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Abstract: This talk will be concerned with three new results (or a subset thereof) on the idea of grasping quantum many-body systems in terms of
suitable tensor networks, such as finitely correlated states (FCS), tree tensor networks (TTN), projected entangled pair states (PEPS) or
entanglement renormalization (MERA). We will first briefly introduce some basic ideas and relate the feasibility of such approaches to
entanglement properties and area laws.

We will then seethat (a) surprisingly, any MERA can be efficiently encoded in a PEPS, hence in a sense unifying these approaches. (b) We will also
find that the ground state-manifold of any frustration-free spin-1/2 nearest neighbor Hamiltonian can be completely characterized in terms of tensor
networks, how all such ground states satisfy an area law, and in which way such states serve as ansatz states for simulating almost frustration-free
systems. (c) The last part will be concerned with using flow techniques to simulate interacting quantum fields with finitely correlated state
approaches, and with simulating interacting fermions using efficiently contractible tensor networks.
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Imagine ground state of local Hamiltonian
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Imagine ground state of local Hamiltonian

Correlation functions decay with distance, for gapped (non-critical)

models even exponentially
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Imagine ground state of local Hamiltonian, and think of

entropy S(p4) = —tr(p 4 log p 4 ) of subsystem of some sites 4

A

How does this entropy scale with the size of the region A ?




Imagine ground state of local Hamiltonian, and think of

entropy S(p.4) = —tr(p4 log p 4 ) of subsystem of some sites 4

A

How does this entropy scale with the size of the region A ?




"Naive answer' : Should be extensive. i.e.. volume law



Correct answer: Entanglement scales like boundary area (Tarea law"™)

Dbservation I: For ground states of either free bosonic on an arbitrary lattice
graph) or an arbitrary gapped strongly correlated systems in |D, or time-

ayolved systems, for some constantc > 0, S|
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Area lows for the entongiernent entropy (with Cramer. Plenso). Rev Mod Phys 82 277 (2010)

Entropy. entangiement and area:Analytical results for harmonse lotce models (with Cramer. Dresssig, Plerso). Phys Rev Letr 94, 060503 (2005)
44 area low for one-demensional quantum systems. Hasongs, | Stat Mech POBO24 (2007)
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Tensor network states (MPS, PEPS, TTN, MERA, IPEPS, cMPS) usually
parametrize such low entropy states

(see Ignacio’s, Frank's, Guifre's talks today)
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e Lesson: "Since nature explores a small subspace anyway, one can
often efficiently parameterize this subspace using tensor networks"




heme |:

leaning up: Relating MERA and PEPS

nl-space renormalization yields finite correlations (with Barthel, Kliesch), arXiv:1003.2319




MERA, "Multiscale entanglement renormalization” (compare Guifre's talk)

Sequence of isometries Il and disentangiers Il
Instance of real-space renormalization, "scale invariant”, like critical systems
Makes perfect sense in 2D, 3D, ...

ent renormaiization. Vidal Phys Rev Leet 99. 220405 (2007)
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MERA, "Muiltiscale entanglement renormalization” (compare Guifre's talk)

Sequence of isometries Il and disentangiers Il
Instance of real-space renormalization, "scale invariant’, like critical systems
Makes perfect sense in 2D, 3D, ...

nent renormaizoton. Vidal Phys Rev Lert 99. 220405 (2007)



MERA features a causal cone, can be efficiently contracted

plement renormaizonon. Vidal Phys Rev Lert 99. 2720405 (2007)
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PEPS ("projected entangled pair states”), also "tensor product states”,
"higher-dim matrix product states”, "generalized valence bond states”

ety matrx formulation for quantum renermalzanon groups. VWhite, Phys Rev (=1t 69. 2863 (1992)
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PEPS ("projected entangled pair states”), also "tensor product states”,
"higher-dim matrix product states”, "generalized valence bond states”

Planar tensor network: very natural properties (see Ignacio's talk)
not exactly efficiently contractible (#P-complete)
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Ist insight: Every tensor network state can be encoded in a PEPS:

|.Assign each tensor to a site of the physical lattice V = |0, .... L — 1]

2. Assign all edges of graph to paths in physical lattice
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Problem: "Piling up of tensors” - inefficient encoding




Problem: "Piling up of tensors” - inefficient encoding

Fine print: Classification of MERA in most general meaningful sense

e Consists of [ temporal layers,. 7 = 1... .. I .has [." sites, [. = b
e To each layer, associate coarse grained lattice L . with L/b" )" cells of physical
lattice, Lo = )

e Upper bound X to vector space dim of each tensor index, upper bound ( ', to
order of tensor

e Ex assignment of tensors of layer 7 to cells of £ such that number of tensors is
bounded from above by (’; , distance of contracted tensors, in L1i-normin
physical lattice bounded by (",

I

e For|7 — 7 | > CT no contraction lines between layers 7. T

!

In other words: "There is a causal cone™




2nd insight: It is all about good bookkeeping!

Suitable placement of tensors:

All MERA tensors of
cell n € L of layerT

All coordinates of I'-{ 11 ) have
b-adic valuations givingT — 1

Assigned site of physical lattice

r-(n)=b0'n+5b

wheree — (1.....
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2nd insight: It is all about good bookkeeping!

>

- V) - . .f i
Finding paths: Possible positions V- = {I-(I1) : N € L of layer
Assign contraction lines to L -shortest path in V- U V_ for contraction lines
between 7 and T forming edge setsC . C~
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2nd insight: It is all about good bookkeeping!

. . V) i B . Fe —
Finding paths: Possible positions V- = {T'-(I1) : 1 & L of layer
Assign contraction lines to L -shortest path in V- U V_ for contraction lines

&

between 7 and 7 forming edge setsC -, C+

Can show: Gives rise to PEPS with bond dimension bounded from above by

log XPEPS ) < (e( ., )" (_._.:'_ T Cr+l C;C,
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Observation 2: Any MERA in > 1D can be encoded in a PEPS with a bond dim
independent of the system size (and efficient in bond dimension of MERA)
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Observation 2: Any MERA in > 1D can be encoded in a PEPS with a bond dim
independent of the system size (and efficient in bond dimension of MERA)

mprove scaling of PEPS-bond dimension \ p;

e by using refined lattices (involved)

Practically, for "standard” 2D MERA XPEPS — X and XpEpPSs — X
o "reasonable” polynomial
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contracted but logarithmically violate an area law

Delineate the boundary between efficiently describable and entanglement scaling




Observation 3: Ex tensor networks that can be efficiently
contracted but logarithmically violate an area law

Delineate the boundary between efficiently describable and entanglement scaling

e Lesson: Put MERA and PEPS into a single framework

"Real-space renormalization captured in PEPS™

(but note that MERA are efficiently contractible)...
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ving frustration-free spin systems (with de Beaudrap, Ohliger. Osborne), arXiv:1005.378I




» PEPS ("projected entangled pair states”), also "tensor product states”,
“higher-dim matrix product states”, "generalized valence bond states”

» Planar tensor network: very natural properties (see Ignacio's talk)
not exactly efficiently contractible (#P-complete)
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Iwo major classes of tensor networks to simulate strongly correlated models

e How are MERA and PEPS actually related?

e Surprisingly, MERA is an (efficiently contractible) subset of PEPS!




+ Ist insight: Every tensor network state can be encoded in a PEPS:
|.Assign each tensor to a site of the physical lattice V = |0, .... L — l e

2. Assign all edges of graph to paths in physical lattice
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v Fine print: Classification of MERA in most general meaningful sense
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Observation 3: Ex tensor networks that can be efficiently
contracted but logarithmically violate an area law

Delineate the boundary between efficiently describable and entanglement scaling

e Lesson: Put MERA and PEPS into a single framework

"Real-space renormalization captured in PEPS™

(but note that MERA are efficiently contractible)...
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‘inding ground states of local quantum many-body systems
, in general, computationally difficult

1odels for which approximation of ground state energy is QMA-complete
*hysically: "Glassy” models

he power of quantum computing on a ine. Aharonov. Gottesman, irani. Kempe. Cammeon Math Phys 287. 51 (2009)
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{ere: |dentify models for which finding entire ground state manifold is easy:

‘rustration-free nearest-neighbor natural spin-1/2 systems on arbitrary lattices

e GS local expectation values (1) can be computed exactly and efficiently

("nmatural” means, excited states of Hamiltonian terms contain entangled one)

ohng frustration-free systemns (with de Beaudrap. Ohliger. Osborne). ar Xiv: 10053781
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iere: |ldentfy models for which finding entire ground state manifold is easy:

‘rustration-free nearest-neighbor natural spin-1/2 systems on arbitrary lattices

®—0 —0—0 —0—0 —0 —©
¢ Reminder: Hamiltonian [/ = T h . » is unfrustrated if not only

Hiv) =0 for every|1)) € M (GS manifold), but

M

he i) = 0 forall [ M andall h, ;

chang frustration-free systems (with de Beaudrap, Ohliger. Osborne). ar Xiv: 10053781

S k. A e . i R s .



dea: Start from ingredients from Bravyi's algorithm for quantum 2-SAT, generalize
> capture entire GS manifold

* Hamiltonian term /1,, ,, of rank 2,3: ker(/ _ Span W) 1, apply

sometry |( sie > Thay — H such that

S x> S a

onsider new Hamiltonian ' = U HU

. b |,

ahvng frustration-free systems (wath de Beaudrap Ohliger. Osborne). arXiv: 1005.3781
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5 capture entire GS manifold

" Hamiltonian term / of rank 2,3: ker(/ ~ Span ) 1, apply
sometry U - 7 2 — H such that

, TR I RO, 5

onsider new Hamiltonian H' = [ HU,

0/i7'

-
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dea: Start from ingredients from Bravyi's algorithm for quantum 2-SAT, generalize
> capture entire GS manifold

" Hamiltonian term / of rank 2,3: ker(/ _ Span , apply
sometry {/,, ... : ‘1_ - L_ such that
N SCT, TR

onsider new Hamiltonian ' = U HU,

f encounter single-spin operator /2,, then delete isometrically

to new Hamiltonian H' = 1)H(|¥), 1 @ @
L/
I

alving frustration-free systems (wath de Beaudrap. Ohliger. Osborne). ar Xiv: 10053781
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rove that for our purposes, contraction-order does not matter

rove that property of being "natural™ is conserved (somewhat technical)

ind normal form of Hamiltonian of rank-1, / = |Dq closed under

3 | = ({8 (1R ) @1

e Ground space of this remaining core of V. s_pinﬂ
is image of a symmetric subspace Svinm .*1_
under known local invertble transformations

aolmng frstrotion-free systems (with de Beaudrap, Ohliger. Osbharne). arXiv- 10053781



Observation 4: Expectation values of local observables can be
efficiently exactly computed

Tree tensor network

Local observable
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Observation 4: Expectation values of local observables can be
efficiently exactly computed

Symmetric subspace, get ONB from

Svmm/(H \ symbolic Gram-Schmidt from any
- V.| + 1 linearly independent products
S —
‘ | | Tree tensor network

em—
| -_-,-e .
-

| -
—————

- e _r g - o g - i~ T N ey o . ' T T . .




e Observation 5: All such ground states satisfy area laws,
now for mixed-state entanglement

e Novel class of models for which area law is known

e Proof: For each connected component of interaction graph,
explicitly bound maximum Schmidt rank

S~ i a4 & - - o I g m N . § g A ey SRR



Jbservation 6: Provides ansatz class of almost frustration-free models

- rT 7 ; I'T -

_onsider H = Hy + AV, Hounfrustrated, small examples:

GS energy of XX.Z model on 3x3 torus Magnetization in 4x4 Ising model
= —X; X €% 1 Y VAVA | = —Z,; 2 = —AX

~ Symmetrnic
— Exact/Anderson

e Sample from GS manifold of exactly frustration-free system

e Very simple, but significantly outperforms Gutzwiller mean field
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e Lesson: Such frustration-free models can be solved exactly

¢ Instance of real-space renormalization which is exact

e "Tensor networks with an input”
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utiook: What else ...

ionic tensor networks and quantum fields

ographic quantum states (with Osborne, Verstraete), arXiv:1005.1268
itary circuits for simulating strongly correlated fermions (with Pineda, Barthel), arXiv:0905.066%
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nuum limits of MPS for quantum fields, long-range interactions and free models
Frank's talk)
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Naive mapping from fermionic model to spin models creates
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of strongly correlated fermions (wath Barthel Pineda). Phys Rev A 80. (42333 (2009)
arauts for strongly correlated fermsons (wath Pineda. Barthed). ar Xiv-0905.0669

on of correiated fermeons n two spabol dimension with fermeonsc projecied entangied pair stotes. Corboz. Orus, Bover, Vidal. ar Xiv-0912 0646
RE%A entongied pair stotes. Kraus. Schuch. Verstraete. Cirac. Phys RevA 81 (2010) RAUEoE2

of interocting fermions with entanglement renormaiiration. Corboz. Evenbly Verstraete Vidal Phys Rev A 81. 010303 (2010)




of parity: Causal cone of MERA is the same for fermions as for spins

e Overcome fixed order of modes:

e Jordan-Wigner transformations local in space and time: e.g.,
n for given orderm : {1.. .., m|} —m.n:{1...., m|} —n

in spin representation
Jam(A) = Y |n) a(n|Alm)m(m|

Im)m EF s |ﬂ)n & f'n?, im) € (Cz)glml__ In) = (C2)®In|

m

of strongly correlated fermions (with Barthel. Pineda). Phys Rev A 80, 042333 (2009)
araats for strongly correlated fermeons (wath Pineda. Barthel), ar Xiv-0905.066%

' .nl" correiated fermeons i two spabal dimension with fermeonec projected entangied pair stotes. Corboz. Orus, Bower, Vidal ar Xiv-0912 0646
RCLANRYEE entongied par stotes. Kraus. Schuch Verstraete. Cirac. Phys RevA 81 (2010) EPUcIoEe
of interocting ferrmons with entanglement renarmaiization. Corboz. Evenbly Verstraete Vidal Phys Rev A 81. 010303 (2010)




of complete fermionic contraction rules: 2 ll- =a

=
n i‘ -
= m m
_ ) (nlJy eltr, A)lm) = (n.riJs { A)m, r)
2] = [ g¢] Partal projection
1 Nz M .
E 1 p ' Change order of spin
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e Observation 6: Fermionic tensor networks can be contracted with the same
efficiency (at most small constant overhead) compared to spin models

ation of strongly correlated fermeons (with Barthel. Pineda). Phys Rev A 80. 042333 (2009)
arcuts for strongly correlated fermsons (wath Pineda. Barthed), ar Xiv-0905.0669

aton of correiated fermeons i two spatal demension with fermmonsc progected entangied pair stotes. Corboz. Orus. Bower. Vidol. ar Xiv- 0912 0646
102 entangled pair stotes. Kraus. Schuch. Verstraete. Cirac. Piys RevA 81 (2010) Hgaeguie
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ow careful numerical benchmarking (MERA)

e Benchmarking, comparison with exact diagonalization on 25 fermions, free models
e Promising results, tricky to get large bond dimension, good for small hopping
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of strongly correlated fermuons (wath Barthel Pineda). Phys Rev A 80. (42333 (2009)
arcuts for strongly correigted fermsons (wath Pineda. Barthed), ar Xiv-0905.0669
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2_Solving frustration-free spin systems

A glimpse of simulating fermionic systems
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