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Long-Time Tails: (A bit of) History

® Conserved currents relax exponentially in time on long time scales ¢ ~ k™2

®  MD Simulations for hard-disk/hard-sphere fluids in two/three dimensions
[Alder, Wamwright 1960s]

®  Surprise: autocorrelations live much longer than exponential relaxation ume
( t~k2 ) implicated by diffusion
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Long-time tails and Mode-coupling:

® The existence of a back flow for a labeled particle

® Low-densities: particle 1s pushed along the mmitial motion also scatterings are
rare: building up long-time positive correlation in the velocity field

®  Vortex like pattern develops. After a few mean collision time. it matches the
prediction of the Navier-Stokes equations

® High-densities: imtial motion rapidly randomizes. The long-time
autocorrelation will be lost



Long-time tails and Mode-Coupling

Positive long-time autocorrelation: coupling between the particle motion and the
hydrodynamic response of the fluid

Momenturr p'(0) after ime gets re-distnnbuted

Evolution of '(¢) is due to diffusion of the transverse component of the p'(0)/nV (t)
momentum R(t) = {*_:,:,t}"i’

If there is charge diffusion R(t) = (D + 3,)t)*



In Z(/Z0)
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FIG. 8.5. Log-log plot of the veloaty amtocomrsianon ficton versus me for a svstem of particles imteractme

through a truncated Lennard-Jones powennal The pomts are molecular-dvnamics results and the Iine 15 drawn
with a slope equal to —3_ The umit of time is = — (mo~/48¢)}/>_ After Levesque and Ashurst =




Long-time tails in an actual experiment
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FIG. 8.6. Power spectum of the velocity autocorrelation function of liquid sodium as a function of «'/~. The
pomts are demrved from medashe neufron-scafienne measurements and the hne 15 2 least-squares fit to the data
After Morkel et al >



Long-time tails and Mode-Coupling

Mode-coupling formalism: decay of fluctuations nto to a pair of
hydrodynamic modes

No Kubo formula in 2+1 dimensions for shear viscosity



Crash Course in Hydrodynamics

Hydrodynamics: umiversal (interacting) theory of conserved currents
Classical limit: states are highly populated «/T. &/T < 1
Hydrodynamic variables : conserved currents
Conservation laws: familiar Navier-Stokes equation and continuity in the NR-limit
Constitutive relations to close the system of equations
1% = =DV %p + dp 6u® + . ..
Effective field theory philosophy: add any operator consistent with symmetries to
the constitutive relations with unknown couplings



Long-time tails: convection term

Near equilibrium there are two open channels for dissipation: diffusion and
convection

Diffusion acts on time scales ¢ ~ k=2 . It detects inhomogeneities.
Convecton has no momentum dependence

On largest scales diffusion shuts down. Although less efficient, convection
dominates
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Long-time tails: convection term

Near equilibrium there are two open channels for dissipation: diffusion and
convection

Diffusion acts on ume scales ¢ ~ k=2 . It detects inhomogeneities.
Convection has no momentum dependence

On largest scales diffusion shuts down. Although less efficient, convection
dominates



Long-time tail phenomenon

«  Phenomenon associated with mode-coupling
«  Long-time tails at k = () power law fall offs in correlation functions of conserved
currents
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Hydrodynamic perturbation theory

® Hydrodynamic propagators and interactions

T . k)pllD, —k)) = =, —DW i
r et o - i =
T [..,.-u_ 2 RENEIE = e L |.1.n_-au.{...-1]
"—i—f’ e 9

19 = —DN%p + dp ou”™ + ...
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Long-Time Tails: Hydrodynamic
Perturbation Theory

e Hydrodynamic loop diagram

® Using propagators in the long-time limit

/Fﬂ-lF _',Iq'"-"_J'I__;hl'”"I - fr[d-ir 'FII.-_,I‘F]I"I'_J‘I,_ll‘]1uﬁ“}|-

(pir. £)u®(7, x) p(Ou®(0)) = (p(T, £)p(0)) (u®(T, £)u(0))
fn’d-l.r (7%(r, );%(0)) = — 1 —
e+pd—1 [4x( D+l ™™

® [ong-ume tail is suppressed by (entropy) density



Long-time tail: Gravity dual

What gravitational phenomenon is dual to this effect?

In N =4 SYM _this will be an O(1/N?) effect

In the bulk. it appears at the order g:

The bulk AdS (quantum) gravity captures this effect at one-loop

Real-time signature perturbation theory 1s more transparent



Things (not) to worry about!

® Theregion k << 1/ Vvt dominates the loop momentum ntegral

® Non-renormalizability of perturbative quantum gravity in AdS is not an issue.
The UV region’s contribution 1s negligible so cutoff can be removed safely and
still remain finite



What to Compute

«  Hydrodynamic correlators are real so the symmetric function is what to compute

éf:f‘-lr '1"{_;"7...;.!".}:'”?}} = (1 + 2ngiw)) [Iu'“l’;;"l'..;l

- Related to the retarded correlator in equilibrium
Beg(r) = [d* ' V(= (r.r.r — ) 7(0.r — o).

i1"1’.-1,&" ¥(r) Efud"']r’l' (. r —o0) &0, r —oc))n

We use Schwinger-Keldysh formalism in ra-basis



Setup: Bulk Spacetime

« Bulk theory: Einstein or Einstein/Maxwell (Yang-Mills )+ cosmological constant:
we do not need the full supergravity on AdS5

« Bulk geometry is an 445, ,-Schwarzschild black hole
] 'I':-T’ - a5 ¥ =
ds® = fj:::tf.l"'.cffk = (T) dr” + piri{—g\r Vet~ + ""Un:_f‘rf_f"; |
pir) = cosh# (2=Tr), g(r) = tanh®(2=Tr)

« In perturbation theory. we gauge-fix to Gaussian normal coordinate

h.. =0. h_=10

Ly rr

Space-like axial gauge for the gauge field 4. =0.



Diagrams

« In Schwinger-Keldysh formalism in ra-basis

1
!'_‘}T = *;{I_:]I = f_}-:}‘ l'.‘}r] :-f_]'l — I_}:‘

&= rrr _”GH_'_G_\I (%+”E{""‘}] _'_’GR
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Bulk counter-terms

The Symanzik procedure  [Symanzik "85]

(O%xy)---O(zp))bdy = bm {(II(ry, 1) T (rn, Tn) )bk

M ecccalFm—Fe

We do not keep track of the contact terms. They are irrelevant at long times

Play no-role at long times : stuck to the boundary (surface mteractions)



Diagrams

« In Schwinger-Keldysh formalism mn ra-basis

1
o= -;{{jl T+ ). 0 =0, — .
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The origin of the boundary KMS
conditions

- In QFT in curved s pace limit of QG: BH 1s in Thermal equilibrium with the
environment to all orders in perturbation theory
|Gibbons-Perry 76|

Goalr. r";p_l = —inglpl Grlr, r";pl——{:__il_ . r‘r;plﬁl. etc.

Fluctuations around H-H state are thermal to all order in perturbation theory
- The KMS conditions are obeyed mn the bulk

« So in an AdS/CFT setting. the boundary KMS conditions are inherited from the
bulk




Dominant fields in the hydrodynamic
regime

¢

Both perturbations in the loop: long-lived and diffusive
Charge fluctuations dominate over current perturbations
where 4,/A. ~ k/w
hi. dominates over /.. : momentum fluctuation dominates over stress

L

L

¢

i.E-_ ‘ir;ih_ -t ;_i!_)qj') . r;'rfuu_;. ‘f'C}[r‘:}
| ~

1s suppressed by viscous contributions . A 2N AR
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Spin-2 fluctuations are negligible : the boundary data for non-trace part of 9,
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Bulk Variable

« The bulk computation 1s best organized in momentum variables rather than in
field space.
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A Shulk

po__ _ N T repw 5
f"-z,j- = w_(.'**iph‘f\ph
e MG N
4 Shuik v—
= yA T —
0 g Fd+1

« Consider them as extending in the bulk: local density of the currents

r==tt) F=7rt)




Gravity Vertices: 7~

« Rewriting in terms of the bulk local currents

| A=A—yg

v—9lg*|

35 (7)ot (T)
— /rfd_l-r J -

E+p

« Gauge-gauge-gauge vertices are also sub-leading :
« and 5A4'9.464° involve current fluctuation

- ) irl6=Gag™
[:f""r@j'{r}df‘,{ﬂ]”l 9 +

O(1/7)

SA*9, A"




Gravity Vertices : ¥

« Recastung it in the bulk stress tensor variables

V. = j"d_l-‘"iftr'ifr-./lfFM+C?{I_ =)

s v—alg*|

H : . y
ff"l_l‘drji_ r'ifju_
E+=p

« Graviton-gauge-gauge is sub-leading: couplesto  F*"FY ~ jJ¥  which is
sub-dominant



Diagrams

« Atone loop

0 ¢ ¢
k =g
:

.

i}

Fevnman diagrams contnbuting to (a) current correlator (b) stress tensor

correlator. Four-point vertices (¢) will be found to have negligible effects. Wavy lines
are bulk Yang-Mills fields and double lines are gravitons.



External Wavefunctions

« Letusfocuson < jpjr >
+ External wave function for 4 :boundary conditions

e : . : :
E_‘?,ig.},.r_;(r}_ + | kP vu(r) = 0. G = /=3¢
Yalr) o ro=r asr — 0 WV dAT) = 1 when r — o
1]+|| |—l-1-—-l g
afil————Mm.——m: 1 — - “imlr))
'-'T“" ¥ aFii 3 Ir:ti_“ 2 .r:i' o tanh® (=T ) canh="" (=T
2Fil———m, ——m. 1 — 0. 1)

« Spectrum of the quasi-normal modes: gapped and off the imaginary axis

.=l —) n=12....




External Wavefunction

« A, relaxes microscopically. A, dissipates on time scale 7!
« The field profile falls into the horizon along a null ray

AT (r, t) — ATt —ru(7T))




Bulk-bulk correlators

« The upshot: bulk-bulk correlators are equal to the boundary-boundary correlators
up to corrections which become large near the horizon.
« The GY(r.r':p) propagator

SMr—r') e
= —k~8(r—r")

[.')r (Ca,)+(lg" |...,""—-_u;::k"1l’__'] G'E{r. ip)+

« Solve in the hydro approximation
« The combination with Neumann boundary condition

3 ok?
Glir)=(1—i—)F(r) + (1 + :‘—E}F'ir}

e — i



Emergence of non-linear Hydro from
Anti de Sitter Space

(]|
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Tip of the half-almond r(7) ~ —
The shaded region 7' « ¢

Not all of the half-almond contributes: the external disturbances relax on
microscopic scale 7

Vertices near the tip would correspond to a scale of non-locality in the boundary

of the order ~ 7

[n contrast. in hydro the vertices are instantaneous on the microscopic time scale 7'

i 3 _ 235 I D=
A mumimal choice for € 1s «r) ~ ]_r,—rr- 2

e

Separation in ‘M- s ~ 7. S,




Bulk-bulk correlators

« The upshot: bulk-bulk correlators are equal to the boundary-boundary correlators
up to corrections which become large near the horizon.

« The GY(r.r':p) propagator

» —— |' 'i' o " o r
[i),l(__'f_},.}+{1f;"|..:‘-_r;"ll"1l’__'] Gglr.7:p) + 1: r = —k=8(r—r")

-y

« Solve in the hydro approximation
« The combination with Neumann boundary condition

: ok2 P
G(r)=(1—i—)F(r) + (1 +i—=)F"(r)

i — i



External Wavefunction

« A, relaxes microscopically. A, dissipates on time scale 7!

« The field profile falls into the horizon along a null ray

AT (r,t) — ATt —ru(r))




Bulk-bulk correlators

« The upshot: bulk-bulk correlators are equal to the boundary-boundary correlators
up to corrections which become large near the horizon.
« The GY(r.r':p) propagator

dr—r') ==
= —k~8(r—r")

[9.(Ca,)+(|g" w*—gk*)C] |GRr.r":p) + .
g=

« Solve in the hydro approximation
« The combination with Neumann boundary condition

: ak?
Glr)=1(1— !"?']F{r‘] + (1 +!'—E:}F-{F'J'

e — e



. =

Emergence of non-linear Hydro from
Anti de Sitter Space
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« Tip of the half-almond ry(7) ~ 5—
+ Theshadedregion 7' <« ¢
« Not all of the half-almond contributes: the external disturbances relax on
microscopic scale 7
« Vertices near the tip would correspond to a scale of non-locality in the boundary
of the order ~ 7
« In contrast. in hydro the vertices are instantaneous on the microscopic time scale 7'

— = 2 1 HES
« A mmmal choice for € 1s --.—:m.]_r,—ff--

-

Separation in ‘M- s ~ 7. s



Emergence of Hydrodynamics from Anti
de Sitter Space

« r—t plane : the causal diamond: insertions at 0 and T




Bulk-bulk correlators

« The full bulk-bulk propagator

e Mr—r') G(r)F()8(r—r") + F(r)G(F (¥ —r)
Grir.r:p) + — = wok® -
Cir)g= 2w + i=k7)
k= ; E .
B e— Olw log — k7).
e o fgk" r

« It loses its radial dependence up to corrections which are only large in /M



Radial Flow equation for the
Hydrodynamic Variable

« Bulk Hamiltoman (Einstemn and Yang-Mills ) : the radial evolution of the
momenta. It can be organized written as a derivative expansion

o V'—g;'mR"‘p! :H'--'-C}#_.;:.;;:l = v,

Ol r‘!fﬁp = Bt

- 1 - u— ¥ "
|j.,.:i’l_fpl — -—__'—r‘llf.fy\_, —!;,F"‘ui — ) + l:"l'_..". r’l"'l,
Fds1
1 d

—a(/gK%) =R + =7
va

« Holds up to exponentially close to the horizon due to oscillations

2T

r s
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Relation to Long-time tails in Black hole
Physics

Evolution of probe fields on black hole spacetimes

Late-time power-law tails in flat space & ~ ™

In AdS space they do not exist. Dirichlet boundary condition kill 1t
We have argue that they do exist even mn AdS but at quantum level!

The argument for their existence comes from an unlikely (to the eyes of a
relativist in the 70s) source: hydrodynamics!




Summary and outlook

Emergence of hyvdrodynamic long-time tails from Ant1 de Sitter space

Depends on very few entries of the AdS/CFT dictionary: Umiversality
Counter-intuitive: must have come from deep IR. Hydro fluctuation are tide to
the horizon but the scale of vertices are microscopic since they are local in ime
Mode coupling theory of the critical systems from gravity: diverging transport
coefficients

Log-running of the shear viscosity as the umversal property of 2+1 dimensional
horizons



