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Abstract: The entanglement entropy of a pure quantum state of a bipartite system is defined as the von Neumann entropy of the reduced density
matrix obtained by tracing over one of the two parts. Critical ground states of local Hamiltonians in one dimension have entanglement that diverges
logarithmically in the subsystem size, with a universal coefficient that isis related to the central charge of the associated conformal field theory. In
this talk 1 will discuss the extension of these ideas to two dimensional systems, either at a special quantum critical point or in a topological phase.
We find the entanglement entropy for a standard class of z=2 quantum critical points in two spatial dimensions with scale invariant ground state
wave functions: in addition to a nonuniversal &lsquo;& Isquo;area lawé& rsquo;& rsquo; contribution proportional to the size of the boundary of the
region under observation, there is generically a universal logarithmically divergent correction, and in its absence a universal finite piece is found.
This logarithmic term is completely determined by the geometry of the partition into subsystems and the central charge of the field theory that
describes the equal-time correlations of the critical wavefunction. On the other hand, in a topological phase there is no such logarithmic term but
instead a universal constant term. We will discuss the connection between this universal entanglement entropy and the nature of the topological
phase.
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Motivation

Entanglement Entropy and Quantum Phase Transitions
Entanglement entropy and quantum criticality in 1 +~ 1 Dimensions
Conformal Quantum Critical Points in 2 + 1 dimensions
Entanglement Entropy in Topological Phases

Applications to abelian and non-abelian fractional quantum Hall
states and Z, topological phases
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Entanglement entropy measures quantum mechanical correlations in
many body systems and field theories

It is a very non-local quantity which very difficult to measure (see,

however, Klich and Levitov (2009); Hsu, Grosfeld, Fradkin (2009)
Its behavior at generic quantum critical points is not understood,
except in 1D (from CFT)

We will discuss the scaling of the entanglement entropy at a class of
special 2D QCP with scale invariant wave functions: universal finite
terms.

Topological phase = universal topological entropy

Can the structure of the topological field theory of a topological
phase be determined by a suitable set of entanglement
measurements?
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ime Reversal Invariant Systems: Quantum Dimer Models

» Quantum dimer models at the Rokhsar-Kivelson (RK) point have an
exact ground state wave function has the short range RVB form

Wepve) = Z IE). {C} = all dimer coverings of the lattice
{C}

» Bipartite lattices: quantum (multi) critical points
Effective field theory with z — 2 and massless deconfined spinons

» Non-bipartite lattices: Topological Z> deconfined phases with
massive spinons and a topological 4-fold ground state degeneracy on
a torus (Moessner and Sondhi, 1998)
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» QDM on a square lattice & 2D height model
» Physical Operators are invariant under o(x) — ¢(x) + 27r.
» Quantum Lifshitz Model Hamiltonian:
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The Ground State Wave Function Wg[y] is Scale Invariant
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» QDM on a square lattice & 2D height model
» Physical Operators are invariant under o(x) — ¢(x) + 27r.
» Quantum Lifshitz Model Hamiltonian:

o foefimd () ]

The Ground State Wave Function Wg[y] is Scale Invariant
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The norm of the 2D wave function is the partition function of a
classical critical conformally invariant system!
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ffective field theory: the Quantum Lifshitz Model
Moessner, Sondhi and Fradkin; Henley; Ardonne, Fendley and Fradkin

» QDM on a square lattice & 2D height model
» Physical Operators are invariant under o(x) — ¢(x) + 27r.
» Quantum Lifshitz Model Hamiltonian:

w fofr S v

The Ground State Wave Function Wg[y] is Scale Invariant
k

—5- [ @*x (Ve(x))*

Wolp] x e 7

The norm of the 2D wave function is the partition function of a
classical critical conformally invariant system!

i [ Px (Vo)
/D-e r= e
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The equal-time expectation value of operators in the quantum
Lifshitz model are given by correlators of the massless free boson
conformal field theory with central charge ¢ = 1.

Time-dependent correlators: dynamical exponent z = 2.
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For the 2D quantum Baxter wave function, r = 1 but k varies
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dimers drive the system into a Z; topological phase.
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conformal field theory with central charge ¢ = 1.
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Matching the correlation functions of the RK and Lifshitz models,
one finds k = r = 1.

For the 2D quantum Baxter wave function, r = 1 but k varies
continuously

Multicritical point with many relevant perturbations: e.g. diagonal
dimers drive the system into a Z; topological phase.

This construction generalizes to states with non-Abelian braid

statistics (Fendley and Fradkin, 2005)
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» Given the pure state W|p4. og| and the (trivial) density matrix of
the combined system AU B

(Pa, vBlpavBla. va) = VIva, e8IV [9a, ¢Bl

» The reduced density matrix for A, which acts only on the states
{©a}. is constructed by tracing over the degrees of freedom in B:
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ntanglement Entropy

» Given the pure state W|p4, og| and the (trivial) density matrix of
the combined system AU B

(wA, vBlpauB|PaA, vB) = VI
» The reduced density matrix for A, which acts only on the states
{©a}. is constructed by tracing over the degrees of freedom in B:

PA — I B pAuUB

» The von Neumann entanglement entropy is
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This the non-universal area law is the leading generic behavior in all
dimensions.
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» Massive relativistic free field theories obey an “area law’
S = const. LP~1 + .. (Srednicki, 1993; Bombelli et al, 1986).

This the non-universal area law is the leading generic behavior in all
dimensions.
» Universal behavior in d = 1 critical systems (CFT):

» Generic scaling behavior in d =1 (CFT)

=
S— " log
=]

= ( - ) +finite terms Wilezek et al, Calabrese and Cardy

» Also at 1D quantum random fixed points (Refael and Moore, 2004).
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» Massive relativistic free field theories obey an “area law’
S = const. LP~* + ___ (Srednicki, 1993; Bombelli et al, 1986).

This the non-universal area law is the leading generic behavior in all

dimensions.
» Universal behavior in d = 1 critical systems (CFT):

» Generic scaling behavior in d =1 (CFT)

C
S=CSlog
=]

: ( . ) +finite terms Wilezek et al, Calabrese and Cardy

» Also at 1D quantum random fixed points (Refael and Moore, 2004).
» Away from criticality, the correlation length £ is finite and
S = £log (%) + finite terms

» Universal subleading terms at QCP for d > 17
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bcaling Behavior of Quantum Entanglement

» Massive relativistic free field theories obey an “area law’
S = const. [P~ + __ . (Srednicki, 1993; Bombelli et al, 1986).

This the non-universal area law is the leading generic behavior in all

dimensions.
» Universal behavior in d = 1 critical systems (CFT):

» Generic scaling behavior in d =1 (CFT)

L= log (E) +finite terms Wilezek et al, Calabrese and Cardy

3 3

» Also at 1D quantum random fixed points (Refael and Moore, 2004).
» Away from criticality, the correlation length £ is finite and
S = £log (%) + finite terms
» Universal subleading terms at QCP for d > 17
» Universal O(1) term in topological phases in 2D

S—al 1+ O Kitaev and Preskill, Levin and Wen

a is non-universal; v depends only on topological invariants If'“ulﬁ
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ntanglement Entropy of Conformal Wave Functions

with Joel Moore

» We split a large region into two disjoint regions A and B, sharing a
common boundary .

Configurations are glued at the boundary

i limy_.oc Z[A, 0]
o o limy_o Z[A, nj

Dirichlet boundary conditions on I for n — 1 fields

n .
-LE > i1 ©i not restricted on I.
- e

R>L>a
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» In terms of the partition functions Zp, for a field in the whole
system A U B that vanishes at the common boundary I, and Z4 5 .
for a field that is free at the boundary
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ntanglement Entropies and 2D Classical Free Energies

» In terms of the partition functions Zp, for a field in the whole
system A U B that vanishes at the common boundary I', and Z4 5 .
for a field that is free at the boundary

=y 7 S e >, ZAZB
trﬂE:D—F:( D) z‘;*S:—In( ID)z—ln =

Z7 Zr Zr ZauB
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ntanglement Entropies and 2D Classical Free Energies

» In terms of the partition functions Zp, for a field in the whole
system A U B that vanishes at the common boundary I', and Z4_ 5 .
for a field that is free at the boundary

_ =" v, ZAZB
trﬂﬁ:D—F:< D) :‘.‘}S:—In( ID)z—ln =

ZE Z_F Z_F ZaB

» Entanglement entropy for a general conformal QCP:

S=Fa+Fg—Faus
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ntanglement Entropies and 2D Classical Free Energies

» In terms of the partition functions Zp, for a field in the whole
system A U B that vanishes at the common boundary I', and Z4 5 .
for a field that is free at the boundary

i et Z ZAZB
trﬂﬁ:D—F:(D) 2?5:—|n( ID)z—ln el

Z7 Zr Zr ZauB

» Entanglement entropy for a general conformal QCP:

S=Fa+Fg— Faus

» For a more general 2D CQCP the boundary condition changes from
Dirichlet to a conformal boundary condition in the conformal block

of the identity.
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» For a large bounded region of linear size L and smooth boundary, F
obeys the ‘Mark Kac Law' ("Can you hear the shape of a drum?’)

F=oal?+ 8L — gx InL + O(1). (Cardy and Peschel)

a and 3 are non-universal constants, c¢ is the central charge of the
CFT, and x is the Euler characteristic of the region:
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» For a large bounded region of linear size L and smooth boundary, F
obeys the ‘Mark Kac Law’ ("Can you hear the shape of a drum?’)

F=al?+ 3L — g*{ InL + O(1). (Cardy and Peschel)

« and 3 are non-universal constants, ¢ is the central charge of the
CFT, and x is the Euler characteristic of the region:

x =2—2h— b, h — # handles, b — # boundaries

L
AS = —g(u. + xB — xauB) log L
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niversal Contributions to the Entanglement Entropy

» For a large bounded region of linear size L and smooth boundary, F
obeys the ‘Mark Kac Law' ("Can you hear the shape of a drum?’)

F=al?+ 3L — %),;_ InL+ O(1). (Cardy and Peschel)

a and [3 are non-universal constants, ¢ is the central charge of the
CFT, and x is the Euler characteristic of the region:

x =2—2h— b, h—+# handles, b — # boundaries

i
AS = —g(’m + xB — xauB) log L

» The O(1) correction has a universal piece related to the “boundary

entropy of Affleck and Ludwig
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» For regions A C B the coefficient of the log L term vanishes since
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niversal Contributions to the Entanglement Entropy

» For regions A C B the coefficient of the log L term vanishes since

XA +XB =Xaus = AS =0

» A and B are physically separate and have no common intersection,
XA+ xXB — xauB 7 0.
The system physically splits in two disjoint parts = log L term in the
entanglement entropy

» A and B share a common boundary = log L term whose coefficient
is determined by the angles at the intersections
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niversal Contributions to the Entanglement Entropy

For regions A C B the coefficient of the log L term vanishes since

XA +XB = Xau = AS =0

A and B are physically separate and have no common intersection,
XA+ xB — xaus 7 0.

The system physically splits in two disjoint parts = log L term in the
entanglement entropy

A and B share a common boundary = log L term whose coefficient
is determined by the angles at the intersections

If the boundary of A is not smooth, the coefficient depends on the
angles a; for both regions
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niversal Contributions to the Entanglement Entropy:
Quantum Lifshitz Case

with B. Hsu, M. Mulligan and E-A. Kim
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Quantum Lifshitz Case
with B. Hsu, M. Mulligan and E-A. Kim

» |f the coefficient of the logarithmic term vanishes, the finite term is
universal, and determined by the contributions of the winding modes
to the partition functions.
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niversal Contributions to the Entanglement Entropy:
Quantum Lifshitz Case

with B. Hsu, M. Mulligan and E-A. Kim

» |f the coefficient of the logarithmic term vanishes, the finite term is
universal, and determined by the contributions of the winding modes
to the partition functions.

» |t depends on the topology of the surface and on the properties of
the CFT associated with the wave function
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niversal Contributions to the Entanglement Entropy:
Quantum Lifshitz Case
with B. Hsu, M. Mulligan and E-A. Kim

» |f the coefficient of the logarithmic term vanishes, the finite term is
universal, and determined by the contributions of the winding modes
to the partition functions.

It depends on the topology of the surface and on the properties of
the CFT associated with the wave function

For the Quantum Lifshitz universality class on a cyfinder (with

Lapg > f) the O(1) term equals log R, where R = V/2kr? is the
compactification radius.
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niversal Contributions to the Entanglement Entropy:
Quantum Lifshitz Case

with B. Hsu, M. Mulligan and E-A. Kim

» |f the coefficient of the logarithmic term vanishes, the finite term is
universal, and determined by the contributions of the winding modes
to the partition functions.

It depends on the topology of the surface and on the properties of
the CFT associated with the wave function

For the Quantum Lifshitz universality class on a cylinder (with
Lapg > f) the O(1) term equals log R, where R = 2kr? is the
compactification radius.

Dirichlet Dhrichiet Dirichlet
' | &

L]
L]
1
]
r
¥

=t

Lg

For th_e RK quantum dimer model, R = /2. The finite term is
log v/ 2; it different from its value — In2 in the topological phase ﬁ;@
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niversal Contributions to the Entanglement Entropy:
RQuantum Lifshitz Case

» For a torus the finite term is 2 In (%) = the finite term is a

smooth function of the compactification radius!
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niversal Contributions to the Entanglement Entropy:
Quantum Lifshitz Case

S ¥ 2 et =
» For a torus the finite term is 2 In (RT) = the finite term is a

smooth function of the compactification radius!

" Diirichiet

» For a disk the result is %In | % In [%) + In R = it also depends on

the aspect ratio L/¢ as well as in the shape of the observed region

()

Dirnichlet
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» |t generalizes for a general conformally invariant wave function

defined by the Gibbs weights of a 2D (Euclidean) RCFT, eg. the

Ising model, quantum loop and net models
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niversal Contributions to the Entanglement Entropy:
eneral Case

» |t generalizes for a general conformally invariant wave function
defined by the Gibbs weights of a 2D (Euclidean) RCFT, eg. the

Ising model, quantum loop and net models

» A 2D RCFT has a set of primary fields ®, have an OPE
& >c Py — ZJ- N‘;bd?*j, and define a set of conformally invariant

boundary conditions labelled by a
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niversal Contributions to the Entanglement Entropy:
eneral Case

» |t generalizes for a general conformally invariant wave function
defined by the Gibbs weights of a 2D (Euclidean) RCFT, eg. the

Ising model, quantum loop and net models

» A 2D RCFT has a set of primary fields ®, have an OPE
& Py — ZJ- N‘;bdﬁj, and define a set of conformally invariant
boundary conditions labelled by a

» An RCFT has a modular S-matrix which is related to the fusion
coefficients:

ici cb
Sisis!

a2 S
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niversal Contributions to the Entanglement Entropy:
eneral Case

It generalizes for a general conformally invariant wave function

defined by the Gibbs weights of a 2D (Euclidean) RCFT, eg. the

Ising model, quantum loop and net models

A 2D RCFT has a set of primary fields &, have an OPE

®, x P — ZJ- N‘;bd?*j, and define a set of conformally invariant
boundary conditions labelled by a

An RCFT has a modular S-matrix which is related to the fusion
coefficients:

. stsich
= ] = a=s
Vo = Z £

On a cylinder with BC's a. b: Z, /5 = 7= + Ingap
Eal— ) N.;:;.SP- and In g, p is the Affleck-Ludwig boundary entropy
of the 2D Euclidean boundary CFT
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niversal Contributions to the Entanglement Entropy:
eneral Case

» On a cylinder, the BC is a = I, the entanglement entropy is

Sqcp = —log (Z{'Z} / Zaug) = pt — In (gaﬂgﬂb) + )

gab
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niversal Contributions to the Entanglement Entropy:
eneral Case

» On a cylinder, the BC is a =/, the entanglement entropy is

Sacp = —log (ZAZB Zaug) = pt — In (g"”g“*’) L oY

gab

» The universal O(1) term is determined by the full structure of the
CFT associated with the wavefunction
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niversal Contributions to the Entanglement Entropy:
eneral Case

» On a cylinder, the BC is a = I, the entanglement entropy is

Sqcp = —log (Z{'Z; | Zaug) = pt —In (gaﬂgub) + O(¢£™)

gab

» The universal O(1) term is determined by the full structure of the
CFT associated with the wavefunction

» For the case of an “Ising" wavefunction on a cylinder, Sgcp = In 2.
For a quantum net model such as the “chromatic polynomial”
Fibonacci wavefunction (Fendley and Fradkin, 2005),

S = —In (sin(7/9) /15 + 3v/5) (!)
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niversal Contributions to the Entanglement Entropy:
eneral Case

On a cylinder, the BC is a = /, the entanglement entropy is

SQCP TS lﬂg (ZfAZ.\‘Bf-ZA{_JE) — ;_.',E — In (gaﬂg[}b) £ O(E_IJ

gab

The universal O(1) term is determined by the full structure of the
CFT associated with the wavefunction

For the case of an “Ising" wavefunction on a cylinder, Sgcp = In 2.
For a quantum net model such as the “chromatic polynomial”
Fibonacci wavefunction (Fendley and Fradkin, 2005),

S = —In (sin(7/9) /15 + 3v/5) (!)

A similar scaling of entanglement entropy holds for the conventional
o@"* field theory in the N — oo limit (Metlitskii, Fuertes and Sachdev,

2009)
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niversal Contributions to the Entanglement Entropy as 3
Boundary CFT Problem
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niversal Contributions to the Entanglement Entropy as 3

Boundary CFT Problem

with Benjamin Hsu (2010)
-

limy .o Z[A, n]
limy_q Z[A, n

trpa =
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niversal Contributions to the Entanglement Entropy as 3

Boundary CFT Problem

with Benjamin Hsu (2010)
>

limy .o Z[A, n]
limy_q Z[A, n

trpa =

» QLM with compactification radius K, on a cylinder of length L and
circumference ¢
» Region A and region B have each length L/2 > ¢

Pirsa: 10050086 Page 78/119




niversal Contributions to the Entanglement Entropy as 3

Boundary CFT Problem

with Benjamin Hsu (2010)
-

limy .o Z[A, n]
limx—o Z[A\, nj

trpa =

» QLM with compactification radius K, on a cylinder of length L and
circumference ¢

» Region A and region B have each length L/2 > ¢

» Fold about I': 2n cylinders of length L/2 and circumference ¢ with
the fields are identified on [ and free at the other end
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niversal Contributions to the Entanglement Entropy as 3

Boundary CFT Problem

with Benjamin Hsu (2010)
L

limy .o Z[A, n]
limy_o Z[A, n

trpa =
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niversal Contributions to the Entanglement Entropy:
eneral Case
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niversal Contributions to the Entanglement Entropy:
eneral Case

It generalizes for a general conformally invariant wave function
defined by the Gibbs weights of a 2D (Euclidean) RCFT, e g the

Ising model, quantum loop and net models

A 2D RCFT has a set of primary fields &, have an OPE
o e Py — Zj N‘;bd)j, and define a set of conformally invariant
boundary conditions labelled by a

An RCFT has a modular S-matrix which is related to the fusion
coefficients:

S'S’Sb

N:in

On a cylinder with BC's a. b: Z,/p = ‘f-c + Ingab
gab=> ;N S?, and Ing, p is the Afﬂeck—i.udwg boundary entropy

of the 2D Euclidean boundary CFT
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niversal Contributions to the Entanglement Entropy:
Quantum Lifshitz Case

e = : 2 £ =
» For a torus the finite term is 2 In (RT) = the finite term is a

smooth function of the compactification radius!

' Diirichlet <

» For a disk the result is 3 In [ £ In (5)] +In R = it also depends on

the aspect ratio L/¢ as well as in the shape of the observed region

Dirichlet
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niversal Contributions to the Entanglement Entropy:
Quantum Lifshitz Case
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niversal Contributions to the Entanglement Entropy:
Quantum Lifshitz Case
with B. Hsu, M. Mulligan and E-A. Kim

» |f the coefficient of the logarithmic term vanishes, the finite term is
universal, and determined by the contributions of the winding modes
to the partition functions.

It depends on the topology of the surface and on the properties of
the CFT associated with the wave function

For the Quantum Lifshitz universality class on a cylinder (with
Lapg > f) the O(1) term equals log R, where R = v/2kr? is the
compactification radius.

Dirichlet Dhrichilet Dirnichlet
) r

L]
L]
L
[
r
¥

i

Lg

For th_e RK quantum dimer model, R = /2. The finite term is
log v/ 2; it different from its value — In2 in the topological phase I@
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niversal Contributions to the Entanglement Entropy:
eneral Case

» [t generalizes for a general conformally invariant wave function
defined by the Gibbs weights of a 2D (Euclidean) RCFT, e g. the

Ising model, quantum loop and net models

» A 2D RCFT has a set of primary fields ®, have an OPE
& > Oy — ZJ- N‘;bd?*j, and define a set of conformally invariant
boundary conditions labelled by a
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niversal Contributions to the Entanglement Entropy:
eneral Case
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niversal Contributions to the Entanglement Entropy:
eneral Case

On a cylinder, the BC is a = [, the entanglement entropy is

Sqcp = —log (Z{'Z; | Zaug) = pt —In (gaﬂg[}b) + O(¢£ )

Bab

The universal O(1) term is determined by the full structure of the
CFT associated with the wavefunction

For the case of an “Ising" wavefunction on a cylinder, Sgcp = In2.
For a quantum net model such as the “chromatic polynomial”
Fibonacci wavefunction (Fendley and Fradkin, 2005),

S = —In (sin(7/9) /15 + 3/5) (1)

A similar scaling of entanglement entropy holds for the conventional
@* field theory in the N — oo limit (Metlitskii, Fuertes and Sachdev,

2009)
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niversal Contributions to the Entanglement Entropy as 3

Boundary CFT Problem

with Benjamin Hsu (2010)
|

limy .o Z[A, n]

limx—a Z[A\, nj

trpa =
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niversal Contributions to the Entanglement Entropy as 3

Boundary CFT Problem

with Benjamin Hsu (2010)
-

limy_.oc Z[A, n]
|im‘k_ﬂ Z[/\. ﬂ]

trpa =

QLM with compactification radius R, on a cylinder of length L and
circumference ¢

Region A and region B have each length L/2 > ¢

Fold about I': 2n cylinders of length L/2 and circumference ¢ with
the fields are identified on [ and free at the other end

Length of the cylinders: imaginary time. The partition functions
become amplitudes between boundary states

)3 (Oﬁg—f) (T}‘(I;QT])” ‘

n(—1/2nT) 93 (0| =)

gy —R "

e S O I{gg?
) ( ) ca
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ntanglement in FQH fluids and Chern-Simons theory
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ntanglement in FQH fluids and Chern-Simons theory

with Shying Dong, Sean Nowling and Rob Leigh (2008)

» The FQH wave functions represent topological fluids with a finite
correlation length £ o ¢ (¢ is the magnetic length).

The entanglement entropy of FQH states has be computed
numerically (K. Schoutens and coworkers, 2007).

One can compute the entanglement entropy directly from the
effective field theory of all FQH states: Chern-Simons gauge theory.

This result can be applied directly to all known FQH states.
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ntanglement in FQH fluids: Chern-Simons theory
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ntanglement in FQH fluids: Chern-Simons theory

» We computed the entanglement entropy for a level kK Chern-Simons
theory on a smooth manifold with any number of handles, using
Witten 1989 for the Chern-Simons theory (1989),

il

sta)=X [w(andat+2anana
4 3
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ntanglement in FQH fluids: Chern-Simons theory

» We computed the entanglement entropy for a level K Chern-Simons
theory on a smooth manifold with any number of handles, using
Witten 1989 for the Chern-Simons theory (1989),

i

S(A) = 41__ f Tr (A A dA + %A AAA A)

» States on a closed 2D surface: path integral over a 3D volume
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ntanglement in FQH fluids: Chern-Simons theory

» We computed the entanglement entropy for a level kK Chern-Simons
theory on a smooth manifold with any number of handles, using
Witten 1989 for the Chern-Simons theory (1989),

k 2
S5(A) = P f Tr (A A dA + 5;4 A AA A)
States on a closed 2D surface: path integral over a 3D volume
Chern-Simons states < WZW conformal blocks

The ground state degeneracy depends on the level k and on the
topology of the surface

The partition functions depend on the matrix elements of the
modular S-matrix, e.g. the partition function on S3 with a Wilson
loop in representation pj s

Z(S3, pi) = St
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ntanglement in FQH fluids: Chern-Simons theory

» We computed the entanglement entropy for a level kK Chern-Simons
theory on a smooth manifold with any number of handles, using
Witten 1989 for the Chern-Simons theory (1989),

k 2
S(A) = p== f Tr (A A dA + EA A AA A)
States on a closed 2D surface: path integral over a 3D volume
Chern-Simons states < WZW conformal blocks

The ground state degeneracy depends on the level k and on the
topology of the surface

The partition functions depend on the matrix elements of the
modular S-matrix, e.g. the partition function on S3 with a Wilson
loop in representation pj s

Z(S3, pi) = St

» Modular S-matrix: defines how the degenerate ground states on a Em.@
15

torus transform under a modular transformation
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roperties of conformal blocks

» For U(1)py, n=0.... . m—1
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roperties of conformal blocks

» For U(1)py. n=0.... . m—1
S[nx][}_

» For SU(2)k. j,j’ =0,1/2

. o (<2 1G7 + 1)

) | k+2
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roperties of conformal blocks

For U(1)pp. n=0,... . m—1

2 1
Sio'™ = —=e

k+2

(i + 1) + 1))

The gquantum dimensions d; measure the rate of growth of the
degenerate Hilbert spaces of particles |abeled by representation p; Ejm,@

- = L]
15
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hern-Simons Surgeries

» |f 3 3-manifold M is the connected sum of two 3-manifolds M; and
M- joined along an S2, then

Z(M)Z(S?) = Z(My)Z(M>)
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hern-Simons Surgeries

» [f a 3-manifold M is the connected sum of two 3-manifolds M; and
M> joined along an S2, then

Z(M)Z(S?) = Z(My)Z(M>)

» In particular, if M is My and M> joined along n S?'s,
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ntanglement and Chern Simons Theory: Results for the

3-geometry is a ball.
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ntanglement and Chern Simons Theory: Results for the

» S* with one A — B boundary: The Hilbert space is one-dimensional.
The two regions A and B are two hemispheres (disks). The
3-geometry is a ball.

» To construct trp} we glue 2n such pieces together.
trPE{szq]_J = 2(53)
(tTﬂA(s=.1))n (Z£(5%))

1—n =
== (Z2(5%)) =Sge
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ntanglement and Chern Simons Theory: Results for the

» S* with one A — B boundary: The Hilbert space is one-dimensional.
The two regions A and B are two hemispheres (disks). The
3-geometry is a ball.

To construct trp} we glue 2n such pieces together.

trﬂgisquj = Z(Sa)
(tTﬂA(s=.1))n (Z£(5%))

== (A " =5%"

SLS D In Sgg = — In D, Kitaev and Preskill, Levin and Wen

It also holds for surfaces with arbitrary topology if the region being
observed A is trivial regardless of the pure state labeled by the
representations p;
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ntanglement and Chern Simons Theory: Results for the

» S% with one A — B boundary: The Hilbert space is one-dimensional.
The two regions A and B are two hemispheres (disks). The
3-geometry is a ball.

To construct trp, we glue 2n such pieces together.

trPE(sz_lj = 2(53)
(H‘ﬂA(s=.1))n (Z£(5%))

=— (A7) "=S&"

sz‘l} =InSegg =—InD, Kitaev and Preskill, Levin and Wen

It also holds for surfaces with arbitrary topology if the region being
observed A is trivial regardless of the pure state labeled by the
representations p;

» For the case of a sphere S% and a disconnected connected region A
2
with M boundaries we find SLS M) — MIn Sog = —MInD. ﬁny’?
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ntanglement and Chern Simons Theory: Results for the
orus T2 with more than one A — B boundary
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ntanglement and Chern Simons Theory: Results for the
orus T2 with more than one A — B boundary

» For a torus T2 split into two regions with more than one (say two)
boundary, we have two cases,
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ntanglement and Chern Simons Theory: Results for the
orus T2 with more than one A — B boundary

» For a torus T2 split into two regions with more than one (say two)
boundary, we have two cases,

» For the trivial state (no Wilson loop) the entropy is the same in both
cases, SA(TE. 2) = 2In See.
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ntanglement and Chern Simons Theory: Results for the
orus T2 with more than one A — B boundary

» For a torus T2 split into two regions with more than one (say two)
boundary, we have two cases,

» For the trivial state (no Wilson loop) the entropy is the same in both
cases, SA(Tz.Z) — 2 In Seo.

» If there is a Wilson loop with a non-trivial representation p;, we
obtain the same result for the case of the left. But, for the case of
the right, for a Wilson loop in representation p we obtain instead,
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ntanglement and Chern Simons Theory: Results for the

» SZ with one A — B boundary: The Hilbert space is one-dimensional.
The two regions A and B are two hemispheres (disks). The
3-geometry is a ball.

» To construct trp, we glue 2n such pieces together.

trp;{squj = 2(53)
(tTﬂA(s=.1))n (Z£(5%))

= ()

Sf 8 In Sgg = — In D, Kitaev and Preskill, Levin and Wen

» It also holds for surfaces with arbitrary topology if the region being
observed A is trivial regardless of the pure state labeled by the
representations p;

» For the case of a sphere S and a disconnected connected region A
2
with M boundaries we find SLS M) — Min Soo = —MInD. Iﬂm.@
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hern-Simons Surgeries

» |f a 3-manifold M is the connected sum of two 3-manifolds M; and
M- joined along an S2, then

Z(M)Z(S?) = Z(My) Z(Mz)

» In particular, if M is My and M> joined along n S?'s,

Z(My)Z (M)

Z(M) = Z(S3)"
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roperties of conformal blocks
» For U(1)p. n=0,... . m—1
2xinn’ /m

===
b[nf][ } p— ﬁe

» For SU(2)k. j,j’ =0,1/2

Sj;k)f == : (._(Qj -+ EN2ZF -+ 1))
; T

k+2

» Quantum dimensions

af —

» The quantum dimensions d; measure the rate of growth of the
degenerate Hilbert spaces of particles |abeled by representation p; E&?

- = L]
15
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roperties of conformal blocks

» For U(1)p. n=0.... . m—1

~ 1 2mxinn’ /m
b{n!][ } — ﬁe

» For SUQ)k. j,i’ =0.1/2,....k/2

S_{k}.}” _ ] 2 _ (_(Qj + 1)(25" + 1))

sSin

- 'k +2 k+2

» Quantum dimensions

SJ'
d = =2,
Soo
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roperties of conformal blocks

» For U(1);y, n=0,... . m—1
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ntanglement in FQH fluids: Chern-Simons theory

» We computed the entanglement entropy for a level kK Chern-Simons
theory on a smooth manifold with any number of handles, using
Witten 1989 for the Chern-Simons theory (1989),

k 2
S(A) = 4—_]Tr (A A dA + gA A AN A)
States on a closed 2D surface: path integral over a 3D volume
Chern-Simons states < WZW conformal blocks

The ground state degeneracy depends on the level k and on the
topology of the surface

The partition functions depend on the matrix elements of the

modular S-matrix, e.g. the partition function on S3 with a Wilson
loop in representation pj s

Z(S3, pi) = St

» Modular S-matrix: defines how the degenerate ground states on a Ij:mnq,y?’?\
15

torus transform under a modular transformation
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ntanglement in FQH fluids: Chern-Simons theory

» We computed the entanglement entropy for a level kK Chern-Simons
theory on a smooth manifold with any number of handles, using
Witten 1989 for the Chern-Simons theory (1989),

S(A) = 4i__ / Tr (A A dA + %A AAA A)

» States on a closed 2D surface: path integral over a 3D volume
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ntanglement in FQH fluids and Chern-Simons theory

with Shying Dong, Sean Nowling and Rob Leigh (2008)

» The FQH wave functions represent topological fluids with a finite
correlation length £ o £ (¢ is the magnetic length).

» The entanglement entropy of FQH states has be computed
numerically (K. Schoutens and coworkers, 2007).

» One can compute the entanglement entropy directly from the
effective field theory of all FQH states: Chern-Simons gauge theory.
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niversal Contributions to the Entanglement Entropy as 3

Boundary CFT Problem

with Benjamin Hsu (2010)
-

limy .o Z[A, n]
limy_q Z[A, n

trpa =

QLM with compactification radius R, on a cylinder of length L and
circumference ¢

Region A and region B have each length L/2 > ¢

Fold about I': 2n cylinders of length L/2 and circumference ¢ with
the fields are identified on I and free at the other end

Length of the cylinders: imaginary time. The partition functions
become amplitudes between boundary states

)3 (Og—f) (3(1;2?-))'1‘

n(—1/2a7) ) \ 9s (0/52)

gy — R ™"

e gl ey Eﬁ_ﬁ?
Ff_.f‘}_rzﬂ A ( ) 15
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