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Abstract: We discuss holographic models for the inflationary epoch. We show how cosmological observables such as the primordia spectrum and
non-Gaussianities can be computed via computations of correlation functions of a dual three dimensional QFT (without gravity!) We present a
genera class of models that have the following universal features: (i) they have a nearly scale invariant spectrum of small amplitude primordial
fluctuations, (ii) the scalar spectral index runs as alpha_s=- (n_s-1), (iii) the three point function of density perturbations is exactly equal to the sum
of thelocal and equilateral form withf_{NL}~{local} =6 f {NL}"{equil} =20/3.
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Introduction

m Over the last iwo decades, siriking new observations have
transformed cosmology from a qualitative to a quantitative
science: a minimal set of just six parameters characterizes the

observed universe. all of which are now known to within a few
percent.

m With future observations promising an unprecedented era of
precision cosmology. the consiraints on cosmological parameters

are expected to tighten further siill, particularly as regards the
inflationary sector.

m Despite its successes. the theory of inflation is still unsatisfactory

In a number of ways (e.g.. fine-tuning, initial conditions,
trans-Planckian issues).
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Introduction

It Is thus imperative that

m inflation is embedded in a UV complete theory. Indeed there is
increasing amount of effort devoted to embedding inflation in
string theory.

m zaliernative scenarios are developed.

The holographic approach that we undertake provides both.
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MIroouUCIon

Holography for cosmology

m Specifically. in this talk | will address the question:

Can a four-dimensional inflationary cosmology be described in terms |
of a three-dimensional QFT? (without gravity!)

il
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imrogucion

Main resulis

Our two main resulis are:

Standard inflation is holographic.

There are holographic models that have different phenomenology than |
slow-roll inflation but they are neveriheless consisient with current ob- |
servations.
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Holography for cosmology

Any holographic proposal for cosmology should specity

what the dual QFT is

how it can be used to compute cosmological ocbservables (the
holographic dictionary)

Having defined the duality,

B the new description should recover established resulis in the
regime where the weakly coupled gravitational description is valid

B new results should follow by using the duality in the regime
where gravity is strongly coupled.
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In the first part | will explain the sense in which inflation is holographic.

m Review standard inflationary compuiations.

m Review how to compute strong coupling QFT resulis using
standard gauge/gravity duality.

m Show that the inflationary results can be fully expressed in terms
of correlators of strongly coupled QF Is.
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New holographic models

In the second part | will discuss new holographic models. While
standard inflation is linked to strongly coupled QF I's. the new models
are based on weakly coupled three dimensional QFT.

B In these models gravity is sirongly coupled at early times.
B They provide a new mechanism for a scale invariant spectrum.

m [hey are compatible with current observations, yet they have
different phenomenology than standard slow-roll inflation.

— Alternative scenarios to standard inflation.
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Part |- Holographic dictionary

Qutline

Part |: Holographic dictionary
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Cosmoiogicai Perturbaiions

Part |- CIOOrapnic aconary

Cosmological Perturbations

We start by reviewing standard inflationary cosmology.

m We will discuss (for simplicity) single field four dimensional
inflationary models,

l

-
T~

/ ifl.'f\. —o(R — (0P 2 _ 25%V(D))

m We assume a spatially flat background (for simplicity)

-

2 5 - :
ds = —dtr+a(t)dXdxX
® — (1)
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Cosmoiogical Perturbaiions

Part I- CIOOQIapnic aIConary

Cosmological perturbations

Perturbing the solution one finds that the physical degrees of freedom
are a scalar field ¢ and a transverse fraceless metric ;.

m The equations the perturbations satisfy to linear order are:

i | i

0 = (+GH+é/e)+a g%

= :fj‘ + 3HA a3 E'i__t]_"fj

where H is the Hubble function and ¢ = 2(H’ /H)? is the slow-roll
parameter. We are not assuming that ¢ is small.
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Part |- OIOOrapinic IConary

Power spectrum

In the inflationary paradigm. cosmological periurbations are assumed
fo originate at sub-horizon scales as quantum fluctuations.

® Quantising the perturbations in the usual manner,

(5. q)C(t.—q)) = |Gqlt)|”

‘UH.J.}“R-;H.—J-] = 2‘ [ _HU—H.

iy

where I1; is the transverse traceless projection operator and
_,(r)and ~,(r) are the mode functions.

3 The superhorizon power spectira are obtained by

TJJ
4

. o P
, ¢ ) , 2L )
Asl(g) = 1‘: Ll0)|", AF(q) = _{ 7¢(0)]”,
where -,(0) and (,(0) are the constant late-time values of the
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Part |- Holographic dictionary

Cosmological perturbations

Perturbing the solution one finds that the physical degrees of freedom
are a scalar field ¢ and a transverse traceless metric ;.

m [he equations the perturbations satisfy to linear order are:

-3 i

0 = (+GH+¢é/e)+a ¢

N — :fj + 3HA ij T E?__t]_“;j

where H is the Hubble function and ¢ = 2(H’/H)* is the slow-roll
parameter. We are not assuming that ¢ is small.
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Part |- Holographic dictionary

Power spectrum

In the inflationary paradigm. cosmological periurbations are assumed
o originate at sub-horizon scales as quantum fluctuations.

® Quantising the perturbations in the usual manner,

5. q)C(t.—q)) = Gl)|”

i - F —iy — wl . :
U‘H’. q)7e\t. —q) — L gy H:‘jkf-

L

where I1; is the transverse traceless projection operator and
_,(r) and ~,(r) are the mode functions.

1 T.he superhorizon power spectra are obtained by

r'“
El

' g %,
Z(c 4 2 2, .
Aslg) = —164(0); AF(g) = —>174 0)i-.
where +,(0) and (,(0) are the constant late-time values of the
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Part |- Holographic dictionary

Non-gaussianity

m Non-Gaussianity is related to higher-point functions. In this talk
we focus on the three-point function of ¢. This is computed using
the in-in formalism as

i
(1) :—f-/dff :..::{I'F.H;'mlff]:
L fr'|

where H;, is obtained by expanding the action to cubic order.
m [his leads to

Calplq:) = (2m) 0(q1 + q2 + g3)F(q1-42. g3)

Different models are characterized by different F(gi.¢>. g3).
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Cosmoiogical Perturbsiions

Part |- Holographic dictionary

Response functions

In preparation to the holographic discussion. we rewrite these resulis
as follows.

m We define the response functions:

I =0C+BE+---. O =Ey+---.
where I1¢ and HU are the canonical momenta and the dots

indicate other terms that are quadratic and higher order in
fluctuations.

m One can show that

L = G

"‘“Lj’ = — _2]:[.[1:{..}: L;J"- & ‘f-jl — _-F‘Im:[: k‘.fl :.

so the power spectra can be expressed in terms of the late time
ac0ecs DENAVIOF Of the response functions.
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Part |- Holographic dictionary

Response functions and 3-point functions

m One can also show that

Im {51(49;. qg2.43

[, Im[Q(g:)]

Flgi.92.93) ~
evaluated at late times.

We will next show that (1,(¢). Ex(g) and (23(¢g1.¢g>. g3) are related 1o
two- and three-point functions of a strongly coupled 34 QFT.
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C(1)) ——i / di’ ([ (1). Hue (1))
- -ITF-__I
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Part |- Holographic dictionary

Response functions

In preparation to the holographic discussion. we rewrite these resulis
as follows.

m We define the response functions:

I —C S +—, BBt
where I1¢ and HU are the canonical momenta and the dots

indicate other terms that are quadratic and higher order in
fluctuations.

m One can show that

L

Sq — _21['[1:*.‘}: L_;' :. ‘q — _-LIm:E: -'.f :

so the power spectra can be expressed in terms of the late time
maoscos  OENAVIOF Of the response functions.
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Part |- Holographic dictionary

Response functions and 3-point functions

m One can also show that

Im|Q3(q1.92. g3)]

[T, Im[Q>(gs)]

Fi qgi1.-qg2.43) ~
evaluated at late times.

We will next show that (),(¢). Ex(g) and (23(¢g1.¢». g3) are relaied 1o
two- and three-point functions of a strongly coupled 34 QFT.
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Part |- Holographic dictionary

Qutline

Part |: Holographic dictionary

m [he domain-wall/cosmology correspondence
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Co=smoiogicai Perturbaiions

Part I: OIOQraDinc ICHonary

Response functions and 3-point functions

m One can also show that

Imi{{23(q1.q2. g3

[, Im[Q(g:)]

F{ qdi1.-qg2.4s3) ~
evaluated at late times.

We will next show that (1»(¢). E>(g) and (23(g;.¢>. g3) are related to
two- and three-point functions of a strongly coupled 34 QFT.
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Part |- Holographic dictionary

Response functions

In preparation to the holographic discussion. we rewrite these resulis
as follows.

m We define the response functions:

- —Shl + O +—-, Bl —Ent---,
where II and II; are the canonical momenta and the dots

indicate other terms that are quadratic and higher order in
fluctuations.

m One can show that

_ "3

g — _2Im:i.3: Lifr :. ‘,_j' — _-;‘II.I]:[: x_."'l :.

so the power spectra can be expressed in terms of the late time
mawoscos  OENAVIOF Of the response functions.
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Part |- Holographic dictionary :

Qutline

Part |: Holographic dictionary

m [he domain-wall/cosmology correspondence
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Cosmoiogicai Perfurbaiions
Part |- Holographic dictionary

Response functions

In preparation to the holographic discussion. we rewrite these resulis
as follows.

m We define the response functions:

"3 -

M =0+ BE+---. O =Ey+---.
where I1¢ and HU are the canonical momenta and the dots

indicate other terms that are quadratic and higher order in
fluctuations.

m One can show that

9

Sq — —2[[’[1:*13: { Yq — —-[-IIH:E: g

so the power spectra can be expressed in terms of the late time
mawoscos  OENAVIOr Of the response functions.
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Part |- OIOOIE2DMIC ICHonary

Response functions and 3-point functions

m One can also show that

Im {5 gi1-42- g3

[, Im[Q(g:)]

Flgi.q2.q93) ~
evaluated at late times.

We will next show that (1,(¢g). Ex(g) and (23(g1.¢g». g3) are related 1o
two- and three-point functions of a strongly coupled 34 QFT.
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Part |- Holographic dictionary

Response functions

woes  DENAVIOr Of the response functions.

In preparation to the holographic discussion. we rewriie these resulis
as follows.

m We define the response functions:

where 11 and HU are the canonical momenta and the dois

indicate other terms that are quadratic and higher order in
fluctuations.

m One can show that

-

'\-,.;___,r — —211'[1:*..’: LL_I"- :. ‘r.; p=- —-FIH}:[: l.‘a' :

so the power spectra can be expressed in terms of the late time
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— ; The domain-wail/cosmoiogy comespondence
Part |- Holographic dictionary

Qutline

Part |- Holographic dictionary

m [he domain-wall/cosmology correspondence
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) The domain-waill/cosmoiogy comespondence
Part |- Holographic dictionary

Domain-wall/cosmology correspondence

The springboard for our discussion is a correspondence between
cosmologies and domain-wall spacetimes.

m Domain-wall spacetime:

-

ds= = dr- + e ddx

b = PD(r)
m This solves the field equations that follow from

E -5 == —== T
Sow— d'x\/g|—R + (0®)" + 2&"V(®)].

P
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The domain-wail/cosmoiogy comespondence

Part |- Holographic dictionary

Domain-wall/cosmology correspondence

m One can prove the following:

Domain-wall/Cosmology correspondence

For every domain-wall solution of a model with potential V there is a
FRW solution for a model with potential (V = —V). '

m The correspondence can be understood as analytic continuation
for the metric. The flip in the sign of V guarantees that the scalar
field remains real.

m An equivalent way to state the correspondence is

.=

-
(2% =l
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TR The domain-wail/cosmoiogy comespondence
Part |- Holographic dictionary

Domain-wall/cosmology correspondence

The springboard for our discussion is a correspondence between
cosmologies and domain-wall spacetimes.

m Domain-wall spacetime:

-

ds= = dr- + e ddx

b = &D(r)
m This solves the field equations that follow from

g =
S = / d'x./g|—R+ (0®)" + 2&

22

- —

V(®)].
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Cosmoiogicai Perturbaiions

Part |- Holographic dictionary

Qutline

Part |: Holographic dictionary
m Cosmological Perturbations
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Part |- Holographic dictionary

Cosmological Perturbations

We start by reviewing standard inflationary cosmology.
m We will discuss (for simplicity) single field four dimensional
inflationary models,

l

-
T

/ d*x\/—g(R — (0P > — 262V(®))

m We assume a spatially flat background (for simplicity)

-

ds = —dt+a(t)dX'dxY

® — (1)
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Cosmoiogicai Perturbaiions

Part |- Holographic dictionary

Response functions

irsa:

In preparation to the holographic discussion. we rewrite these resulis
as follows.

m We define the response functions:

- =

I =0C+ B +---, Ml =Exy+---.

L = I i

where 11 and HU are the canonical momenta and the dois

indicate other terms that are quadratic and higher order in
fluctuations.

m One can show that
Gl = —2m[Os(q)], |, = —4Im[E>(q)].

so the power spectra can be expressed in terms of the late time
wees  D€NAVIOr Of the response functions.
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Dt |- : The domain-wail/cosmoiogy comespondencea
Part |- Holographic dictionary -

Domain-wall/cosmology correspondence

The springboard for our discussion is a correspondence between
cosmologies and domain-wall spacetimes.

m Domain-wall spacetime:

-

ds- = dr +e*'"dx'dx

® — &)
m This solves the field equations that follow from

| = == = ——
Sow—— / d*x,/g[—R + (0®)* + 2"V (®)].
P : |
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Part |- Holographic dictionary

Domain-wall/cosmology correspondence

m One can prove the following:

Domain-wall/Cosmology correspondence

For every domain-wall solution of a model with potential V there is a
FRW solution for a model with potential (V = —V). '

m The correspondence can be understood as analytic continuation
for the metric. The flip in the sign of V guarantees that the scalar
field remains real.

m An equivalent way to state the correspondence is

E § |

.lf'lﬁn — _JL;
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- The domain-wail/cosmoiogy comespondence
Part |- Holographic dictionary

Domain-wall/cosmology correspondence

The springboard for our discussion is a correspondence between
cosmologies and domain-wall spacetimes.

m Domain-wall spacetime:

ds- = dr- + e dxdx

& — W]
m This solves the field equations that follow from

I ‘ = S S
Spw = = / d{l‘x o —R+(0®)- +25"V(d)|.
2E= 3 2
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The domain-wall/cosmoiogy comespondence

Part I: HOIOOrapinic CaConary

Domain-wall/cosmology correspondence

m One can prove the following:

Domain-wall/Cosmology correspondence

For every domain-wall solution of a model with potential V there is a
FRW solution for a model with potential (V = —V).

m [he correspondence can be understood as analytic continuation
for the metric. The flip in the sign of V guaraniees that the scalar
field remains real.

m An equivalent way to state the correspondence is
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_— The domain-wail/cosmoiogy carmespondence
Part I- Holographic dictionary

Domain-walls and holography

Domain-wall spacetimes enter prominently in holography. They
describe holographic RG flows.

B The AdS,;., meiric is the unique metric whose isomeiry group is
the same as the conformal group in 4 dimensions. This is the
main reason why the bulk dual of a CFT is AdS.

m [The domain-wall spacetimes are the most general solutions
whose isometry group is the Poincaré group in 4 dimensions.
Thus, if a QF T has a holographic dual the bulk solution must be
of the domain-wall type.
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Part |- Holographic dictionary

Domain-wall/cosmology correspondence

m One can prove the following:

Domain-wall/Cosmology correspondence

For every domain-wall solution of a model with potential V there is a
FRW solution for a model with potential (V = —V).

m T[he correspondence can be understood as analytic continuation
for the metric. The flip in the sign of V guarantees that the scalar
field remains real.

m An equivalent way to state the correspondence is

-
g —K
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e The domain-wall/cosmoiogy comespondence
Part |z Holographic dictionary

Domain-wall/cosmology correspondence

The springboard for our discussion is a correspondence between
cosmologies and domain-wall spacetimes.

m Domain-wall spacetime:

> . YA~ - -
ds- = dr- + e dxdx

® = &P(r)
m This solves the field equations that follow from

i — o —_—
Spw = —a /d*.‘:k g|—R+ (0®)" + 27V (D)|.

2R%2
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Part |- Holographic dictionary

Domain-wall/cosmology correspondence

m One can prove the following:

Domain-wall/Cosmology correspondence

For every domain-wall solution of a model with potential V there is a
FRW solution for a model with potential (V = —V). '

m The correspondence can be understood as analytic continuation
for the metric. The flip in the sign of V guarantees that the scalar
field remains real.

m An equivalent way to state the correspondence is

S
K — K
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s it The domain-wail/cosmoiogy comespondence
Part |- Holographic dictionary .

Domain-walls and holography

Domain-wall spacetimes enter prominently in holography. They
describe holographic RG flows.

B The AdS,;., meiric is the unique meiric whose isometiry group is
the same as the conformal group in 4 dimensions. This is the
main reason why the bulk dual of a CFT is AdS.

m The domain-wall spacetimes are the most general solutions
whose isometry group is the Poincare group in 4 dimensions.
Thus, if a QF T has a holographic dual the bulk solution must be
of the domain-wall type.
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- . The domain-wail/cosmoiogy comespondence
Part |- Holographic dictionary

Domain-wall/cosmology correspondence

The springboard for our discussion is a correspondence between
cosmologies and domain-wall spacetimes.

m Domain-wall spacetime:

ds= = dr- + e dxdx’

® = P(r)
m This solves the field equations that follow from

-

e == . =
-S‘D“-' —— / d‘!‘.‘[x Q—R + (0®P)" + 257) ':‘I’}_.
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e The domain-waill/cosmoiogy comespondence
Part |- Holographic dictionary

Domain-wall/cosmology correspondence

The springboard for our discussion is a correspondence between
cosmologies and domain-wall spacetimes.

m Domain-wall spacetime:

-

ds- = dr +e*"dxdx

® = P(r)
m This solves the field equations that follow from

Ej = — S
— /d“t.rx1&3__—R—n‘£‘»‘*b}'—2ﬁ'1HI’}_.

22

Sow =
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o el The domain-wail/cosmoiogy comespondence
Part I Holographic dictionary

Qutline

Part |- Holographic dictionary

m [he domain-wall/cosmology correspondence
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Part |- Holographic dictionary

Domain-wall/cosmology correspondence

m One can prove the following:

Domain-wall/Cosmology correspondence

For every domain-wall solution of a model with potential V there is a
FRW solution for a model with potential (V = —V).

m The correspondence can be understood as analytic continuation
for the metric. The flip in the sign of V guarantees that the scalar
field remains real.

m An equivalent way to state the correspondence is

-

-
,F.ﬁ — — f"lﬁ =
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T . The domain-wail/cosmoiogy comespondence
Part |- Holographic dictionary

Domain-wall/cosmology correspondence

The springboard for our discussion is a correspondence between
cosmologies and domain-wall spacetimes.

m Domain-wall spacetime:

-

ds* = dr- + e d¥dx

{D =t 1I}r r)

m This solves the field equations that follow from

1 [ = | ==
— /d*.n_Q_—R—ﬁihb}:—lf:-ir"b}_.

22

Sow =
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Part I- Holographic dictionary

Domain-wall/cosmology correspondence

m One can prove the following:

Domain-wall/Cosmology correspondence

For every domain-wall solution of a model with potential V there is a
FRW solution for a model with potential (V = —V).

m The correspondence can be understood as analytic continuation
for the metric. The flip in the sign of V guaraniees that the scalar
field remains real.

m An equivalent way to state the correspondence is

3 3

K —
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—— ; The domain-wall/cosmoiogy cormmespondence
Part |- Holographic dictionary

Domain-walls and holography

Domain-wall spacetimes enter prominently in holography. They
describe holographic RG flows.

B The AdS,;., meiric is the unique meiric whose isomeiry group is
the same as the conformal group in 4 dimensions. This is the
main reason why the bulk dual of a CFT is AdS.

m [he domain-wall spacetimes are the most general solutions
whose isometry group is the Poincare group in 4 dimensions.
Thus, if a QFT has a holographic dual the bulk solution must be
of the domain-wall type.
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ey The domain-wail/cosmoiogy commespondence
Part |- Holographic dictionary

Holographic RG flows

There are two different types of domain-wall spacetimes whose
holographic interpretation is fully understood.

The domain-wall is asympiotically AdS;. .,
Alr) —r. ®(r) — 0. as r —

This corresponds to a QF T that in the UV approaches a fixed
point. The fixed point is the CFT which is dual to the AdS
spacetime approached as r — .
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. The domain-waill/cosmoiogy comespondence
Part |- Holographic dictionary

Holographic RG flows

The domain-wall has the following asymptotics
A(r) — nlogr. D(r) — Eiogr. as r—oc

This case has only been understood recently

— Specific cases of such spacetimes are ones obtained by taking
the near-horizon limit of the non-conformal branes (DO, D1, F1,
D2, D4).

— These solutions describe QF I's with a "generalized conformal
structure™: all terms in the action have the same scaling and
there is a dimensionful coupling constant.
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- , The domain-wail/cosmuoiogy comespondence
Part |- Holographic dictionary

Domain-wall/cosmology correspondence

Let us see how the correspondence acts on the domain-walls
describing holographic RG flows.

Asympitotically AdS domain-walls are mapped to inflationary
cosmologies that approach de Siiter spacetime at late times,

ds- —ds- — —dtr +e" d'dx". as f—roc

The second type of domain-walls is mapped to solutions that
approach power-law scaling solutions at late times,

~) 3 . & 5 = =
ds —ds — s }f e as o
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Part |- Holographic dictionary

Holography: 3 primer

Qutline

Part |: Holographic dictionary

B Holography: a primer
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—_—— The domain-wail/cosmoiogy comespondence
Part |- Holographic dictionary -

Domain-wall/cosmology correspondence

Let us see how the correspondence acts on the domain-walls
describing holographic RG flows.

Asympitotically AdS domain-walls are mapped to inflationary
cosmologies that approach de Sitter spacetime at late times,

7 g ' ' - :
ds- — ds™ = —dr- + e~ dx'dx’. as —oc

The second type of domain-walls is mapped to solutions that
approach power-law scaling solutions at late times,

9 gy, . > : :
ds > ds — ot |t dxrds a2 - >ox
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- The domain-wail/cosmuoiogy cormespondence
Part |- Holographic dictionary '

Holographic RG flows

The domain-wall has the following asymptotics

A(r) — nlogr. ®(r) — V2nlogr. as r— oc

This case has only been understood recently

— Specific cases of such spacetimes are ones obtained by taking
the near-horizon limit of the non-conformal branes (DO, D1, F1,
D2. D4).

— These solutions describe QFT's with a "generalized conformal
structure™: all terms in the action have the same scaling and
there is a dimensionful coupling constant.
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... The domain-wail/cosmology comespondence
Part |- Holographic dictionary

Domain-wall/cosmology correspondence

Let us see how the correspondence acts on the domain-walls
describing holographic RG flows.

Asympitotically AdS domain-walls are mapped to inflationary
cosmologies that approach de Sitter spacetime at late times,

. g .. . : :
ds —ds- = —dt” + e~ d¥dx'. as I —oc

The second type of domain-walls is mapped to solutions that
approach power-law scaling solutions at late times,

) - -5 & | - y
ds —dy — & )t axds 2% > ox
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Part |: Holographic dictionary

B Holography: a primer
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Holography: a primer

The holographic dictionary for cosmology will be based on the
standard holographic dictionary, so we now briefly review standard
holography:

There is 1-1 correspondence between local gauge invariant

operators O of the boundary QF T and bulk supergravity modes
D,

— The bulk metric corresponds to the energy momentum tensor of
the boundary theory.

Caorrelation functions of gauge invariant operators can be
extracted from the asymptotics of bulk solutions.

: 10060013 Page 61/128



Part |- Holographic dictionary

Asymptotic solutions

m [he standard gauge/gravity duality is based on spacetimes that
are asympitotically locally Anti-de Siiter.

m These spacetimes have a conformal boundary and near the
conformal boundary Einstein equations (with negative
cosmological constant) hold.

m [his implies that the metric has the followmg asympitotic form (in
4 bulk dimensions) [~

-3 & |
ds> —dr* 4+ e~ gii(x, r dx'd¥

‘*U{“ r) = g!llll‘]{"l = r:;!._::,{j-:,tl e g 3l ) T -

W g (X) is the metric of the spacetime where the boundary theory
lives and (as such) it is also the source of the boundary energy
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- The domain-wail/cosmology comespondence
Part |- Holographic dictionary

Domain-wall/cosmology correspondence

Let us see how the correspondence acts on the domain-walls
describing holographic RG flows.

Asympitotically AdS domain-walls are mapped to inflationary
cosmologies that approach de Sitter spacetime at late times,

. ' 7 . - :
ds- — ds = —dr + e~ dx'dx’. as —oc

The second type of domain-walls is mapped to solutions that
approach power-law scaling solutions at late times,

7 g g ’. ' -
ds ——ds — &t |}t dardx. a2 - >eox
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T : The domain-wail/cosmoiogy comespondence
Part |- Holographic diciionary '

Holographic RG flows

The domain-wall has the following asymptotics

A(r) —nlogr, ®(r) — V2nlogr. a Frex

This case has only been understood recently

— Specific cases of such spacetimes are ones obtained by taking
the near-horizon limit of the non-conformal branes (DO, D1, F1.
D2. D4).

— These solutions describe QF T's with a "generalized conformal
structure”: all terms in the action have the same scaling and
there is a dimensionful coupling constant.
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Holography: a primer

Qutline

Part |: Holographic dictionary

B Holography: a primer

Pirsa: 10060013 Page 65/128




Part |- Holographic dictionary

Holography: 2 primer

Asymptotic solutions

m [he standard gauge/gravity duality is based on spacetimes that
are asympitotically locally Anti-de Siiter.

m These spacetimes have a conformal boundary and near the
conformal boundary Einstein equations (with negative
cosmological constant) hold.

m This implies that the metric has the following asymptotic form (in
4 bulk dimensions)

& | -3 & | = =
ds —dr -} e*"_:zf-jt x. r)dx'd¥

—4 ——
gii(x,. r) = Zoi(X) + e~ gilx) +e 7 gEyilx) + -

W 2 (X) Is the metric of the spacetime where the boundary theory
lives and (as such) it is also the source of the boundary energy
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Part |- Holographic dictionary

Holography: a primer

Correlation functions

m Using the formalism of holographic renormalization, we then find
a precise relation between correlation functions and asympiotics

m This formula only requires that Einstein equations hold near the
conformal boundary. In particular, it is also valid when curvatures
are large in the interior.

m Higher-point functions are obtained by differentiating the 1-point
functions w.r.t. sources and then setting the sources to their
background value

ii‘i.?l—l e

=1 317 A

‘T!j (X }T;‘j:':.l': == Ti-;j}; \Xn)] ™~ —
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Part |- Holographic dictionary

Holography: 3 pnimer

Asymptotic solutions

m [he standard gauge/gravity duality is based on spacetimes that
are asympitotically locally Anti-de Siiter.

m These spacetimes have a conformal boundary and near the
conformal boundary Einstein equations (with negative
cosmological constant) hold.

m This implies that the metric has the following asympitotic form (in
4 bulk dimensions)

& | -3 & | = =
das —dv -} e*‘f_:zf-jt.r, rdx'd¥

i\ X- ) = o' X) t’_-.r’-;’.,_‘j-.gj'- X)+e e 3)ilX) + -

W g2 X) Is the metric of the spacetime where the boundary theory
lives and (as such) it is also the source of the boundary energy
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Holography: 3 primer

Correlation functions

m Using the formalism of holographic renormalization, we then find
a precise relation between correlation functions and asympitotics

m This formula only requires that Einstein equations hold near the
conformal boundary. In particular, it is also valid when curvatures
are large in the interior.

m Higher-point functions are obtained by differentiating the 1-point
functions w.r.t. sources and then setting the sources to their
background value

I.;m—l;l,,_ .
?:,J (X1 }T,-:),-:Ii.l‘: = Ti'lﬁ'i [ Xp)) ™
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Part |- Holographic dictionary

Holography: 3 primer

Asymptotic solutions

m [he standard gauge/gravity duality is based on spacetimes that
are asympiotically locally Anti-de Siiter.

m [hese spacetimes have a conformal boundary and near the
conformal boundary Einstein equations (with negative
cosmological constant) hold.

m [his implies that the metric has the followmg asymptotic form (in
4 bulk dimensions)

ds> —dr* + e~ gilx, r dx'd¥

? A ) —— T . — e .
‘..,}!'jl.\..f = glll}ij{l-l -+ & _‘.’.,’_;_‘::,{i;"..". ) € 2natk) T ---

B g2 (X) Is the metric of the spacetime where the boundary theory
lives and (as such) it is also the source of the boundary energy
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Holography: 3 pnmer

Correlation functions

m Using the formalism of holographic renormalization, we then find
a precise relation between correlation functions and asympiotics

m This formula only requires that Einstein equations hold near the
conformal boundary. In particular, it is also valid when curvatures
are large in the interior.

m Higher-point functions are obtained by differentiating the 1-point
functions w.r.t. sources and then setting the sources to their
background value

;i"”_h"‘ i

¥ .
E =T\ A

.Fr,':j,:_l.\.'l .|Tj:j:':.'f:]'”*Tfﬂﬂ[.‘[”i ~ — — - —
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Correlation functions

Thus to solve the theory we need to know ¢ 3, as a function of g, .
This can be obtained perturbatively.

— From gravity to QFT
2-point functions are obtained by solving linearized fluctuations,
3-point functions by solving quadratic fluctuations etc. Here it is
crucial that the gravitational approximation is valid and this
results in correlators of strongly coupled QFT.

— From QFT to gravity
Given QFT correlators one obtains an asympitotic solution. If the
QFT correlators are that of weakly coupled QFT then the bulk
description has the prescribed asympiotic behavior and is

strongly coupled in the interior.
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Part |- Holographic dictionary

Asymptotic solutions

m [he standard gauge/gravity duality is based on spacetimes that
are asymptotically locally Anti-de Sitier.

m These spacetimes have a conformal boundary and near the
conformal boundary Einstein equations (with negative
cosmological constant) hold.

m This implies that the metric has the following asympitotic form (in
4 bulk dimensions)

ds> —dr* 4 & giilx. r dx'd¥

—2r_ : —3r )
...‘U‘ "l. ." lI — g*“'l‘]“l tj L’:|{I‘rr.l AT (:J 4 _: TAG ] ==

W 2 X) Is the metric of the spacetime where the boundary theory
lives and (as such) it is also the source of the boundary energy
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Part |- Holographic dictionary

Holography: a primer

Correlation functions

Thus to solve the theory we need to know g3, as a function of g(g,.
This can be obtained perturbatively.

— From gravity to QFT
2-point functions are obtained by solving linearized fluctuations,
3-point functions by solving quadratic fluctuations etc. Here it is
crucial that the gravitational approximation is valid and this
results in correlators of strongly coupled QFT.

— From QFT to gravity
Given QFT correlaiors one obtains an asympitotic solution. If the
QFT correlators are that of weakly coupled QF T then the bulk
description has the prescribed asympiotic behavior and is

strongly coupled in the interior.
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Correlaiors for holographic BG flows

Qutiline

Part |: Holographic dictionary

m Correlators for holographic RG flows
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Part |: Holographic dictionary

m Correlators for holographic RG flows
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Part |- Holographic dictionary Lo
= Holography: a primer

Correlation functions

Thus to solve the theory we need to know g3, as a function of g(g,.
This can be obtained perturbatively.

— From gravity o QFT
2-point functions are obtained by solving linearized fluctuations,
3-point functions by solving quadratic fluciuations etc. Here it is
crucial that the gravitational approximation is valid and this
results in correlators of strongly coupled QFT.

— From QFT to gravity
Given QFT correlators one obtains an asympiotic solution. If the
QFT correlators are that of weakly coupled QF T then the bulk
description has the prescribed asympiotic behavior and is

strongly coupled in the interior.
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Part |- Holographic dictionary

Correlaiors for holographic BG flows

Correlation functions for holographic RG flows

m To compute correlation functions we perturb around the
domain-wall. The linearized equations are given by

r= = i 7 Tk .
{jl — , eaE {BH € Fh‘—{‘f_t’ __1'«..,

F” _:“ ¥ ': —.: _1_1'__
= ij T 3H T € ij -

m Comparing with the cosmological perturbations, we find that the
equations are mapped to each other provided

g ———4

m The same holds to all order: the fluctuation equations are
mapped to each other provided the momenta are continued as
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Part |- Holographic dictionary

Comelaiors for holographic BG flows

Correlation functions for holographic RG flows

We now want to extract 2- and 3-point functions.

m Schematically, we must expand the perturbed solution near
r — oc and exiract the piece that scales like e "

m [he part linear in fluctuation gives the 2-point function.
m [he part quadratic in fluctuation gives the 3-point function.

m It is convenient to work in terms of response functions

where II¢. 1:[1.'_,! are radial canonical momenta.
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Part |- Holographic dictionary

Cormelaiors for holographic BG flows

Correlation functions for holographic RG flows

m lo compute correlation functions we perturb around the
domain-wall. The linearized equations are given by

. = R,
0 = C+(3H+€/e)(—qe e

- o8 # e 2 24
B — ‘fj‘ —:'*H*,j—a__f € Yii -

m Comparing with the cosmological perturbations, we find that the
equations are mapped to each other provided

g — —id

m [The same holds to all order: the fluctuation equations are
mapped to each other provided the momenta are continued as
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Part |- Holographic dictionary

Correlaiors for holographic BG flows

Correlation functions for holographic RG flows

We now want to extract 2- and 3-point functions.

m Schematically. we must expand the perturbed solution near
r — oc and exiract the piece that scales like e "

m [he part linear in fluctuation gives the 2-point function.
m [ he part quadratic in fluctuation gives the 3-point function.

m It is convenient to work in terms of response functions

where I1¢. 11 are radial canonical momenta.
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Part |- Holographic dictionary

Correlaiors for holographic BG flows

Correlation functions for holographic RG flows

m To compute correlation functions we perturb around the
domain-wall. The linearized equations are given by

- - - ﬂ
: : sponZ 2 BN,
@ — ({3 tefe)—qge ¢

T -3 = —_.: _1‘1__
B — ij T 3H ij— g € ij -

m Comparing with the cosmological perturbations, we find that the
equations are mapped to each other provided

m [The same holds to all order: the fluctuation equations are
mapped to each other provided the momenta are continued as
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Comelaiors for holographic G flows

Correlation functions for holographic RG flows

We now want to extract 2- and 3-point functions.

m Schematically, we must expand the perturbed solution near
r — oc and exiract the piece that scales like e "

m [he part linear in fluctuation gives the 2-point function.
m [he part quadratic in fluctuation gives the 3-point function.

m It is convenient to work in terms of response functions

where I1¢. 11 are radial canonical momenta.
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Part |- Holographic dictionary

Correlaiors for holograpihic BG flows

2-point functions for holographic RG flows

The 2-point function of the energy momentum tensor is then given by

T;jhii}T;_—;[ —q)) —Alg Hfj;;; = B[LJ_(]',THIH.

I_ e e I e e o e = —.:
where H;‘j,{-f = j* Wik Tlj T Wk — Tkl ) - R — *-’f’j — i/ q -

A(q) =4[Ex2(9)](e) - B:.:}.lzi[izyqqm],

The subscript indicates that one should pick the term with appropriate
scaling in the asympitotic expansion.
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Correlaiors for holographic BG flows

Correlation functions for holographic RG flows

We now want to extract 2- and 3-point functions.

m Schematically, we must expand the perturbed solution near
r — ~c and exiract the piece that scales like e "

m [he part linear in fluctuation gives the 2-point function.
m [ he part quadratic in fluctuation gives the 3-point function.

m |t is convenient to work in terms of response functions

where II¢. f[U are radial canonical momenta.
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Correlaiors for holographic BG flows

2-point functions for holographic RG flows

The 2-point function of the energy momenium tensor is then given by

T;;{Q}Tﬂt—q_r — Alg H;ﬁ-,r—B[L}'il,Tfjrﬂ.

Mg . S e Sa— e
where H:‘jk! = \TakTl T Ty — TTki). T — %5 — qiqj/q -

A(q) =4[Ex(9)] o) - B(g) = 3 [%(3)] o -

The subscript indicates that one should pick the term with appropriate
scaling in the asymptotic expansion.
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Part |- Holographic dictionary

Correlaiors for holographic BG flows

3-point functions for holographic RG flows

m Similarly, one can derive a holographic formula for the 3-point
function
Tfl_,fl | QI ]T;‘j:lijl’: ]T;_:J;:‘H;f} -t
In terms of response functions.

m For the 3-point function for the trace of stress energy tensor.
I =T, itis given by

T(qg)T(q2)T(g3)) ~ [23(q1.92.33)] g,
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Part I: MOICOIrapnic CIConary

Correlaiors for holograpisc BG flows

2-point functions for holographic RG flows

The 2-point function of the energy momentum tensor is then given by

Ti(q)Tu(—q)) = A(g) W + B(q) w7

e = e e g e
where Hfj,{;f — F\Tik Tl T TWiTgj — TgGTkd)- T — 05 — qiqi/q -

= _ B =
A(q) =4[Ex(9)] (o) - B(q) = — [22(9)] ) -

e

-

The subscript indicates that one should pick the term with appropriate
scaling in the asymptotic expansion.
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Cormelaiors for holograpihic BG flows

3-point functions for holographic RG flows

m Similarly, one can derive a holographic formula for the 3-point
function
Tfl_,fl | f}l ]T,‘j:li?: ']Tf-:f.:‘ r._qf_l B —
In terms of response functions.

m For the 3-point function for the trace of stress energy tensor.
I =T!, itis given by

T(q1)T(q2)T(g5)) ~ [25(q1-32-35)] 4,
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Qutline

Part |: Holographic dictionary

m Holography for cosmology
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Part I: MOIOOQrapnic CIConary

Correlaiors for holograpisc BG flows

3-point functions for holographic RG flows

m Similarly, one can derive a holographic formula for the 3-point
function
Tflfl I QI _]T,':j:lq: ]Tg;j_: ﬂ_t}‘} N —
In terms of response functions.

m For the 3-point function for the trace of stress energy tensor.
I =T!, itis given by

I'q,)T(q2)T(g3)) ~ [Q;I qgi-q2. g3 ]]{Oa
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Holography for cosmology
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Part |: Holographic dictionary

m Holography for cosmology
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Holography for cosmology

Holography for cosmology

We are now ready to present the holographic dictionary for
cosmology.

m The DW/cosmology correspondence maps the near boundary
region to the late time region.
m Under the analytic continuation

ey 5? ———

the response functions continue as follows

h(g) =(—ig). Eax(qg) = Ez(—iq).

P |

ﬁ_:' qdi. q:.{]; = Q_:.I —qu. —fqg. —f_q_: ).
B The analytic continuations translate in QF T language 1o
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Holography for cosmology

Holographic dictionary: Power spectrum

m We have shown earlier that

_{!3
ZT:[H]_E{{] 10) ‘

—
472 ImQ g (g)

Aélq# — A%{Lfl —

It follows

S\ = 222 \8mB(—ig) )’ “TY ™ 72 \imA(—iq) )’

where the holographic 2-point function is

Iii(q)Tu(—q)) = Alq)iu + B(q)mjmw.
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Holography for cosmology

Holographic dictionary: Non-Gaussianity

m Ve have seen earlier that

Ca16anCas) = (27) (g1 + g2 + q3)F(q1-92.95)

and

F gi1-g2.43) ~

m |i follows

Im(T(—iqy)T(—ig2)T(—iq2)
I1; Im(T(—ig;)T(—igq;)

Flgi.92.q93) ~

where the T =T is the trace of the stress energy tensor.
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Holography for cosmology

Holographic dictionary: Power spectrum

m We have shown earlier that

_qﬁ
272ImE 5 (q)

Ai(g) = — _ AZq) —
s\4 47-Im€ 2 (g) rid

It follows

N = A2 _2g =
ST 222\ 8mB(—ig) )T TV T 22 \ImA(—ig) )’

where the holographic 2-point function is

?:‘;fI:Q]ka{ _ﬁ}] = L}' H;j,{;f_B'fti:”T{;'Tﬂ_
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Part |- Holographic dictionary

Holograpity for cosmology

Holographic dictionary: Non-Gaussianity

m WNe have seen earlier that

Cq16qCqs) = (27)°d(gy + g2 +g3)F(qg1-92-G3)

and

Flgi.g2.q3) ~

m i follows

Im(T(—iq )T (—iq2)T(—iq2),
I Im{T(—iq;)T(—ig;)

F(gi-q2.q93) ~

where the T =T is the trace of the stress energy tensor.
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Holography for cosmology

Holography for cosmology

We are now ready to present the holographic dictionary for
cosmology.

m The DW/cosmology correspondence maps the near boundary
region to the late time region.

m Under the analytic continuation

— — =

_Ir-‘!'
the response functions continue as follows

0 (g) = (—ig). Eﬂ@rzfﬂ—iq.n.
5(G1. 2. G3) = 3(—igr. —igr. —ig3)

l-"'k

B The analytic coniinuations translate in QF T language to

Pirsa: 10060013 N — —iN. g — —if Page 98/128



Part |- Holographic dictionary

Holography for cosmology

Holographic dictionary: Power spectrum

m We have shown earlier that

< F — -
Aslif_ “-, O . A

It follows

i % = L o
ST 222 \8mB(—ig) )T T =2 \ImA(—ig) )

where the holographic 2-point function is

?}j“;”Tk!‘_f:?] = A t}' Hgﬂ—Bw}irfjrﬂ_

Pirsa: 10060013 Page 99/128




Part |- Holographic dictionary

Hoiography for cosmology

Holographic dictionary: Non-Gaussianity

m Ve have seen earlier that

Ca1CqCqs) = (2m) 0(q1 + g2 +q3)F(q1-92.g3)

and

F di.q92.4s3) ~

m i follows

Im(T(—igy)T(—ig2)T(—iq2)
I Im(T(—iq:)T(—ig;)

F(g1.-q2.q93) ~

where the T = T! is the trace of the stress energy tensor.
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Summary

Holography for cosmology

Holographic
RG Flow

A
Domain Wall/

Cosmaology
corraespondence

A

Cosmology
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Qutline

Part [l: New holographic models
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Part |I: New holographic models

New holographic models

m We are now going to obtain new models by using weakly coupled
QFT. This correspond to the gravitational theory being sitrongly
coupled at early times.

m [he boundary theory will be a combination of gauge fields.
fermions and scalars and it should admit a large N expansion.

m [o exiract predictions we need to compute n-point functions of
the siress energy tensor analytically continue the result and
insert them in the holographic formulae.
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Part [I: New holographic models

Holographic phenomenology for cosmology

m As a starting point one can consider the strong coupling version
of asympiotically dS cosmologies and power-law cosmology.

m In this talk we focus on QFT's dual to the latter. These are
super-renormalizable QF T's that depend on a single dimensionful
coupling:

! 3 I { =l [. 3 Jy2 1. K\2 L L
& xir [EFU-F + (D" + (DX + D

SYM - =

M; . M> w.M~ M a3 M L; ;L
+Aaremag, O OTOTERT -y, O, f—'ﬂ'}'

5:

m All terms in this Lagrangian have dimension 4.
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Part [I: New holographic models

A new mechanism for scale invariant spectrum

We need to compute the 2-point function of 7;;. The leading order
computation is at 1-loop:

The answer follows from general considerations:

m The stress energy tensor has dimension 3 in three dimensions.
m 1-loop amplitudes are independent of g7,,

m There is a factor of N? because of the trace over the gauge
indices.

-
r —)
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Part [I: New holographic models

A new mechanism for scale invariant spectrum

Recalling the holographic map:

m Specirum is scale invariant to leading order. independent of the
details of the holographic theory.

Furthermore.

m Amplitude of power spectrum 4 ~ 1 /N~
m Small 4 ~ 1077 = large N ~ 10*, justifying the large N limit.

irsa; 10060013 Page 106/128




Part [I: New holographic models

A new mechanism for scale invariant spectrum

We need to compute the 2-point function of 7;. The leading order
computation is at 1-loop:

The answer follows from general considerations:

m The stress energy tensor has dimension 3 in three dimensions.
m 1-loop amplitudes are independent of g7,,

m There is a factor of N? because of the trace over the gauge
indices.
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Part [I: New holographic models

A new mechanism for scale invariant spectrum

Recalling the holographic map:

m Specirum is scale invariant to leading order. independent of the
details of the holographic theory.

Furthermore.

m Amplitude of power spectrum 4 ~ 1/N~.
m Small A ~ 1077 = large N ~ 10*, justifying the large N limit.
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Part [I: New holographic models

Power specira

The compleie answer is
A(g) = CsN’@ + O(g%y)-  B(g) = CeN*g + O(g3y)
where
Ca— .‘14_.\ —"\ —:\. :,:‘{"" fg— 1\ —\k :5{“‘
It follows
9. ]. 9 7 2 ..
Aslg) = T + O(2ym ). _\“H.':%_()[LI"' }.
s\4 1672N2Cp YM T\4 2N2C, Y™
N, - #£of gauge fields, N, : # of minimally coupled scalars,
N, : # of conformally coupled scalars, .\, : # of fermions.




Part [I: New holographic models

Subleading corrections

Subleading corrections give small deviations
from scale invariance:

.. 9

n, — 1 ~ g6 = gymiV/ 9.

The observational value (n, — 1) ~ 102 is then
consistent with the QF T being weakly
interacting.

B [o determine the sign of (n,—1) (posiiive: red-tilied specirum.
negative: blue-tilted spectrum) requires summing all 2-loop
graphs, and will in general depend on the field content of the dual
QFT.

[Work in progress
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Part [I: New holographic models

2-loop details

Super-renormalizable theories often have infrared problems. The
specific type of theories we consider however are well-defined: ¢7,,
acts as an infrared cut-off.

The 2-loop integrals are indeed finite and one obtains:

:’Hg‘]‘ = C‘_“_.\;
B(g) = CsN°q’[1 + DpgZsIn g% + O(g2:)].

I

g1 + Dy ngis + O(g2:)].

where ¢ = 21,,/V/g and D4 and Dg are numerical constants.
This leads to
3 - 2 4 e o 4
ns(q)— 8 — _Dﬂdgeff s O(Qeﬂ: ). nrig) = _Dﬂgeﬁ = = O[Qeﬂ'f.
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Part [I: New holographic models

Running

m Independent of the details of the theory, the scalar speciral index

runs as
dn,

g

= — —(n,—1) + O(g2).
- dng p e

m [his prediction is qualitatively different from slow-roll inflation. for
which a./(n,—1) is of first-order in slow-roll.
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Part |I: New holographic models

Subleading corrections

Subleading corrections give small deviations
from scale invariance:

> 5 e
ng — 1 ~ g = gymiV/4-

The observational value (7, — 1) ~ 102 is then
consistent with the QFT being weakly
interacting.

B [o determine the sign of (n,—1) (posiiive: red-iilied specirum.
negative: blue-tilted spectrum) requires summing all 2-loop
graphs. and will in general depend on the field content of the dual
QFT.

[Work in progress]
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Part |I: New holographic modeis

Running

m Independent of the details of the theory, the scalar speciral index

runs as
dn,

q‘_]'.j

g
— :—-:”—1}—01Q 8
ding 3 =

m [his prediciion is qualitatively different from slow-roll inflation. for
which a./(n,—1) is of first-order in slow-roll.
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Part |I: New holographic models

WMAP data

= WMAP
B WMAP+BAO+SN .

0.05 _-' '

X
0.05 |

i Solid line:
-0.10 i _ ‘L"'J;-,‘ 1 a—{m—1)
— -;_'.,: 4
- '“h-.._____'___,_-

015}
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Part [I: New holographic models

Non-Gaussianity

/—x—\ Direct computation gives

l I'q1)T(q2)T(g3)) =

Ta(ay) X X Todla)

m Using the holographic formula one finds

= —__"\ a = — x5 = =4 _'I _"I _"]
20N (2q1q2q5 — (1 +q2 +q3)(q1 + 5 + G5

: . \ __ plocal , —equul :
F(q1.92-93) = Fyt  (q1-92-93) + Fyr  (q1-92-93)

with
Jocal

5 == T
e — G ~23 \preliminary]

m This is independent of all details of theory.
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Part [I: New holographic models

2-loop details

Super-renormalizable theories often have infrared problems. The
specific type of theories we consider however are well-defined: ¢7,,

acts as an infrared cut-off.

The 2-loop integrals are indeed finite and one obtains:

-

:'U{:l_l' = C__‘l'_. /= ¢ [ T 3 DA '-;’gﬂr In A O{,L}jﬂ‘}:.
B(g) = CeN’q’[1 + DpgZsIn g2 + O(22s)]

where ¢ = 27,,V/g and D4 and Dy are numerical constants.
This leads to
HSH‘”—[ — _DB ﬁ:——Of nrig) = _DJQEE—O[Q:HP

i
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Part [I: New holographic models

Power specira

The compleie answer is

A(g) = CsN-g + O(gym) B(g) = CaN-g + O(g3ym)
where
Cy = (Ns+Ng+ N, +2N,)/256. Cg = (Ny +Ng)/256.
It follows
As(q) = 11 >—+ O(gym)- A7(q) = ; +O(gym)-
167=N-Cp T=N*C,

N,y - # of gauge fields, N, : # of minimally coupled scalars,
N, : # of conformally coupled scalars, .\ : # of fermions.
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Part [I: New holographic modeils

Non-Gaussianity

/—x—\ Direct computation gives

I'(g1)T(g2)T(q3)) =

S

m Using the holographic formula one finds
F(g1.92.43) = Fis™(q1.q2.43) + Fap (41.92.95)
with .
flocal _ greanl . 20/3 \preliminary]

m This is independent of all details of theory.
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Part [I: New holographic models

The shape of non-Gaussianity

m Local form
FIDC‘.']N{II*LJZ'{I_:J' —INL 3 3 3 '
q19>45 =
— Qbservationally: /i7" = 32 +21(68% CL
— Single scalar slow-roll inflation: 47" = 0.015
m Equilateral form ]
. : equil 6:‘1: 5 - 3 7 -
Fequitlq1-@2.93) =y 53535 | 2019295 — E qg; + (q1q5 + 5 perm)
{!l{f:{!_: P
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Part |I: New holographic models

Non-Gaussianity

_ /—x—\ Direct computation gives

I'(q1)T(g2)T(qg3)) =

o

m Using the holographic formula one finds
F(q1.92.93) = Fr*(q1-92.93) + Fi‘-}u“;q;.q;. qs3)
with )
flocal _ greaml . 20/3 |preliminary]

m This is independent of all details of theory.

Pirsa: 10060013 Page 121/128



Part [I: New holographic models

The shape of non-Gaussianity

m Local form

= ooan:
Fiocat(91-92:43) =it 555 Y _ &
N5
— QObservationally: /i7" = 32 £ 21(68%CL
— Single scalar slow-roll inflation: 47" = 0.015
m Equilateral form ]
. equil 6*"12 - 3 . -
d19>95 =
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— Observationally: /7™ = 26 + 140(68% CL



Conclusions

Qutline

Conclusions
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Conciusions

Conclusions

m | have presented a holographic description of inflationary
cosmology in terms of a 3-dimensional QFT (without gravity!)

m When gravity is weakly coupled. holography correctly reproduces
standard inflationary predictions for cosmological observables.

m When gravity is sitrongly coupled, one finds new models that
have a QF T description.

m We initiated a holographic phenomenological approach to
cosmology.
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Conciusions

Holographic phenomenology

| presented models with the following universal features:

m they have a nearly scale invariant spectrum of small amplitude
primordial fluctuations.

m the scalar speciral index runs as a, = —(n, — 1).

m the three point funciion of curvature perturbations is exactly
equal to the sum of the local and equilateral form with

slocal _ _‘._‘_*:"L_,U ~ =

‘\.,._ NI
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Part [I: New holographic models

Non-Gaussianity

/—X_\ Direct computation gives

. | TH:'JI v .:j{:'rle{?;i —
Tu(a,) X X T.d{a)

m Using the holographic formula one finds

= —1_"\ = = =T = =r i _'| _'I _"
2( ,q,-\'f_:qiq:q; —\q1 Tq2 T qG3)\qg7 T4 T3

. __ ploecaly —equil
F(q1.92-93) = Fyr  (q1-92-93) + Far  (91-92-93)
with
= =t ~3 \preliminary]

m This is independent of all details of theory.
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Part [I: New holographic models

2-loop details

Super-renormalizable theories often have infrared problems. The
specific type of theories we consider however are well-defined: ¢7,,

acts as an infrared cut-off.

The 2-loop integrals are indeed finite and one obtains:

I-.l

rJJ

Al qH = C‘_vl.ir
B(g) — CsN%g

} +D,o ﬂ:ln{.};ﬁ O*”eﬂ**

I ]

-
-

+ Dpg tf Ing "'ert + O ~Qeﬂ }‘

where ¢ = 25,,V/g and D4 and Dp are numerical constants.
This leads to

ns(q)—1 = —Dpgag + O(g2x). nr(q) = —Dageg + O(geg)
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Part [I: New holographic models

2-loop details

Super-renormalizable theories often have infrared problems. The
specific type of theories we consider however are well-defined: ¢7,,
acts as an infrared cut-off.

The 2-loop integrals are indeed finite and one obtains:

IJ

r“

A(g) = CsN°q’[1 + D4 ”‘ff In fférf O(gew)].

B(g) = CgN*q’ j[ 4+ DpgieIngis + O(gie)]

where ¢ = 27,,V/g and D4 and Dy are numerical constants.
This leads to

ns(q)—1 = _DBIQSE + O{giﬁr. nr(q) = —Dag E + O(g:

i
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