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Abstract: Recent work has explored some aspects of entanglement in topological insulators. Notably, the entanglement spectrum has been shown to
mimic certain properties of the low-energy fermionic modes found on real spatial boundaries. | will discuss the many-body entanglement spectrum
of topological insulators and show that it matches the expected CFT character structure that has been previously shown to hold in fractional quantum
Hall effect ground states. | also present the analysis of a disorder-driven Anderson localization transition in a Chern-Insulator from an analysis of the
entanglement spectrum. Interestingly, the disorder-averaged level-spacing stetistics of the entanglement spectrum characterizes the system just as

well as the statistics of the real energy spectrum, but with the advantage that only the ground state, and not the entire spectrum of excited states,
needs to be cal cul ated.
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Qutline

» Introduction to topological insulators

e [ focus on (2+1)-d models of the quantum Hall effect
and quantum spin Hall effect

» Discuss single-particle and many-particle
entanglementspectra of these systems

» Consider entanglementspectra with disorder
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Whatis a Topological Insulator?

» Bulk of material is completely gapped

» On the boundaries there are gapless, protected
fermionic modes (chiral, Dirac, Majorana, chiral-
Majorana) which are holographic

» Bulk state characterized by a non-zero topological
invariant

 May require an auxiliary symmetry to be a stable
phase (T,C,...)

» Examples: IQHE, QAHE, QSH, 3d strong topological
insulator, p+ip superconductor, d+id
superconductor
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Periodic Table of Topological Insulators
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(2+1)-d Topological Insulators

Quantum Hall Quantum Spin Hall




(2+1)-d Topological Insulators

Quantum Hall Quantum Spin Hall

Bulk1s gapp ed and described b}'

an mteger topﬂleglml mivariant.
Charal E(]ge States on the E(]ge

[h]ltarjr Class ¢ requires no
sPeCLﬂ symmetries)
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(2+1)-d Topological Insulators

Quantum Hall

Bulkis gapped and described b}'

an :tnteger topolﬂglml mivariant.
Charal Edge States on the Edge

Unatary Class ¢ requires no
sPeC'ml symmetries)
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Quantum Spin Hall

Bulk 1s gapped and described by
a Z: topological mvariant.

Charal and Anti-chaoral Edge
States on the Edge (atmme-
reversed pair)

Sﬂ__rmplectic Class ReqmresT

symmetrvi
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(2+1)-d Topological Insulators

Quantum Hall Quantum Spin Hall

= M Pr — ipy
Hon = ( pr+ipy —M )




(2+1)-d Topological Insulators

Quantum Hall Quantum Spin Hall

M Pr — Py U 0
S Pr + Ipy —M ) 0
Hosm = ( 0 0 i M —Pr — 1Py

QSH= I + 7 -invariant C-:}uplin_g

.
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Topological Insulators and
Entanglement
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Topological Insulators and
Entanglement

* Are IT s topologically ordered?

* No. They have non-degenerate ground states, always. Thus

there is no topological entanglement entropy.
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Topological Insulators and
Entanglement

e Arells topologic'all}-' ordered’

® No. They have non-degenerate ground states, always. Thus

there is no topological entanglement entropy.

®* DoTI s have interesting entanglement properties/

® Yes. They exhibit non-trivial fermion entanglement spectra and

cannot be deformed to have vanishing entanglement entropy.
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Topological Insulators and
Entanglement
* Arells topolog_]'c'all}-' ordered/’

®* No. They have non-degenerate sround states. always. Thus

there is no topological entanglement entropy.

* DoTT s have interesting entanglement properties/

® Yes. They exhibit non-trivial fermion entanglement spectra and

cannot be deformed to have vanishing entanglement entropy.

In contrast, quantum double models (toric code) and -~tri11,~ net states
only have entanglement entropy coming from “gauge " fluctuations of
the string condensed sround state. There is no fermionic piece and
the f:ntan,,_]]nf:nt -PE(*tra are featureless.
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Topological Insulators and
Entanglement
* Arells topologjcall}-' ordered’

® No. They have non-degenerate sround states, alwavs. Thus

there is no topological entanglement entropy.

* DoTT s have interesting entanglement properties’
® Yes. They exhibit non-trivial fermion entanglement spectra and

cannot be deformed to have vanishing entanglement entropy.

In contrast, quantum double models (toric code) and ht['i]l“—]lt‘t states
only have entanglement entropy coming from “gauge " fluctuations of
the string g condensed ground state. There is no fermionic piece and
the f:ntan,_]]]mnt -Peftr.l are featureless.

hlterestiugi}: the Kitaev ]1011&}'(‘01]11) model has both. and ﬂl&}-' are

pirsa: 1oosooaf0mple telyv decnupled from each other. Page 15/78




Topological Insulators and
Entanglement

* While the entanglement properties of topological insulators
do not contain the topological piece coming from gauge-like
tluctuations, the fermionic contributions are very clear

* One additional advantage is that everything is calculable since

we are dealing with free fermion systems
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Topological Insulators and
Entanglement

* While the entanglement properties of topological insulators
do not contain the topological piece coming from gauge-like

fluctuations. the fermionic contributions are verv clear

* One additional advantage is that evervrhing is calculable since
we are dealing with free fermion systems

Hewristic Picture:
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Topological Insulators and
Entanglement

* While the entanglement properties of topolooical msulators
i topolomcal piece coming from gauge-like

fluctuations. the fermionic contributions are very e

* One additional advantage is that e enﬂlmg is calculable since
we are deahn(r il systems

Hewristic Picture:
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Topological Insulators and
Entanglement

* While the entanglement properties of topolooi(‘al msulators
S e topolon:ncal piece coming from gauge-like

fluctuations. the fermionic contributions are very ==

* One additional advantage is that ev ervthing is calculable since

we are deahn(r — =T e systems
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Topological Insulators and
Entanglement

* While the entanglement properties of topological insulators
do not contain the topological piece coming from gauge-like

fluctuations. the fermionic contributions are verv clear

* One additional advantage is that everyrhing is calculable since

we are dealing with free fermion systems

F‘ tf
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EntanglementSpectra of Free
Fermions

* We can get the SIﬂg]E—deTICIE entan_ghnent spectrum of any

free-fermion Hamiltonian by using Peschel s method:
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EntanglementSpectra of Free
Fermions

¢ We can get the :‘iﬂgle—pdz“ride entan_ghnent spectrmn of anv

free-fermion Hamiltonian by using Peschel s method:
. e = § X g ]
Given: H = (Cncn—%—l - C’n—-_—lcﬂ)
n

)

Cilcalate: (. = <U‘CLC‘H|O>

irsa: 10050082 Page 22/78




EntanglementSpectra of Free
Fermions

* We can get the single—parrzde entan_ghnent spectrum of any

free-fermion Hamiltonian b}-‘ using Peschel smethod:
SR ega s = § , 3 r .
Given: H - (C”Cn_+_1 +CII+IC”)
n

-~

Calculate: Cmn — <O‘CIHCH|0>

glement” Hamiltonian” H —— 11]_[(]_ — C)/C]

e

Where Ci1s the two -pomt correlation function restricted to sittes m region A
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Single-Particle Entanglement Spectrum
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Single-Particle Entanglement Spectrum

P]:D_: sical Energj' Spectrum

log(1-1/x)
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Entanglement Spectra of Free
Fermions

* We can get the siﬂgle—pt:z“ride entan_glnlent Spectrum of any
free-fermion Hamiltonian by using Peschel s method:

Given: 7:( — —{:Z(C‘ECH_%_‘[ S = Cjz_?_lcn)
n
Calculate: mn — <O‘C Cnl >

flemean.lmﬂrcnmn": H — 111[(]_ = C)/C]
Where Cis the two-pomt correlation function restricted to sites mregion A
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Single-Particle Entanglement Spectrum
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Single-Particle Entanglement Spectrum

Physical Energy Spectrum Eigenvalues of C
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Entanglement Energies

-Loeg of etoenvalues of C




Many-body Entanglement Spectrum

* Take a many-body ground state ¢ and perform a Schmidt
decomposition

= e e

vY) R [Up)

Thesetof {; are the many-body entanglement “energies”

For free fermions the grnund state is a Slater determinant state but calculating manv-body

pectrum is still slow and reqlt'[res a lotof memory.
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Many-body Entanglement Spectrum

® There is a better way to get the many-body excitation

spectrum analogous to ﬁ]ling the single-l)arﬁcle energy states
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Many-body Entanglement Spectrum

® There is a better way to get the many-body excitation

spectrum analogous to fi]]jng the single—parﬁcle energy states
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Energy Spectrum of the Chern Insulator

Solve for energy spectrum ona cylinder
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Entanglement Spectrum of the Chern
Insulator (Quantum Hall)

* We can make cuts on a cvlinder or torus. A cvlinder is clearer

because there is only one set of low-energy” cut -states

Ce




Entanglement Spectrum of the Chern
Insulator (Quantum Hall)

* We can make cuts on a cvlinder or torus. A evlinder is clearer

because there is only one set of low-energy” cut -states

o

One mlghr WOITY that the P]]}'ﬂ(ﬂl edge states of the mpﬂlagicnl msulator m the C:i']i[lﬂﬁ“l‘ geometry
would affect the entmglement. However this 1s not true. These states are exponfmiaﬂ}* locahized as far

away from the cut as one can get

<
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Entanglement Spectrum of the Chern
nsulator (Quantum Hall)




Entanglement Spectrum of the Chern
Insulator (Quantum Hall)

Torus C‘r]:m e




Many-body Entanglement Spectrum of
Chern Insulator

¢ What should we e-:cpe(*t? From L1 and Haldane s anal}-'sis of
the Moore-Read state we should expect to see the conformal
character counting of the QH edge theory (i.e. a free chiral

fermion)
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Many-body Entanglement Spectrum of
Chern Insulator

¢ What should we expect? From L1 and Haldane s anal}-'sis of
the Moore-Read state we should expect to see the conformal
character counting of the QH edge theory (i.e. a free chiral

fermion)
Counting of States

e Level | States =
— / 1 19 1

2 c; Tl L) 1

_______________________ 3 ol ), o T, ) 2

- 3 Tcl), Ty l)), T, | 3

5 ), T ), T, |) 5

el ), &fefe,cld)
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Many-body Entanglement Spectrum of
Chern Insulator
* What should we expect?/ From Li and Haldane s analysis of

the Moore-Read state we should expect to see the conformal

character counting of the QH edge theory (i.e. a free chiral

fermion)
Counting of States
= Level | States #
1 |2 1
2 c; Tl 1) 1
3 o l), T, ) 2
- Tl ), ey l)), T, | 3
5 CJI—TCOIQ)T fa-rf-ilﬂl fz?f-zlm 5

¢ el &fefe il

At eachlevel all the states will be degenerate it spectrum is Peﬁecﬂ}' Imear for

Pirsa: 10050082 ~
fimite size systems there will be deviations from perfect degeneracy
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Many-body Entanglement Spectrum of
Chern Insulator
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mm@ymic Iimit levels will be de generate and spectmmwiﬂ become “‘gapless.” Page 40/78




Many-body Entanglement Spectrum of
Chern Insulator

¢ What should we e-}:pect? From L1 and Haldane s ana ysis of
the Moore-Read state we should expect to see the conformal
character counting of the QH edge theory (i.e. a free chiral

fermion)
) Counting of States
= Level | States =
1 D) 1
2 c; Tl ) 1
3 T lY), T ) 2
- T l)), eyl T, ) 3
5 EA‘[—TCOM}T CETE—EIQ>'- Cz?f-zm >

), ofcTo,c )

At eachlevel all the states will be deg&nfr,lte it spectrum is Perfectl_r Imear for
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fimate size systems there will be deviations from Perfect degeneracy
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Many-body Entanglement Spectrum of
Chern Insulator
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View of Phase Transitions From the
Entanglement Spectrum

* For the topological msulator model (Dirac model) there is a

phase transition when M switches sign

= M pr — ipy
Honm = ( Pxt+ipy —M
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View of Phase Transitions From the
Entanglement Spectrum

¢ For the topolo_gi('al msulator model (Dirac model) there is a

phase transition when M switches sign
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View of Phase Transitions From the

Entanglement Spectrum

¢ For the topolo_gi(*al msulator model (Dirac model) there is a

phase transition when M switches sign
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View of Phase Transitions From the
Entanglement Spectrum

¢ For the topologi(*al msulator model (Dirac model) there is a

phase transition when M switches sign
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View of Phase Transitions From the

Entanglement Spectrum

* For the topological msulator model (Dirac model) there is a

phase transition when M switches sign
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View of Phase Transitions From the
Entanglement Spectrum
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View of Phase Transitions From the
Entanglement Spectrum
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View of Phase Transitions From the
Entanglement Spectrum
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View of Phase Transitions From the
Entanglement Spectrum
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View of Phase Transitions From the
Entanglement Spectrum
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View of Phase Transitions From the
Entanglement Spectrum
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View of Phase Transitions From the
EntanglementSpectrum
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Energy Spectrum of QSH

Solve for energy spectrum ona cyﬁnder

TRS protects
the df:geﬂeracy

_ﬂl =

-0

________--"'"-__ //’/:‘:“—Eﬁ__‘\_‘__
f‘”‘f —
= iﬁ@%i\\\%
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Entanglement Spectrum of QSH

This is for a cut on a cylinder, so there is only one pair of “cut” states. Note the clear
partner switching spectral flow.
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Many-body Entanglement Spectrum of

QSH
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Counting is a similar to that of QH
but more tedious because there are
two branches of states.

Leads to many degeneracies. Entanglement
ground state is doubly degenerate here
because there are two cut-state “zero
modes” and only one is initially filled.

This double —degena'acy is a consequence

of TRS.
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Breaking Time-Reversal Symmetry

Z.» Invariant no lnnger Pmtected and a gap opens in the edge states

e T, T, -"‘:'H-_"--..;_‘_ 3
B i g .~ - -
e

.

Whatis gning on in the enta.nglment spectrum? It still looks g&PlEES- The pointis that the
eigemalues VEry closetoOand 1 are te]]j:ug you snmm:hing and are Important thm]gh
i 'ﬁ’ié’_%g?conu'ibme hittle to the entropy. ReneBa/a




éBreaklng Tlme Reversal Symmetry

J B We clearly see here the signature of the TRS brea_kmg

z  the spectral flowis cut-off. Every degeneracr protected by TRS
is lifted except one.
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Part 2: Entanglement Spectra in
Disordered Topological Insulators
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Anderson-Localization Transition

¢ [n 2d. even if an electron is not classically localized. quantum
mterference etfects due to the presence of disorder can

localize the electronic state.

® Thus, while classically you might expect the material to be

metallic. quantum effects can drive it into an insulating phase

* Given a fixed disorder strength. and a particular energy. one

can ask a ves or no question: Are the electronic states

localized?”
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Characterizing the Anderson Transition

* For solvable Hamiltonians (e.g. free fermions) it is not too

dithicult

n

olve for the €nergy spectrum for
any independent random disorder

Dnﬁgura tions.

20 40 60 80 100 1200 140 160 180 200

s Unﬁguration Number
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Characterizing the Anderson Transition

* For solvable Hamiltonians (e.g. free fermions) it is not too

dithicult

olve for the energy spectrum for
any independent random disorder

Dnﬁguraﬁens.

alculate distribution of energy level
aCINgs In an energy window
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Characterizing the Anderson Transition

* For solvable Hamiltonians (e.g. free fermions) it is not too

dithficult

=
-

olve for the Energy spectrum for
any independent random disorder

enﬁgu.ratiens i

alculate distribution of energy level
acIngs n an energy window

epeat this process for different energy
mdow locations and different disorder

engths

20 40 60 80 100 120 140 160 180 20

e nnﬁgumtion Number
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Energy Level Distributions

Localized states give a Poissonian-type Distribution (variance = 1):

-\
ip
Ik
N
e
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Energy Level Distributions

De-localized states give a Wigner-Surmise distribution for GUE (variance ~ 0.178):
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Energy Level Distributions

Loy Regions of delocalized /localized states can be clearly distinguished

e S e — H‘-\_"ir— o _\a._\_\_\_-_-_:_____-n._-_-_l_
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Disordered Chern Insulator
H=H,; + W(x.y)

* Energy Spectra for white noise disorder (uniformly

distributed)
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Disordered Chern Insulator
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Disordered Chern Insulator
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Disordered Chern Insulator
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Disordered Trivial Insulator
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Entanglementof

Pirsa: 10050082

rivial Insulator
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Conclusions

* Using topological insulators as solvable test cases we see the
entanglement spectrum exhibits many features that help to

characterize the ground-state.

* The entanglement spectrum may serve as a tool to attack the
many-body localization problem since we only need the

ground state and not the entire excitation spectrum.
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