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Abstract: | describe anovel abelian gauge theory in 2+1 dimensions which has surprising theoretical and phenomenological features. The theory has
avanishing coefficient for the square of the electric field $e_i72$, characteristic of a quantum critical point with dynamical critical exponent $z=23%,
and a level-$k$ Chern-Simons coupling, which is margina at this critical point. For $k=03, this theory is dual to a free $z=2$ scalar field theory
describing a quantum Lifshitz transition, but $k \neq 0$ renders the scalar description non-local. The $k \neq 0$ theory exhibits properties
intermediate between the (topological) pure Chern-Simons theory and the scalar theory. For instance, the Chern-Simons term does not make the
gauge field massive. Nevertheless, there are chiral edge modes when the theory is placed on a space with boundary, and a non-trivial ground state
degeneracy $k"g$ when it is placed on afinite-size Riemann surface of genus $g$. The coefficient of $e i72$ is the only relevant coupling; it tunes
the system through a quantum phase transition between an isotropic fractional quantum Hall state and an anisotropic fractional quantum Hall state. |
describe zero-temperature transport coefficients in both phases and at the critical point, and comment briefly on the relevance of the results to recent
experiments.
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OUTLINE:

|. Introduction, with three motivations.

ll. Some “topological” frippery.

lll. The anisotropic phase : basic facts.

IV. Conductivities, compressibilities, & all that.

V. Conclusion (where, inevitably, gravity duals are
mentioned).
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is talk has a few different motivations. Here are three:

The Hall Effect

Magnetic field

Hall voltage

he physics of 2D electron gas in a (large) background
magnetic field has been a rich, fruitful playground for
both experimentalists and theorists. Famously, it is

he home of the quantum Hall (and fractional quantum
e Hall) effect.




hile if you are clever you can guess the ground state
avefunction for the system and derive much interesting
physics in that way q , there is also a systematic
AT

ective field theory approach to understanding such 2D
electron gases.

Zhang, Hansson, Kivelson;
Frohlich, Zee

) The essential physics is 2+ | dimensional.
) The electromagnetic current is conserved:
T
o, J" =0

) We are interested in the physics at long distances
d large time ( = small wave number, low frequency).

) P and T are broken by the external magnetic field.
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2+ | dimensions, we can write the conserved current as
the curl of a vector potential:

1
JM == -Q—WE#upay&p.
his vector enjoys a gauge symmetry under which the

current remains invariant.

ow, we apply standard logic: we expect the low-energy
action to be governed by the lowest dimension
operator(s) we can write down, consistent with the
symmetries of the problem. The result is:

Eaay 1 nv
L= jr€uwpaudvap + g fun f* + -

irsa: 10050090 Page 6/61




he theory is a Chern-Simons theory at low energies.

Using elementary reasoning starting from the abelian

ern-Simons theory, the phenomenology of the simplest

odd-denominator filling fractions in the FQHE can be
well explained.

atural question: The irrelevant Maxwell perturbation
ere does not change the physics in the deep IR. A priori,
one might wonder: are there other extensions of the
Chern-Simons theory that we can imagine, that would
ange observable properties in the IR? Might they arise
in real systems!?
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TEMPERATURE

PARAMETER P
IR fixed points with non-trivial dynamical scaling
r— Ax, t— A%t

re quite common in condensed matter systems (where
prentz invariance is not a particularly natural symmetry).

n especially simple theory, which arises at critical points
e 1IN Many toy models of spin systems, is:




L=2=1[dtd?z ((8:9)% —2(V20)?) .

is is a free scalar field theory with a line of fixed points,
| with dynamical exponent z=2. It can be dualized to an
abelian gauge theory:

. iz /dtd2$ [eiatai + a;0;e; — Hle, a]}
g

-
1
Hle,a] = %(aiej)z -

b— Eija?;tlj .

ith the gauge field scaling inversely to the coordinates,
= TIS alsO enjoys z=2 scaling, of course.




is theory has three potentially interesting perturbations.
Two have been studied in the literature:

One can perturb by the more standard quadratic in the
electric field (which is clearly relevant):

AL ~ e?.

One can perturb by a quartic in the electric field, which
is naively marginal:

AL ~ (e3)? . ae -z

ith the sign of the perturbation that leaves the potential
bounded below, this operator is marginally irrelevant.
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* Finally, one can consider the theory with action:

k
Eﬁpphﬂﬂauﬁi} :

= Mz[ (e:000: + adie; — Hle,a)) +

, formally solving for E and reinserting (valid at non-zero
momenta):

o

I:-\.'.illl'—l

1 k
[ teda| (@) —82) + 3 epmidia,).

1 fi-a —0a a;
€; = (_F.jz) EVE - - &= 81[12 = 62{11.

his might be called the abelian “Lifshitz-Chern-Simons”
heory. The Chern-Simons term looks like a marginal
perturbation” of the z=2 critical theory, and vice-versa.




is theory might be expected to arise if one combines the

cumstances that normally give rise to z=2 scaling, with P

d T violating background fields. It cannot be mapped (by
a local transformation) into a scalar theory.

enceforth, | will take the attitude that since this theory is

simple extension of two different physical theories that

ve played an important role in characterizing interesting

bhases of matter, and since it is eminently tractable, we
should investigate its physics.

imately, the usefulness of this theory will be determined
y whether its phase structure and transport properties
match those of observed systems. In fact, our third
otivation (arising, in part, as we finished!) comes from
experiment.




3. Weird goings on at higher filling fraction

some time, the Eisenstein and Tsui labs have been doing

interesting experiments with 2D electron systems in

lower magnetic fields, where higher Landau levels are
occupied.

With B-fields and electron densities in the vicinity of:
B ~ 5T, ng ~ 10Mcm—2

v =12 =9/211/2,13/2,15/2

Lilly et al found evidence for new anisotropic states

Jmm (T) # O'yy (T) c.f. literature on Nematic

phases, Fradkin et al,
arXiv:0910.4166
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ore recently (March ’10), Xia et al have given dramatic
evidence of a new phase (the “quantum Hall nematic”)
ith anisotropic transport & quantized Hall conductance:
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Since the “normal” quantum Hall phases are well
plained by Chern-Simons theory, and since the Lifshitz-
ern-Simons theory has a single relevant e? perturbation

that carries it between Maxwell-Chern-Simons and
isotropic phases (through a quantum critical point), it is

at least plausible that it may play some role in the
phenomena seen in these experiments.

any case, hopefully our three motivations will convince
ou to tolerate a simple talk by a string theorist for the
next 40 minutes.

efore solving for the transport properties in the phases
of the LCS theory, we begin by exploring some more
formal theoretical issues.
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Since the “normal” quantum Hall phases are well
plained by Chern-Simons theory, and since the Lifshitz-
ern-Simons theory has a single relevant ¢? perturbation

that carries it between Maxwell-Chern-Simons and
isotropic phases (through a quantum critical point), it is

at least plausible that it may play some role in the
phenomena seen in these experiments.

any case, hopefully our three motivations will convince
ou to tolerate a simple talk by a string theorist for the
next 40 minutes.

efore solving for the transport properties in the phases
of the LCS theory, we begin by exploring some more
formal theoretical issues.




eresting “topological” properties of the (L)CS theory

The Chern-Simons theory is (famously) a topological
leld theory, whose physical observables are correlated
ith interesting mathematical features of the space on
which it lives (e.g. the Jones polynomials).  wicten

Studies of “topologically ordered” states in condensed

matter (gapped models with degenerate ground states

which are not distinguished by a simple Landau order
parameter) have taken on a life of their own.

Chern-Simons theory is still the canonical example, and
its two most interesting properties in this regard are:
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|: The existence of (almost) degenerate ground states,
hen the theory is formulated on a Riemann surface of

genus g.
'“#.TM‘-KJKT"HJ’T&HW
N N Wen;
R r N €EC L) Wen, Niu

n searching for ground states, one can restrict to zero-

pmentum modes of the gauge field (assuming the vacuum
doesn’t spontaneously break translation invariance).

In Maxwell-Chern-Simons theory, this yields a quantum
mechanics problem with (on a torus):

1
= /dt[ﬁ(atﬁl)z —f—k(ﬂlataﬁ = {12315{11)]
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In the case of e.g. the torus, we can reduce this to a
problem involving the two Wilson-line zero modes.

hese Wilson lines themselves live on a (dual) torus, and
are governed by the action:

S /dt km(y — 4) + o (& + 5
here the mass term is generated by the Maxwell term).
is Lagrangian describes a charged particle moving on the
al torus, in the presence of a magnetic field of order k.

e quantum mechanics of such a particle was studied by
Haldane and Rezayi.
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ith

H=— : (—(0z —iag)? —(3y—iay)2)

2m

a, =0,a, = Bx = 2nk=z

ey find that the ground state is k-fold degenerate. The
wave functions of the ground states are given by:

] (.’L‘ y) = (Z EE*‘(I—I—%y)[nk*I; ﬁ ) E—E’JT:B:I.'E: I—a1.__E—1

F 3

(This thing is a theta function)
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This result isn’t so fancy. The system separates into
andau levels, spaced by the cutoff. The wavefunctions
are roughly plane waves in one direction

e ez"pm.?:

and harmonic oscillator modes

~ e_k(y_pﬂ:/k)g

entered about the line v =p./k in the other.

#
-~ ﬁv
. y == = %
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Only a certain number of momentum modes fit on the

compact space, yielding k modes for each value of the

armonic oscilltor principal quantum number. The same

nalysis generalizes to higher genus, with theta functions

in playing a starring role (but the basic physics being that
of Landau levels).

Result : k9 degenerate ground states

ore precisely, on a system with finite size L, the splitting
of these ground states goes like

AE ~ Exp(—Lm)

here m is related to the gap and the mass of the lightest
quasiparticle excitations.
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: The existence of chiral edge modes, when the theory is
placed on a space with boundary:

or

is is more or less self-explanatory. The derivation of the
stence of the edge modes most elegantly proceeds from
anomaly considerations:
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hen formulated on a space with boundary, the gauge-
variation of the Chern-Simons action yields:

5A =0f —

5~ FAF.
0X3

or the level k theory, this lack of gauge invariance can
fixed by adding a boundary chiral boson (which for k=1
can also be described as a chiral fermion):

k
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Such “edge modes” are characteristic of topological
ases, and in fact play a central role in some recent efforts
to classify topological insulators. Sy s

Ludwig; Kitaev

oth the chiral edge modes and the degenerate ground

ates of these topologically ordered systems, have been

mplicitly assumed to be closely related to the gapped
nature of the bulk theory.

One of the interesting aspects of the abelian Lifshitz-
hern-Simons theory is that it exhibits both the chiral
edge modes and the ground-state degeneracy, while

manifesting a gapless critical theory in the bulk. (This
in contrast to Maxwell-Chern-Simons, which is massive).

irsa: 10050090
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The persistence of the edge modes is clear.

heir presence is still required to cancel a non-vanishing
uge variation when the LCS theory is placed on a space
with boundary.

Perturbation theory in the Lifshitz gauge couplings could
in principle perturb the Lagrangian for the chiral edge
modes, but this purely chiral theory has no relevant
erturbations. It is thus robust under the addition of the
Lifshitz terms, with small gauge couplings.
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he ground state degeneracy persists for the following
intuitive reason. Let’s consider the theory with a
regulating (marginally irrelevant) perturbation:

k
- — /dt (Egtatﬁi = )\(63)2 = E(ﬁlz@tﬁrl = ﬁlatQZ))

The associated Hamiltonian takes the form:

LQ(Z(H - eijaj) )2

(where L is the length scale of the torus). This is the
square of the old Hamiltonian! The degeneracies are
e-same, but the spacing between levels is now quadratic.




hen formulated on a space with boundary, the gauge-
variation of the Chern-Simons action yields:

§A =8f —

55 ~ FAF.
0X3

or the level k theory, this lack of gauge invariance can
fixed by adding a boundary chiral boson (which for k=1
can also be described as a chiral fermion):

k

== 47T/dtd:z: 0, P(10; — O2)P.
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Only a certain number of momentum modes fit on the

compact space, yielding k modes for each value of the

armonic oscilltor principal quantum number. The same

nalysis generalizes to higher genus, with theta functions

in playing a starring role (but the basic physics being that
of Landau levels).

Result : k9 degenerate ground states

ore precisely, on a system with finite size L, the splitting
of these ground states goes like

AE ~ Exp(—Lm)

here m is related to the gap and the mass of the lightest
quasiparticle excitations.
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: The existence of chiral edge modes, when the theory is
placed on a space with boundary:

or

is is more or less self-explanatory. The derivation of the
stence of the edge modes most elegantly proceeds from
anomaly considerations:
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Only a certain number of momentum modes fit on the

compact space, yielding k modes for each value of the

armonic oscilltor principal quantum number. The same

nalysis generalizes to higher genus, with theta functions

in playing a starring role (but the basic physics being that
of Landau levels).

Result : £9 degenerate ground states

ore precisely, on a system with finite size L, the splitting
of these ground states goes like

AE ~ Exp(—Lm)

here m is related to the gap and the mass of the lightest
quasiparticle excitations.
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hen formulated on a space with boundary, the gauge-
variation of the Chern-Simons action yields:

§A =9f —

55~ FAF.
03

or the level k theory, this lack of gauge invariance can
fixed by adding a boundary chiral boson (which for k=1
can also be described as a chiral fermion):

k

S = 4m/ﬁmammz 8) .
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The persistence of the edge modes is clear.

heir presence is still required to cancel a non-vanishing
uge variation when the LCS theory is placed on a space
with boundary.

Perturbation theory in the Lifshitz gauge couplings could
in principle perturb the Lagrangian for the chiral edge
modes, but this purely chiral theory has no relevant
erturbations. It is thus robust under the addition of the
Lifshitz terms, with small gauge couplings.
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The persistence of the edge modes is clear.

heir presence is still required to cancel a non-vanishing
uge variation when the LCS theory is placed on a space
with boundary.

Perturbation theory in the Lifshitz gauge couplings could
in principle perturb the Lagrangian for the chiral edge
modes, but this purely chiral theory has no relevant
erturbations. It is thus robust under the addition of the
Lifshitz terms, with small gauge couplings.

irsa: 10050090 Page 35/61




he ground state degeneracy persists for the following
intuitive reason. Let’s consider the theory with a
regulating (marginally irrelevant) perturbation:

k
= /dt (eifﬁtai — /\(63)2 -+ E(ﬂzatﬂ;l g (1181;(12))

The associated Hamiltonian takes the form:

A k 2\ 2
= Jo (0 o)

(where L is the length scale of the torus). This is the
square of the old Hamiltonian! The degeneracies are
e-same, but the spacing between levels is now quadratic.




The Anisotropic Phase
the phase diagram of

1 ., K2 — == =4 k
S:/d.tdﬂz[—2(E.E-attli—e—ﬂga;ei—%ef—%(3563)2—— 2)2 )
g . .

here are three regions:

r > 0 : Maxwell — Chern — Simons theory
r =0 : Critical theory (LCS fixed point)

r < 0 : Anisotropic phase

he latter two are new and interesting. Lets first discuss
e third, then compute transport coefficients in all three.
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Clearly for r < 0, the electric field will develop an
axpectation value, breaking SO(2) rotational symmetry:

A

2
g°Hle,a] = _ﬂez + 5 (Bie;)” + () +¥

2

z_ I =
ei—%,ai—[].

ithout loss of generality, we are free to choose:

= (v IrlfA+ér, &)

Re-expanding, we find:

= /dt d’z [ |’r|/)\ Oiar + €0 ar — |1 | — (Oyar — ﬁray)Q + a;0;€e;

k

~
+ eyday — ?(aiey)g) -

E#Mfzﬁapa)\} :
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The Anisotropic Phase
the phase diagram of

. e k
= /d.td2 [ Eﬂt i+ac0;e; —%ez—m (0:e )2——( 3)3—552)—-—Efwﬁayayap

here are three regions:

r > 0 : Maxwell — Chern — Simons theory
r =0 : Critical theory (LCS fixed point)

r < 0 : Anisotropic phase

he latter two are new and interesting. Lets first discuss
e third, then compute transport coefficients in all three.
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Clearly for r < 0, the electric field will develop an
axpectation value, breaking SO(2) rotational symmetry:

ggﬂie,a] —mez + (8 ej)‘}'

22 1 p2
2 ¥

+2(e

S =
ei—%,ai—[].

ithout loss of generality, we are free to choose:

=(IrlfA+ér, )

Re-expanding, we find:

= /dt d’z [ |’r|//\ Oia, + €.0ar — |1 | — (Oyar — ﬁmay)z + a;0;e;

k

K
+ eyOray — ?(aiey)g) L

E#ygaﬁﬁpah}.
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he low energy theory is gapless (due to the Goldstone
boson) and has z=|. The propagators are given by:

: _ = 9*(p2 + x*g*K*p?)
(EI[:_E"-"'J'H?_-P} EI{E:“J”‘p) e e 2n2( o6 k2 2
w2 + g2rp2 + s2p2(gék?r + p.2)

. s S

k == T ”
(ey(—twn, —P) ey(iwn, P)) = —— 2 92{5:' zrz I;E)-p 2
wy + g°rpy + £°p*(g°k*r + p2°)

k = k/2r, and &2 = k2(1+x2g*k2)
All you should glean from this is mess is that there is a
gapless Goldstone mode, with:
w? = (K g°k’r)p2 + (¢°r + £*¢°K?r)p] + £7p’p.”

The last term is subdominant at low energy. The
Goldstone mode has anisotropic velocities (and even
anisetropic scaling if k=0, where the last term matters).




Absence of exact rotation symmetry?

Even in absence of the spontaneous breaking, rotation

ymmetry won’t be an exact symmetry of most relevant

systems. |t will be broken by the underlying crystalline
lattice, and by disorder.

e studied both. To model lattice symmetry breaking, we
consider a Hamiltonian:

A

g*Hle,a] = — (2 + (1 —a?) ) + - (383)2 .

) + b
e-expanding about the symmetry-breaking vev, we find:

Hle,a] = |r|é2 + i-récxzei + 4 O(e?) .
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ere is now a quadratic term for both legs of the e-field,
and integrating it out, we find:

5= [atda| (VA @uan e + - (Brae — Bue)? + -5 By — By

" Irla?

: k 1
—(Gyax — Bzay)z) + 4—__:5#;;;.(1#3,,,(1;& .

is is now an anisotropic Maxwell-Chern-Simons theory

ith a gap. So in particular, we expect a well quantized
Hall conductance, but also that finite temperature and
equency transport will be anisotropic. It turns out that
these states, the anisotropy reflects itself in anisotropic
dielectric constants (imaginary parts of the longitudinal

conductivity); as in the Hall states, there is no real
i longitudinal conductivity.




Finally, we can consider the addition of disorder.
The simplest way to do this, is to change some of the
ouplings in the action, to random functions of x. One

simple illustrative choice is:
1 -1

._-rw(x)gz - 2—-?‘9,(}{)65 5= .].

S = /dﬁ d*z { LE (Ez‘a;ﬂf; + ad;e; — 1""512 =
g 2 2

ere, the random parts of the r-coupling are assumed to
e Gaussian white-noise correlated with zero mean and
variances given by distinct parameters:

r(x) =0, nr;)=W4§,;dx—x).

e can then compute disorder-averaged correlators using
he replica trick. | won’t talk about this here. The only
important point, for us, will be that the disorder wil




ere is now a quadratic term for both legs of the e-field,
and integrating it out, we find:

1 1 .
e /dtd2 { VIt /A (Brar — Oza:) + h_—_(ataz — ) + L — Syatjz

1| a?

. k 1

is is now an anisotropic Maxwell-Chern-Simons theory

ith a gap. So in particular, we expect a well quantized
Hall conductance, but also that finite temperature and
equency transport will be anisotropic. It turns out that
these states, the anisotropy reflects itself in anisotropic
dielectric constants (imaginary parts of the longitudinal

conductivity); as in the Hall states, there is no real
T longitudinal conductivity.




Finally, we can consider the addition of disorder.
The simplest way to do this, is to change some of the
ouplings in the action, to random functions of x. One

simple illustrative choice is:
S = /dt d*z L;l_z (eﬂgaf ol — %re? = %rw(x)ei = é-ry(x)ei +....
ere, the random parts of the r-coupling are assumed to
e Gaussian white-noise correlated with zero mean and

variances given by distinct parameters:

rx) =0, rEr;)=W.4E;dx—x').

e can then compute disorder-averaged correlators using
he replica trick. | won’t talk about this here. The only
important point, for us, will be that the disorder wil-




contribute to self energies for the LCS modes:

w, k W, p w, k

Fig. 1. Lowest order diagram contributing to the e, self-energy.

hese will give rise to real longitudinal conductivity (c.f.
adding scattering time in the Drude model).

So to summarize:

Systems with explicit SO(2)-breaking are expected to
ibit anisotropic imaginary longitudinal conductivities, but
well-quantized Hall conductivity.

* The addition of disorder should give rise to real
‘fofigitudinal components, which remain anisotropié:™




*When the system is SO(2) invariant to an excellent
approximation, there is in addition a Goldstone boson,
ich will have a significant effect on transport properties.

Response Functions @ and near the critical point

Now, we couple our current to an external
electromagnetic field

5L = / dtd®z J*A,.

Because the action is quadratic in the emergent gauge
eld, we can integrate it out. The action for the external
gauge field then takes the form:

1 : : :
irsa: 10050090 Sﬁff = 2 Z ]dgp A#(_Ewnv _p)Kﬁw (Ewﬂ‘! p)AP (Ew”? p:} Page 48/61



The conductivity is then obtained from the K matrix
according to

1

gir(w) = = 5Kjk(w +id, p = 0)
But since
B = 0
p = oxCpurpPrlp

we can easily compute the transport properties using
the propagator in the various phases:

1

2
va(iwﬂ! P) = (E) Epaf€uipPalPX <ﬂ_3(_iwnr —]J) ﬂp(iwnr p)>
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Warm-up: r > 0 phase

Here, we find:

e i w/g*kr

=)= 30k 1= (/g
1 1

er(w): : =

while the compressibility is:

l?:mp_ﬁ[] Iimwﬁg Kgg(w,p) o Eimp_,,,g p2 —

At low frequency, this gives the expected DC response

f the quantum Hall system. The massive pole is one of

the gapped excitations above the degenerate ground
irsa: 10050090 States ;. Page 50/61




Moving right along, to the r=0 phase:

Reozz(w) =Im oz (w) =0

Reory(w) =Imogy(w) =0

e critical theory has identically vanishing conductivities -
nsulates at any frequency! As the gap from the quantum
all phase collapses, the system becomes more insulating.
e reason is that the critical theory does not couple to a
spatially-homogeneous electric field, regardless of the
equency (except at frequency precisely equal to zero).

e finds that the critical point has a finite compressibility:

92

= -
8m2(1 + K%k?2)
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Transport in the anisotropic phase:

Recall that in this phase, the Hamiltonian looks like (if
the sample is rotationally symmetric):

2
Hle,a] = |r|€2 + %(33'%)2 +6% +0(e?),

i.e., an ungodly mix of the critical and Hall phases. The
leading transport properties reflect this:

Garltcr) —0
4 =_4
g'r iger
) —%73
J?J?J( ) 8?T2 (Lu‘) + S‘FTEEA.?
o s} —10

he Goldstone mode makes the system an anisotropic

nsulator/superconductor hybrid! Likely, further effects
smooth out the delta function, and the insulating

behavior.




there is some in-built intrinsic anisotropy in the sample,
hen the transport becomes instead characteristic of an
anisotropic quantum Hall state:

= i w/gikra
- 2k 1_(%/94;'”&)2

Oz (W)
E £ w/g*kra
a 27k 1 — (w/g*kra)?

() 1 1
GFI Lt — s -
g 2k 1 — (w/g*kra)?

Oyyl(w) =

ith vanishing compressibility).

is is getting pretty close to the recent experiments, but
ere is still no real longitudinal conductivity, while Xia et al
measure anisotropic non-zero answers there.
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Finally, including disorder, we find:

1 igtw
Ozz(w) = = .
812 g8k2r + i(wT)?2
o) 1 girwr?
a. w) = —
= 812 g8k2r 4 i(wr)?
() 1 1
a. W) = = =
i 2k 1+ i(wT)?/g8k2r
This is the relevant component ]71.2
of W because the disorder is > l Wyg k ¥
relevant in the direcrion transverse -5
to the e-field condensate T Z’UI'Uy

This now shows great qualitative similarity to the new
hase seen in the Eisenstein lab! There is well quantized

Hall conductivity and real, anisotropic longitudinal
conductivity.
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CONCLUSION

o conclude, | will discuss two related topics. One is the
bject of reasonably comprehensive study right now, and
the other is almost totally neglected.

You have heard, by now, of the metrics dual to e.g. 2+1
dimensional conformal field theories:

dr?
d52 = TZ(—dtz — d:BQ — dyQ) — — Maldacena
F
But in many real condensed matter systems,
orentz invariance is not a particularly natural symmetry

ol SINCE it is always broken by the UV theory). ...




» why should we expect the “accidental” SO(2,1) which
acts there at fixed r to rotate space and time into one
another? In general, we shouldn’t. A simple way to
geometrize scale invariant but non-Lorentz invariant
etrics, which still enjoy rotational symmetry and space-
time translation symmetries, is the Lifshitz metric:

dr? -
ds? = —r?*dt* + r*(dz® + dy?) + TLZ Muligan

Solutions supporting this metric do not arise in pure
stein gravity with negative cosmological constant, but do
arise in simple cousins like:

1

; 1
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Probably more importantly, this metric also arises to
haracterize “emergent” infra-red fixed points in gravity
studies of duals to toy CM systems, including:

(Backreacted) probe fermions in AdS, whose physics

gives rise to fascinating non-Fermi liquids. .
Maxwell-Dilaton black holes in AdS Frac e

Gravity duals of simple models which capture linear

%9 Harmaoill, Polchinsid,

resistivity, as a toy of the “strange metallic phase” S

The “Lifshitz-like” space-times are one simple class of
solutions that emerge in the IR of spacetimes which

aracterize CFTs with non-trivial charge density. | believe
any remain yet to be found. But more about these, in

a dual picture:
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In the abelian case, the “Lifshitz” gauge theory without
Chern-Simons term is free, and has vanishing beta
nctions. In the non-Abelian case, it is already non-trivial,
so a first step involves study of this theory in isolation.

he natural generalization of our abelian theory has an
action of the rough form:

1 1 1
S[Ag, A;, E; :fd.gzr:dTTr —AE @A, + AR E) — ——(D.EY +—B°
[Ao, A, E:] (& oDiE:) = 5 5(D;E)* + 5 5

-'I-‘E'gfij [EI.EJIB -+ A[Eﬁ, EjIQ),

where:
D,V =8,V —i[A;, V] = (8:;V™ + f*<A2v)te,
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The gauge-couplings in this theory do run, and
the current indications are: SK. Mulligan,
Nayak, to appear
Some of the couplings run strong, and some run weak, in
e deep infrared. l.e., this theory is a pure gauge theory
which is not asymptotically free in three space-time
dimensions.

It has novel possible instabilities about the origin, which
are however non-perturbative in nature.

erefore, finding non-trivial fixed points (which could, in
some suitable limit, have gravity duals); or studying the
oupling to Chern-Simons terms; remain projects for the

even more distant future.




