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» Local Unitary Transformation: Equivalence
relation between states in the same phase

» Fixed point local unitary transformation 2>
Fixed point states in each phase

» Away from fixed point, any state should be
connected to fixed point state with a local
unitary transformation
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Local Unitary Transformation
- Renormalization Flow

» Local unitary circuit can be used to remove
local entanglement

» State with only short range entanglement can
be completely dlsentangled
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» State with long range entanglement can get
rid of short range structure




Local Unitary Transformation
- Renormalization Flow

» Local unitary circuit can be used to remove
local entanglement

» State with only short range entanglement can

be completely disentangled
- |

| ‘

; 6 oo $ ® o o i * o
» State with Iong range entanglement can get

rid of short range structure
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Local Unitary Transformation
-— Renormalization Flow

Local unitary | | || iI 1 II == l l
operations = - 8 ) R i?
Remove decoupled
degrees of L )8 l l < |
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freedom

PPPPPPPPPP




Local Unitary Transformation
-— Renormalization Flow

Local unitary | j. | | ] | l
. B | | L — L

operations E - FE T ) s L & |

Remove decoupled

degrees of ‘ o ‘ .‘. | l, 3 |

freedom = - B = - =

Equivalence relation between systems defined
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Local Unitary Transformation
-— Renormalization Flow

Local unitary | ] | | l l
: k| | | E—

operations E 1T i = o | |

Remove decoupled

degrees of ! ‘ l l, S |

freedom < = = =

Equivalence relation between systems defined
on different Hilbert space

Instead of ¥(0) ~ ¥(1) = ¥(1)=U ¥(0)
We have ¥(0) ~ ¥(1) < ¥(1)=U (Y¥(0)®|0000>)
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» If there is Symmetry

» States are in the same gapped phase if and
only if they are related by local unitary
transformations that preserves the symmetry

» Local unitary transformation with symmetry:
Equivalence relation between symmetric
states in the same phase

Each unitary . | |
preserves symmetry = l o l ®

Decoupled degrees
of freedom carry ‘ ‘ | | |
L |
. . . PPPPPPPP
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Quantum Phases

SB-SRE 1 | SB-SRE 2

SY-SRE | SY-SRE2

SY-LRE 1|SY-LRE2| SY-LRE3

LRE 1 LRE 2
SB-LRE 1|SB-LRE 2| SB-LRE3
(a) g, (b) 8,
Without With

Symmetry Symmetry
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Quantum Phases

84 84

2 2 SB—SRE1| SB-SRE 2 . S————y

—— breaking

SY-SRE | SY-SRE2

SY-LRE 1|SY-LRE2| SY-LRE3

LRE | LRE 2
SB-LRE 1|SB-LRE 2| SB-LRE3
(a) g, (b) 8,
Without With

Symmetry Symmetry
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Quantum Phases

& &4 . symmetry
- SRE H SB_SRE]\ e breaking
SY-SRE 1| SY-SRE 2 o NO symmetry
breaking:
SY-LRE 1|SY-LRE2| SY-LRg3 Hialdane phase
LRE | LRE 2 and Sz=0
SB-LRE 1|SB-LRE2| sB-LRg3 Phase of spin |
= } _ chain
Topological
® < (b) J and Band
insulator

Without With
Symmetry Symmetry
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Quantum Phases and Local Unitary
ransformation

» What kind of phases exist, in 1D, 2D etc.?
(Identify the fixed points)

» How to flow an arbitrary state to its fixed

point and hence identify the phase it belongs
to?

» FIND the local unitary transformation that
does the job!

PPPPPPPPPP



Results in short

» Found the right local unitary transformation
for any state (1D,2D) based on tensor product
states

PPPPPPPPPP



Results in short

» Found the right local unitary transformation
for any state (1D,2D) based on tensor product

states

» No topological order in 1D: every state can be
mapped to product state via local unitary
transformation




Results in short

» Found the right local unitary transformation
for any state (1D,2D) based on tensor product

states

» No topological order in 1D: every state can be
mapped to product state via local unitary
transformation

» With symmetry, there are different phases in
1D (at least 2 with Parity only)

5555555555




Results in short

»

Found the right local unitary transformation
for any state (1D,2D) based on tensor product
states

No topological order in 1D: every state can be
mapped to product state via local unitary
transformation

With symmetry, there are different phases in
1D (at least 2 with Parity only)

Can determine whether, a state has
topological order, or a state is in symmetry

breaking phase or not.
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Matrix Product States

I ZtTr(A"lA"z...A’:N)‘iliz...iﬁ>

Hip...1y;

4 ST D T S D S

¢ Matrix product states approximate

ground states of 1D gapped system well
* Consider translational invariant, finite

dimensional matrices
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Matrix Product States

» Local Unitary Operation

i ‘ . Reduce the
‘ A range of the
B ap & — physical index

(4
0:’ ﬁ ; !
== I * I
| Double tensor oaon— Z‘[Aa,ﬁ,) quﬁ
B i

&
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Matrix Product States

» Local Unitary Operation

‘ = Reduce the
‘ AI range of the
B ap - physical index
ﬁ ; :
I * &
| Double tensor T, . ., = ZXA{;-;?-) xA
o B 4?_ i

3 -1
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Matrix Product States

» Local Unitary Operation

i ‘ = Reduce the
‘ A range of the
B ap = physical index

X
. 4 B i s i
| Double tensor e E;(Aa.ﬁ.) an_ﬂ
ﬁ 4?7 ;
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Matrix Product States
-Renormalization Flow

| = = = |

HEi<—10

L =]]=1=]=,
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Matrix Product States
-—-Renormalization Flow
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-—-Renormalization Flow

B

.. Renormalization
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Matrix Product States
-—-Renormalization Flow
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Matrix Product States
-—-Renormalization Flow
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Matrix Product States
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Matrix Product States
-—-Renormalization Flow

C- T 2L~

Correlation exp(-L/€)=(Mt
Finite correlation length: A<

(D" = [~
S5y SISy SIS b KNS § SIS 5 S S
$_l 75| 00) + | 11)+...




Matrix Product States
--No Topological Order
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Matrix Product States
--No Topological Order

Luiﬁ_ﬁ_u_ﬂ_m

b db b b &b &

 Every finitely correlated matrix product state
can be mapped to product states with local
unitary transformation

“ No topological order in 1D
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Matrix Product States
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» What if we have symmetry?
Short Answer: There will be more phases

» Example: Parity
Local Unitary Transformation must preserve

parity

- CINES LAY

. Renormalization = _
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Matrix Product States
--Symmetry

AKLT state—odd parity

Sl e TR A
el T L E 3L

a4 01)-/10)  Odd Parity
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Matrix Product States
-Symmetry

01)-]10)  Odd Parity
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Matrix Product States
-Symmetry

N5y SISy SN » SHNS 9 SHIS v S5 5 S

- W W YUY Yy

&4 |01)-10) Odd Parity

NG 2
—

“~ i
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-Symmetry
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Matrix Product States
-Symmetry

5 |01> \10> Odd Parity

4o n i 4o

Haldane phase is a different phase from the
trivial phase if parity symmetry is preserved
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ensor Product State
-— Renormalization Flow

» 1D no topological order

» Provide framework for classifying 1D
phases with symmetry

» 2D7?
» A variety of topological order described
by fixed point states

» How to generate an RG flow that flows a
generic state to the simple fixed points?
How to remove local entanglement while
retaining global entanglement?
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ensor Product State
- Renormalization Flow

Local tensor

./ contains complete
iInformation about

entanglement of

the state
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Local tensor
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ensor Product State
- Renormalization Flow

Local tensor
contains complete
iInformation about
entanglement of
the state

» Link dimension,
physical dimension
grow exponentially
» Need to find a way
to reduce them
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ensor Product State
-— Renormalization Flow

» ldentify the entanglement structure and
necessary tensor structure to represent it

B "

» Non-zero singular values represent necessary

entanglement structure; Retain only the non-zero
dimensions
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ensor Product State
-— Renormalization Flow
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ensor Product State
-— Renormalization Flow

» Remove unnecessary physical degrees of
freedom according to the entanglement

structure by applying a local unitary
operation

e
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» The unitary operation which maximally
reduce the physical degrees of freedom can
be determined from the tensor

\/
Q\ Double tensor
z % I
ST Taprsaps = 2hleprs)* T oapes
I

11111111111



ensor Product State
- Renormalization Flow

» The unitary operation which maximally
reduce the physical degrees of freedom can
be determined from the tensor

e S Double tensor
== 5 i =T
/—-\ r][‘alﬁl},lgi?aﬁ}fg = fox'ﬁ'}f'SI ) XTaﬁ}'(s
z
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layer of unitary transformation).
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ensor Product State
-— Renormalization Flow

» To obtain the optimal U

» Retain only the non-zero physical dimensions

» Complete one round of renormalization(one
layer of unitary transformation).

» Continue to the next round, until the tensor
flows to fixed point

11111111111



Application: topological order

11111111111



Application: topological order

» Renormalization flow = Classification of
Topological Order

11111111111



Application: topological order

» Renormalization flow = Classification of
Topological Order

» Different fixed point tensor corresponds to
different patterns of long range entanglement

11111111111



Application: topological order

» Renormalization flow - Classification of
Topological Order

» Different fixed point tensor corresponds to
different patterns of long range entanglement

» Fixed point tensor gives an efficient labeling
of topological order

11111111111




Application: topological order

» Renormalization flow = Classification of
Topological Order

» Different fixed point tensor corresponds to
different patterns of long range entanglement

» Fixed point tensor gives an efficient labeling
of topological order

» For tensors not at the fixed points, applying
the renormalization flow, we can determine
the topological order of the state, by studying
the fixed point it flows to
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Example: Toric Code
+<——<

o
X ¥ X 5+I3 =1, if a+B+y+d is even
=0, if x+p+y+d is odd

+ <4<+ Y

E

' a I ( l e h,.)f'v:'l, only when k=p=v=0 or 1

» Fixed point tensor

» Vary the tensor a little bit which corresponds to
local perturbation of the Hamiltonian and apply
the Renormalization algorithm
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Example: Toric Code
+J+_H- 6_I_ 8 =1, if ax+B+y+9d is even
' , I : I =0, if x+p+y+0 is odd
}(

E 5 3

l / I / l p===v =1, only when k=p=v=0 or 1
L

» Fixed point tensor

» Vary the tensor a little bit which corresponds to
local perturbation of the Hamiltonian and apply
the Renormalization algorithm

» The varied tensor always flows back to toric code
= toric code is stable against local perturbation
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Example: Toric Code
+<——<

5 ( 6 a_i)(_B;’ifu+B+Y+6 IS even
y ,

' ; l ; I if t+P+y+90 is odd

g o ¢ }( V:I ., when k=p=v=0

un_-zi.up_-ss
-"@i_é’_" =g, when k=p=v=1
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Example: Toric Code
l l E l =1, if t+B+y+9d is even

x
4 E 3
- Y ¢ _!_ : =0, if a+B+y+9 is odd

+++

¢ 1 ¢ u»—a;z—av:1 . when k=p=v=0
H"‘é‘i' =g, when k=p=v=1

» g=1, toric code, fixed point
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Example: Toric Code
<+

: o
=1, if x+B+y+d is even

¥ 5 —|— B
4 [ ¢ - =0, if x+B+y+9d is odd

¢ 1 ¢ | }( =1, when k=p=v=0
Pt =V
1+ =g, when k=p=v=1
» g=1, toric code, fixed point
» g=0, all |0> product state, fixed point
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4 V4 X 5_'_ s if x+B+y+d is even

v -

_l_r&_+!$+ . if x+B+y+d is odd
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P ==V
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» g=1, toric code, fixed point
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» Phase transition across g.=0.804




Example: Toric Code
' ' I B_i(_ 8 =1, if x+P+y+0d is even
=0, if x+p+y+0 is odd
-|-<9.|=o<+

¢ 1 ¢ i ‘Z_V:Lwhen k—p—v @
"'Edﬁk'&"' =, when k=p=v=1
» g=1, toric code, fixed point
» g=0, all |0> product state, fixed point
» Phase transition across g_.=0.804
» g>d,, flows to toric code
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Example: Toric Code

-'-_U ' l 6_I_ 8 =1, if x+B+y+0 is even
=0, if x+p+y+d is odd

-|-raﬁ|-<++

¢ 1 ¢ = ‘szl , when k=p=v=0
'l-‘{_+d_+ =, when k=p=v=1
» g=1, toric code, fixed point
g=0, all |0> product state, fixed point
Phase transition across g. =0.804
g>dg., flows to toric code
g<d., flows to product state

v

v

v

»




Freedom in the fixed point tensor
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Example: Toric Code
-'—é—'—é—'— 6+ﬁ _0 , if x+P+y+0 is even

if x+PB+y+0 is odd

':"':l _)i—’lwhenkuvo
' l :l =d, when k=p=v=1
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Example: Toric Code
-'—t@-'—é—*- 6+ﬁ_0 if x+P+y+0 is even

if x+P+y+0 is odd

4

Y |

l I I )_(_—IWhenkqu
¥ a ¥

=, when k=p=v=1
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Example: Toric Code
-'—é—'—&—*— 5+|3 _0 ,if d+B+y+0 is even

if x+B+y+0 is odd

X
-!,_5_!(_0/_}- )( =1, when k=p=v=0

l‘-lm‘-—-'_
=, when k=p=v=1

%J/ Db

ﬁ
1 g S
0.6+
os5-
0.4. . . ] .
1] 0.1 a2 03 04 05 06 a.7 08 09 1
g
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Application: symmetry breaking

» Such a renormalization procedure can also be
applied to symmetry breaking phase and
phase transitions

11111111111



Application: symmetry breaking

11111111111



Example: Toric Code
-'—5—'{—&—2— 6—'— 8 =1, if a+B+y+9d is even

g =0, if x+B+y+d is odd
1 | | Y
-'._é_'._é_*- ); —1, when k-—p—v—0
é’ E 3 "o

=, when k=p=v=1

%/ DD,

06+

! T,
05+ i

0.40 01 a2 03 0:4 05 06 o7 08 09 1
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» Such a renormalization procedure can also be
applied to symmetry breaking phase and
phase transitions

» Suppose we have obtained a symmetric TPS
description of ground state and want to
determine whether it belongs to the
symmetry breaking phase or non-breaking
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Application: symmetry breaking

» Such a renormalization procedure can also be
applied to symmetry breaking phase and
phase transitions

» Suppose we have obtained a symmetric TPS
description of ground state and want to
determine whether it belongs to the

symmetry breaking phase or non-breaking
phase

» Apply the algorithm and make sure that the
symmetry is carefully preserved.
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Example: Transverse Ising Model

k = x+B+y+5 when k=0
S_k P \3-(+B+v+8) when k=1

Y
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Example: Transverse Ising Model
& & 7_ 7

— £ 1 B E;X
o ¢ EZ* : e
o & a—iﬁkﬁ =Ax+B+¥+d when k=0

=}\4—(H+B+Y—l—6) When k='|

Y

«* The TPS is symmetric under XX...X for any A

* when A=0, [00...>+|11...1>, ground state for h=0,
symmetry breaking phase, tensor is a fixed point

* when A=1, |++...+>, ground state for h=co,
symmetric phase, tensor is a fixed point

¢ phase transition at A= Ac=0.358

For A< Ac, tensor flow to A=0, for A> Ac,
tensor flow to A=1 T

*
"_0
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Example: Transverse Ising Model

y y y k =AX+B+¥+d when k=0

—)\—l—(tx+B+Y-!—6) When k:]

tHE /D

—1 step of RG

-=-3 steps of RG
6 steps of RG

—4( steps of RG
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Structure of Fixed Point Tensor

» Fixed point tensor in symmetry breaking
phase

Direct sum of two parts: symmetry breaking
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Structure of Fixed Point Tensor

» Fixed point tensor in symmetry breaking

phase = s
0 ¥°='_+L‘
0 1

Direct sum of two parts: symmetry breaking
» Fixed point tensor in symmetric phase
_|_
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Structure of Fixed Point Tensor

» Fixed point tensor in symmetry breaking

phase =3 =
0 yo:1—+i1
0 1

Direct sum of two parts: symmetry breaking
» Fixed point tensor in symmetric phase
_|_

_|_
- -

» Fixed point tensor for topological ordered
phase
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Structure of Fixed Point Tensor

» Fixed point tensor in symmetry breaking

phase =5 —
0 ko:1—+i1
0 1

Direct sum of two parts: symmetry breaking
» Fixed point tensor in symmetric phase
_|_

_|_
- -

» Fixed point tensor for topological ordered
X

phase 5 B =1, if x+P+y+0d is even
‘ =0, if a+-B+y+8 is odd

Y 11111111111



onclusion

» Tensor Product representation of states give rise
to a renormalization procedure based on local
unitary transformations
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» Tensor Product representation of states give rise
to a renormalization procedure based on local
unitary transformations

» Fixed point of this RG procedure represent
different quantum phases

» Applying this RG procedure to arbitrary TPS
identifies the phase it belongs to

Page 154/158



onclusion

Tensor Product representation of states give rise
to a renormalization procedure based on local
unitary transformations

Fixed point of this RG procedure represent
different quantum phases

Applying this RG procedure to arbitrary TPS
identifies the phase it belongs to

No topological orderin 1D



onclusion

Tensor Product representation of states give rise
to a renormalization procedure based on local
unitary transformations

Fixed point of this RG procedure represent
different quantum phases

Applying this RG procedure to arbitrary TPS
identifies the phase it belongs to

No topological orderin 1D

Classification of symmetry protected topological
orderin 1D



onclusion

Tensor Product representation of states give rise
to a renormalization procedure based on local
unitary transformations

Fixed point of this RG procedure represent
different quantum phases

Applying this RG procedure to arbitrary TPS
identifies the phase it belongs to

No topological orderin 1D

Classification of symmetry protected topological
orderin 1D

Various topological order in 2D




onclusion

Tensor Product representation of states give rise
to a renormalization procedure based on local
unitary transformations

Fixed point of this RG procedure represent
different quantum phases

Applying this RG procedure to arbitrary TPS
identifies the phase it belongs to

No topological orderin 1D

Classification of symmetry protected topological
orderin 1D

Various topological order in 2D

Identifies phase transition point in for topological
and symmetry breaking phase transitions



