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Abstract:

It has been suggested, by Kallosh and Linde, that a generic bound on inflation in string theory keeps the

Hubble scale of inflation $H$ smaller than the gravitino mass, $m_{3/2} $. Given that models with low-energy supersymmetry have $m {3/2} $
smaller than a TeV, this is a severe constraint, and would suggest that one is forced to choose between high-scale inflation and low-scale
supersymmetry. The bound arises by considering possible decompactification instabilities of the extra (compactified) dimensions of string theory,
during the inflationary epoch. | explain the arguments that give rise to such a bound, and describe recent work with T. He and A. Westphal
exhibiting large-field chaotic inflation models in string-inspired supergravities that have $H &gt;&gt; m {3/2}$ but avoid decompactification. |
conclude that even within the framework of string theory, high-scale inflation and low-energy supersymmetry may well be compatible.
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Gravity Waves & the LHC:

Towards High-Scale Inflation with low-energy SUSY
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Stanford University
(arXiv: 1003.4265)
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where | want to take you ...

* why:
- large-field inflation (® moves more than Mp)?
- strings’

e nflation & moduli stabilization - the Kallosh-
Linde problem

* the demise of the problem - natural high-scale
inflation @ the TeV

- a natural setup for H >> m3p in KKLT
- dynamics of the volume modulus during inflation
- hierarchies & scales - horse trading
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expect dramatic improvement in next 5 yrs:
~Edanck & BICEP2 taking data, Keck Array ('10...)...
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lnflation ...
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lnflation ...

* inflation: period quasi-exponential expansion of the
very early universe
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lnflation ...

* inflation: period quasi-exponential expansion of the
very early universe

* driven by the vacuum energy of a slowly rolling light
scalar field:

eom:. O+3Ho—V' =0
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* inflation: period quasi-exponential expansion of the
very early universe

* driven by the vacuum energy of a(slowly rolling)light
scalar field:

eom: O+3Hoé—V' =0

scale factor grows exponentially : a ~ et if: ¢ X ¢
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* inflation: period quasi-exponential expansion of the
very early universe

* driven by the vacuum energy of a(slowly rolling)light
scalar field:

eom: O+3Ho—V' =0

scale factor grows exponentially : a ~ et if: ¢ XK ¢
- H 1 V’2<<l e
E= —— >~ — L, P=E— = —
2= 2\ V = a - n
{12
~%gith the Hubble parameter H* = — ~const. ~V ™

=



Smoking Gun for Inflation ...
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Smoking Gun for lnflation ...

* inflation generates metric perturbations:
scalar (us) & tensor

H 5p\°
% _m(_f>
€ p

= kn g—1
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Smoking Gun for lnflation ...

* inflation generates metric perturbations:
scalar (us) & tensor

H? 5o\ > .
@ & ”(p) and Pr~H>~V
€ p
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Smoking Gun for Inflation ...

* inflation generates metric perturbations:
scalar (us) & tensor

HZ  [(dp\°
€ p

kng—l
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* inflation generates metric perturbations:
scalar (us) & tensor

H? 50\ 2

@~ B e
€ p

pns—1 window to GUT scale &

‘'smoking gun’: alternatives (e.g. ekpyrosis)
have no tensors

S
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* inflation generates metric perturbations:

scalar (us) & tensor

~ gns—1  window to GUT scale &
'smoking gun’: alternatives (e.g. ekpyrosis)
have no tensors

e but: if field excursion sub-Planckian, no
measurable gravity waves:

P 50°\" £ Ad N
 — < 0.003 '
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® Jarge field model of inflation, i.e.“chaotic inflation™

ANop>Mp = 1r>0.01

e with control of ¢ & # over a super-Planckian field
distance - avoid generic dim = 6 operators:

2 (6 —09)* | need UN-complete
WV theory: e.g. strings

® idea: arrange for approximate shift symmetry of @,

broken only by the inflaton potential itself
[Linde ‘83]
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sins of esver Chaotic Inflation
contours in ~ 5 yrs e e e e e
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the Kallesh-Linde problem ...
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we are in 40 - string compactification ...

* we wish for low-energy supersymmetry - need to
compactify internal 6 dimension on a Calabi-Yau
manifold

® = moduli: massless scalar fields, determining

size and shape of the CY

* = one path to controlled compactification

(KKLT) in lIB string theory:

- fix the shapes with fluxes
= fix the sizes with | instanton per size modulus>*-



* single volume modulus case: an instanton
balances against the non-T sector Wp (e.g. from
fluxes)

/V(T) = EK(KTT[DTH-’ 2 _ 3w )
U(q)
K =—-3m(T+T)
W : Ae—oT
Ve

fixes shape
moduli
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* inflationary sector generates a large positive
vacuum energy

* by locality in the extra dimensions all energy
forms can at most grow as fast as the volume

* Weyl rescaling into 4D Einstein frame - all
energy forms scale as ¢-* = volume -2

* = all potential vanish at infinite volume &

all positive energy states are metastable to
de-compactification
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* Einstein frame rescaling - SUSY breaking scales
as inverse power of the volume G =Re T

4 107

JLEY 120 L4 L&t) &0 200

Pirsa: 10060017 Page 23/89




* Einstein frame rescaling - SUSY breaking scales
as inverse power of the volume G =Re T

160 180 200
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* Einstein frame rescaling - SUSY breaking scales
as inverse power of the volume G =Re T

. = 1
V(®) ~ e*G®*®|DaW|* ~ J—>

T 1N |
4 B

|VA¢5”r: 3¢ [(W)ol® sxuwe

! 4 N :
B =~ |Vads] | |
2 i O

100 120 140 160 180 200

wel? < (10)Va ~ O(10)
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overcoming KL ...
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What to de ?

® decouple the barrier height from the (post-)
inflationary uplifting: racetrack model of Kallosh &

Linde, heavily fine-tuned at O(mcut/mw) ~ 1013

* alternative: have the barrier height adjusting
with the rolling inflaton!

* = inf we have to adjust Wj to adjust the

Pirsa:

barrier height
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Pirsa:

iln more detail ...

the depth of the AdS vacuum given by Wy
determines the barrier height induced by the
post-/inflationary vacuum energy density

* for low-energy SUSY this leads to a very low

00000000

barrier height, completely overrun by high-scale
inflation

= so if the flux-induced parameter W

controls the scales of the problem ...



* Who says, we cannot have Wy being an
adiabatic function of the inflaton?

W = Woersr.(®) EA

0001, f’

= -

irsa; 10060017 | 2 5 10 20 50
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* Let's try find simple models doing that ...

However, in supergravity we cannot just rely on
the inflation alone:

| Fp| = nab®™ ! 1
V3eE2Z|(WY|  V3(ab®" + W,) @

* for a polynomial superpotential suitable for
large-field inflation the potential slopes
downward and goes negative ... So we probably

have to get inflation from Fx = Fx(¢) from a 2nd
field X

Pirsa: 10060017

| Kawasaki. Yassaguchi
& Yanaoida ()]



* a simple setup which adjusts the barrier
dynamically

1 = = 5
K = _(®+ &)+ XX —y(XX)Y —3log(T+T)
W = Woeg(X)+af(X)®" +e T

with:- ¢(X) =11+ X)) and f{X)=051 X1 O(X

* this is ' Hooft natural, given that ¢ has R-charge 2/n
and a shift symmetry in the Kahler potential:

®=n+1p , p—p+C
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* why do we need the Ist few terms in fand g,
which are otherwise arbitrary?

* constant term in g gives us back the known
KKLT-like post-inflation vacuum

* constant term in f we need to have W scaling
adiabatically with ¢

* the linear term in f in X we need to get that
Fx ~ W , so that the potential slopes
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* a simple setup which adjusts the barrier
dynamically

1 == = i =
K = J(2+ ®)? + XX —y(XX)* —3log(T + T)
W = Wyeg(X)+af(X)®" +e

with: ¢(X) =1+ @(X) and f(X)=0+X+O(X?

* this is ' Hooft natural, given that ¢ has R-charge 2/n
and a shift symmetry in the Kahler potential:

®=n+1p , p—p+C
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* why do we need the |st few terms in fand g,
which are otherwise arbitrary?

* constant term in g gives us back the known
KKLT-like post-inflation vacuum

* constant term in f we need to have W scaling
adiabatically with ¢

* the linear term in f in X we need to get that
Fx ~ W , so that the potential slopes
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* a simple setup which adjusts the barrier
dynamically

1 = = _
E — _(®+ S+ XX W XXY —3lop(T+T)
W = Wog(X)+af(X)®" +e T

with: ¢(X)=1+0O(X) and f(X)=b+ X+ O(X?

e this is ' Hooft natural, given that ¢ has R-charge 2/n
and a shift symmetry in the Kahler potential:

®=n+10 , g—p+C
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* why do we need the Ist few terms in fand g,
which are otherwise arbitrary?

* constant term in g gives us back the known
KKLT-like post-inflation vacuum

* constant term in f we need to have W scaling
adiabatically with ¢

* the linear term in f in X we need to get that
Fx ~ W , so that the potential slopes
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* in this 4D N=I supergravity the scalar potential

reads

V =5 (K%

= . = C
+ K*‘i+ ETT |IW|°) + =
a
Fo Fx Fr

* the last term can again be, e.g., a warped anti-D3
brane, lifting the post-inflationary vacuum to zero
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* Let's try find simple models doing that ...
However, in supergravity we cannot just rely on
the inflation alone:

| Fp| = nab®™ ! 1
V3eE2Z(WY|  V3(ab®" + W,) @

for a polynomial superpotential suitable for
large-field inflation the potential slopes
downward and goes negative ... So we probably
have to get inflation from Fx = Fx(¢) from a 2nd
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* a simple setup which adjusts the barrier
dynamically

1 = = = =
P+ D)2+ XX —v(XX)?—3log(T+T7T)

K =

W = Woeg(X)+af(X)®" +e T

with: ¢(X)=1+0O(X) and f(X)=b+ X+ O(X?

* this is ' Hooft natural, given that ¢ has R-charge 2/n
and a shift symmetry in the Kahler potential:

©=n+i1p , p—p+C
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* why do we need the Ist few terms in fand g,
which are otherwise arbitrary?

* constant term in g gives us back the known
KKLIT-like post-inflation vacuum

* constant term in f we need to have W scaling
adiabatically with ¢

* the linear term in f in X we need to get that
Fx ~ W , so that the potential slopes
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* in this 4D N=I supergravity the scalar potential
reads

¥—c (B

. _ = . ) C
Ds H"T‘z — ﬁ'l —'— KTT 3|I’L*I_) = —
%
Fo Fx Fr

* the last term can again be, e.g., a warped anti-D3
brane, lifting the post-inflationary vacuum to zero
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* in the regime ¢ >> Mp and X < Mp there is an
attractor behaviour satisfying

= | Fx Fx
Fx ~(W)~a®" . Feg~— . Fp~——
x < ) 8 . d = T T

* gives the inflaton potential to be

Ving.(#) ~ |[Fx|* ~ a®p™

* and produces a mass term for X via

KXX=(1-44XX) ' ~14+4/XX =X<Mp
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* Thus, we get a generalized KL-like constraint
for the adiabatically adjusting VEV of W

VIFs| +|Fx
V3eE/2|(W)

b O@)
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* atlarge ¢ >> Mp we get a scaling behavior

|Fx| ~ [Woerr.(®)| = |Wo + a(b+ X)P"|

* which adjusts both (!) barrier height (controlled by
W) and uplifting (controlled by Fx) dynamically
such, that the minimum for T is never lost - if we
adjust their ratio such that

|Fx|? < 0(10)3e™ (W)

0000000000000
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* if this were all, the KL problem was fixed for
good ...

However, at very small field ¢ such that
Wo < ¢ << Mp, we have a regime Fy > Fx with

|Fe| nabp™ 1
W]~ abgm +Wo 7

diverging, if Wo vanishes

e at finite Wy this ratio attains a maximum

( | Fs| ) ( 1) ( ab )U”
max : — (n — 3
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® again, to guarantee stability of T , we must have

e for a given hierarchy Wo / Wo, es.(¢) and
magnitude of density fluctuations o this gives

a lower bound on the power 2n of V(¢)
inflaton at 60
e-folds betore

= 2 \/60(?'1 = l) inflation ends
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* thus we horse trade: if we wish to attain a
given Wy (TeV...) at the end of inflation, we
can exchange n for ¢ et

(-E—l) P60 Wo(n —1)

10v/37bn

-

0 <

0.01:
10_55
107 :

107 -
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* or:if we wish to attain a given 0 (2 x 10) at g0, we

can trade n for Wp - and thus for the SUSY

breaking scale after inflation
10/ 37nbd

(28) it —1)

H,-'U >

10«

7 e

10777 :

(10.10™)

1.0 1.5 20 5.0 50 70 100
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* a numerical example: evolution of all fields can be
tracked, and used to prove the existence of adiabatic
minima for X and T at all times - gives a huge
hierarchy in Wy during inflation ...

a2—1 a—z'” Wy = —10"1°,

a=>5x 1019 A2 m— 1

and vy =2
0.001
I0*
|W]
107°
107"
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open questions ...

* how to get large-field inflation with large-ish

powers in string theory?
... we know of (axion) monodromy inflation, which gives so far at
most linear potentials ... [McAllister, Silverstein & AW 08/°09]

® the horse trading could be presumably loosened by
modifying the exit in a hybrid-like fashion ...

* small field models using the same basic mechanism?
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Pirsa: 10060017 IR Colour Composite of RCW38 Region Page s8/69
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Papilion Nebula
Detal

N159 in the Large Magellanic Cloud
Hubble Space Telescope - WFPC2




Papilion Nebuia
Detal

N159 in the Large Magellanic Cloud
Hubble Space Telescope - WFPC2




N159 in the Large Magellanic Cloud
Hubble Space Telescope »- WFPC2
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