state invariant under the symmetries.

If we set Tp = 0 the black hole is extremally rotating M = J2:

» The “near” region is the “near-horizon extremal Kerr”
geometry of Bardeen & Horowitz

» the SL(2,R)g is unbroken and geometrically realized.

The algebra of charges which generate Virgp diffeomorphisms is the
Virasoro algebra, with central charge

CR=12J

This is the “Kerr/CFT" used to describe extremal black holes of
Guica, Hartman, Song & Strominger.
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Finite Temperature

To find the state, note that because
O~ @Q+2w

the conformal generators are not globally defined. We must
identify
W = e41rzTRw o e e4‘r2T;_ W

These identifications define a state a finite temperature

y 5 —r T ey g A
4w /T 4w, [rir—

The state breaks SL(2,R) x SL(2,R) down to U(1) x U(1).

The theory is conformally invariant but the state is not.

Pirsa: 10060020 Page 30/34




ICentral Charge

We need to find a vacuum state invariant under the symmetries.

If we set Tr = 0 the black hole is extremally rotating M = J2:

» The “near” region is the “near-horizon extremal Kerr”
geometry of Bardeen & Horowitz

» the SL(2,R)g is unbroken and geometrically realized.

The algebra of charges which generate Virg diffeomorphisms is the
Virasoro algebra, with central charge

CR=12J

This is the “Kerr/CFT" used to describe extremal black holes of
Guica, Hartman, Song & Strominger.
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Density of States

Assume that the CFT

» is parity invariant,
» is modular invariant, and

» possesses a normailzable ground state.

Then we can compute the density of states using Cardy’s formula

=
N ~ exp{? (T + CRTR)}

This is a good approximation when T; and Tg are large, which
happens when the mass M is large.

Note that 7; and Tg are not the usual Hawking temperature and
__angular potential.
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Entropy

This reproduces the Bekenstein-Hawking entropy

T2 Ar
. ?(CLTL+CRTR) — Tea.

including the numerical coefficient.

We have reproduced the entropy of a realistic black hole — not just
an extremal one — using a dual CFT.

Moreover,

» Scattering amplitudes reproduce CFT correlation functions.
» This works for a variety of other non-extremal black holes.
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IConclusions

We are closing in on a microscopic description of realistic,
astrophysical black holes.

Using holographic techniques,

» States live in a dual CFT; conformal symmetries act on the
phase space but not on the geometry.

» This reproduces the Bekenstein-Hawking entropy, including
the precise numerical coefficient.

This was not a string theory construction so we don’'t know the
dual CFT. We don't even know the vacuum state of the theory.

Are the microstates geometric in nature? Probably not...
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