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Abstract: Adiabatic evolutions connect two gapped quantum states in the same phase. We argue that the adiabatic evolutions are closely related to
local unitary transformations which define a equivalence relation. So the equivalence classes of the local unitary transformations are the universality
classes that define the different phases of quantum system. Since local unitary transformations can remove local entanglements, the above
equivalence/universality classes correspond to pattern of long range entanglement, which is the essence of topological order. The loca unitary
transformation also alows us to define wave function renormalization, where a wave function can flow to a simpler one within the same
equivalence/universality class. Using such a setup, we find conditions on the possible fixed-point wave functions where the local unitary
transformations have finite dimensions. The solutions of the conditions allow us to classify this type of topological orders, which include all the
string-net states.
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hat is topological order?

In the study of spin liquids and FQH states, we realized that states
with the same symmetry can belong to different phases
— Those states contain a new kind of orders — topological order.
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- cannot be described by local order parameter
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— Those states contain a new kind of orders — topological order.
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Hard to publish papers by describing what topological order is not.
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hat is topological order?

In the study of spin liquids and FQH states, we realized that states
with the same symmetry can belong to different phases
— Those states contain a new kind of orders — topological order.
Topological order is a kind of order that
- cannot be described by symmetry breaking
- cannot be described by long range correlations
- cannot be described by local order parameter
Hard to publish papers by describing what topological order is not.
Describe topological order by what it is:
- robust and topology-dependent ground state degeneracy wen o
- non-Abelian Berry phases of degenerate ground states induced by
modular transformations wen %
may completely characterize/define topological orders
- robust gapless edge excitations in FQH states wen a1
- topological entanglement entropy kitzev. Priskill 06; Levin, Wen 06
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hat really is topological order?

The above are more like the properties of topological order, rather
than definitions of topological order.
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hat really is topological order?

The above are more like the properties of topological order, rather
than definitions of topological order.

A precise definition of quantum phases of matter:

Two gapped states, |(W(0)) and |W(1)), are in the same phase iff
they are related through a local unitary (LU) evolution

(1)) = P(e i Jo % H(&)) (o)

where H(g) = > ; Oi(g) and O;(g) are local hermitian operators.

Hastings. Wen 05; Bravvi, Hastings, Michalakis 10
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hat really is topological order?

The above are more like the properties of topological order, rather
than definitions of topological order.

A precise definition of quantum phases of matter:

Two gapped states, W(0)) and W(1)), are in the same phase iff
they are related through a local unitary (LU) evolution

W(1)) P(Ie—i Jo dg H{:-I'*) W(0)

where H(g) = > ; Oi(g) and O;(g) are local hermitian operators.
Hastings. Wen 05; Bravyi, Hastings, Michalakis 10
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pological order is a pattern of long range entanglement

The local unitary transformations define an equivalence relation
A universality class of a quantum phase is an equivalent class
of the LU transformations
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pological order is a pattern of long range entanglement

The local unitary transformations define an equivalence relation
A universality class of a quantum phase is an equivalent class
of the LU transformations

There are two kinds of equivalent classes (phases), if we do not
have any symmetries :
The trivial class: states equivalent to product state under LU
transformations. They belong to the same class (phase)
— short-range entanglement and trivial topological order.
Non-trivial classes: states not equivalent to direct-product states.
Those states form many different equivalent classes (phases)
— many patterns of long-range entanglements and many different
topological orders.
In absence of symmetry:

Quantum phases of matter
— patterns of long-range entanglement = topological orders
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hat really is topological order?

The above are more like the properties of topological order, rather
than definitions of topological order.

A precise definition of quantum phases of matter:

Two gapped states, W(0)) and W(1)), are in the same phase iff
they are related through a local unitary (LU) evolution

w(1)) = (e o % F&)) jw(0))

where H(g) = > ; Oi(g) and O;(g) are local hermitian operators.
Hastings, Wen 05; Bravyi, Hastings, Michalakis 10
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pological order is a pattern of long range entanglement

The local unitary transformations define an equivalence relation
A universality class of a quantum phase is an equivalent class
of the LU transformations

There are two kinds of equivalent classes (phases), if we do not
have any symmetries :
The trivial class: states equivalent to product state under LU
transformations. They belong to the same class (phase)
— short-range entanglement and trivial topological order.
Non-trivial classes: states not equivalent to direct-product states.
Those states form many different equivalent classes (phases)
— many patterns of long-range entanglements and many different
topological orders.
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Quantum phases of matter
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hat really is topological order?

The above are more like the properties of topological order, rather
than definitions of topological order.

A precise definition of quantum phases of matter:

Two gapped states, W(0)) and W(1)), are in the same phase iff
they are related through a local unitary (LU) evolution

W(1)) P(e—i--fl':-lff'-%"c”%')w(_o)-

where H(g) = > ; Oi(g) and O;(g) are local hermitian operators.
Hastings. Wen 05; Bravyi, Hastings, Michalakis 10
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pological order is a pattern of long range entanglement

The local unitary transformations define an equivalence relation
A universality class of a quantum phase is an equivalent class
of the LU transformations
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pological order is a pattern of long range entanglement

The local unitary transformations define an equivalence relation
A universality class of a quantum phase is an equivalent class
of the LU transformations

There are two kinds of equivalent classes (phases), if we do not
have any symmetries :
The trivial class: states equivalent to product state under LU
transformations. They belong to the same class (phase)
— short-range entanglement and trivial topological order.
Non-trivial classes: states not equivalent to direct-product states.
Those states form many different equivalent classes (phases)
— many patterns of long-range entanglements and many different
topological orders.
In absence of symmetry:

Quantum phases of matter
— patterns of long-range entanglement = topological orders
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cal unitary trans. and wave function renormalization

The concept of support space

The total wave function ®(/.;..... 2. b....) can be viewed as a wave
function on a region A: ®,, (i.j....), where /.. ... label states in
the region A and a. b. ... label states out side of the region A.
®.p_(i.j....) for all different a. b. ... span the support space V;’
of the region A.

The dimension of the support space is less then the total Hilbert
space V, in A: V7 CVa

The concept of generalized unitary transformation

A generalized unitary transformation U : V4 — V) shrinks the
degrees of freedom in A without loosing any quantum information.
It generates a wave function renormalization:

Vidal O7; Jordan, Orus, Vidal, Verstraete, Cirac 08; Jiang, Weng, Xiang 09; Gu, Levin, Wen 09

region A
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hree issues about topological orders

How to label different topological orders (ie different equivalent
classes of LU trans.)?
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hree issues about topological orders

How to label different topological orders (ie different equivalent
classes of LU trans.)?

Answer: (Ng.. F/7. P77 that satisfy a set of non-linear eqn.

kin.x o
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hree issues about topological orders

How to label different topological orders (ie different equivalent
classes of LU trans.)?

Answer: (Ng.. F7". P77 that satisfy a set of non-linear eqn.

kin. o

Given a Hamiltonian or ground state wave function, how to
calculate (Ny. F7"7. P7"") — calculate the phase diagram.

kin.x & I
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hree issues about topological orders

How to label different topological orders (ie different equivalent
classes of LU trans.)?

Answer: (N Fﬁ:’r:wk P77 that satisfy a set of non-linear eqn.

Given a Hamiltonian or ground state wave function, how to
calculate (Ny.. F;7". P7""") — calculate the phase diagram.

i

Answer: Tensor-network renormalization flow

Pirsa: 10050076 Page 22/55




hree issues about topological orders

How to label different topological orders (ie different equivalent
classes of LU trans.)?

Answer: (Nj. F "5 P77 that satisfy a set of non-linear eqn.

Given a Hamiltonian or ground state wave function, how to

calculate (N . F/7". P7) — calculate the phase diagram.

Answer: Tensor-network renormalization flow

How to calculate physical properties from the label

( Nijk - Fu,er:x i

K
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hree issues about topological orders

How to label different topological orders (ie different equivalent
classes of LU trans.)?

Answer: (Nj,. F2777. P?%7) that satisfy a set of non-linear egn.

kin. o

Given a Hamiltonian or ground state wave function, how to

calculate (Njy. F/™°7. P**7) - calculate the phase diagram.

Answer: Tensor-network renormalization flow

How to calculate physical properties from the label

(N, 502, P9F)

kin.x o

Answer: % (need to generalize tensor category theory)
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abeling topological orders

Topological order = pattern of long range entanglement
= equivalent class of LU transformations
How to label those equivalent classes?
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Topological order = pattern of long range entanglement
= equivalent class of LU transformations
How to label those equivalent classes?

We can use the wave function @ itself to label the topological
orders.
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abeling topological orders

Topological order = pattern of long range entanglement
= equivalent class of LU transformations

How to label those equivalent classes?

We can use the wave function @ itself to label the topological
orders.

But this is a many-many to one labeling scheme.

Under the wave function renormalization, the wave function flows
to simpler one within the same equivalent class.

Use the fixed-point wave function: ® — &5, to label topological
order.

Hopefully @4, can give us a one-to-one labeling of topological
order, and a classification of topological order.
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assify topological orders with fixed-point LU trans.

But using fixed-point wave function 5, to label topological orders

has one problem:
as we perform wave function renormalization, the number of

degrees of freedom and size/shape of lattice are changing. The
fixed-point wave function ®;, can never be fixed.
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assify topological orders with fixed-point LU trans.

But using fixed-point wave function ®5, to label topological orders
has one problem:

as we perform wave function renormalization, the number of
degrees of freedom and size/shape of lattice are changing. The

fixed-point wave function @5, can never be fixed.
U, U, U;

g =g g W=
The concept of fixed-point state
A fixed-point state is not one wave function, but a family of wave
functions, ®,,, one wave function of each size/shape of lattice.
“Fixed point” does not mean the fixed wave function.
It means a fixed relation between those wave functions,

— fixed-point local unitary (LU) transformation, U

P(lattice-2) = U P(lattice-1). P(lattice-3) = U P(lattice-2)

Topological orders are classified by fixed-point local unitary

Rirsa: 10050076 Page 29/55
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1e structure of entanglements in fixed-point states

To find fixed-point LU transformations, we need to first have some
understanding of (or make some assumptions to) fixed-point states.
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1e structure of entanglements in fixed-point states

To find fixed-point LU transformations, we need to first have some

understanding of (or make some assumptions to) fixed-point states.
Graphic state:

Fixed-point wave functions are defined on graphs, with N + 1
states on links and N, states on vertices:
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abeling topological orders

Topological order = pattern of long range entanglement
= equivalent class of LU transformations
How to label those equivalent classes?

We can use the wave function @ itself to label the topological
orders.
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pological order is a pattern of long range entanglement

The local unitary transformations define an equivalence relation
A universality class of a quantum phase is an equivalent class
of the LU transformations

There are two kinds of equivalent classes (phases), if we do not
have any symmetries :
The trivial class: states equivalent to product state under LU
transformations. They belong to the same class (phase)
— short-range entanglement and trivial topological order.
Non-trivial classes: states not equivalent to direct-product states.
Those states form many different equivalent classes (phases)
— many patterns of long-range entanglements and many different
topological orders.
In absence of symmetry:

Quantum phases of matter
— patterns of long-range entanglement = topological orders
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cal unitary trans. and wave function renormalization

The concept of support space

The total wave function ®(/.;.....a. b....) can be viewed as a wave
function on a region A: ®,, (/.J....), where /.. ... label states in
the region A and a. b. ... label states out side of the region A.
®.p_ (i.j....) for all different a. b. ... span the support space V3"
of the region A.

The dimension of the support space is less then the total Hilbert
space V, in A: V¥ CVa

The concept of generalized unitary transformation

A generalized unitary transformation U : V5 — Vip shrinks the
degrees of freedom in A without loosing any quantum information.
It generates a wave function renormalization:

Vidal O7; Jordan, Orus, Vidal, Verstraete, Cirac 08; Jiang, Weng, Xiang 09; Gu, Levin, Wen 09
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abeling topological orders

Topological order = pattern of long range entanglement
= equivalent class of LU transformations
How to label those equivalent classes?

We can use the wave function @ itself to label the topological
orders.

But this is a many-many to one labeling scheme.
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1e structure of entanglements in fixed-point states

To find fixed-point LU transformations, we need to first have some
understanding of (or make some assumptions to) fixed-point states.
Graphic state:

Fixed-point wave functions are defined on graphs, with N + 1
states on links and N, states on vertices:

Support space and support dimension with boundary:

*

=3 k
o (\;ﬂ ) =®a,8,m. i, j, k. LT) =v;jkirla. B, m)
!

Support space on o 3m: Vg;{ —{ ijkir(c. 3. m)|fix ijkl. vary T'}
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The support dimension of the ® (&) on a region bounded by

links 7. j. k: D < N,
— shrink the range a = 1. .... Njz = D;j (which depends on ijk).

& & @

U &
Saturation condition: For ® — \,S’E‘V”
'

The support dimension Djj -
— The number of a3m = > Njipy Nimi-

Similar saturation condition for any “tree’ region
i 5 E 1
55

b — - E DHMP" =3 er’m‘ Nmr?"‘ < Nﬂp“f

L _4IM. N
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1e first kind of wave function renormalization: F-move
The fixed-point wave functions are related by a fixed LU trans.:
®(graph-2) = U P(graph-1)

5§ @ i gk
o ® = (\;1}/) and ¢ = ( %.’) have the same support
e 9

dimension Djj» = Djjp» —

E er’m‘ Ni{mf“ = E Nic.jn‘Nf‘ ni — NUH‘
m n

The two wave functions are related by a LU trans. ieven wen 04

g N Nigjne N = .
Um b, =
F-move: @ ( ) y ) P (\«3{4)

D 1—1 y—1

wbhg-matrix F), — (F)7"" is unitary and has a dimension N;:euesss
ki kil 7 n.x ik



1e pentagon identity

proknBx piimoe g

Da.0e fuhf__

KNt

Famab F”"’“F

The two paths should lead to the same LU trans.:
ijm. _' itn. ¢ 1 jkt.ne mkn. 3 ijm.oe
2 : F-w** NS ch F,:;f ) 2 : Ffpc,r Ve Fr;rps,:-*

Such a set of non-linear algebraic equations is the famous
PEtEgon identity. Page 39/55




1e first kind of wave function renormalization: F-move
The fixed-point wave functions are related by a fixed LU trans.:
®(graph-2) = U ®(graph-1)

£ ' g
o ® = (%}V’) and ® = (\ %) have the same support
- %

dimension Djj» = Djj» —

E Nﬁm" Nimi= = E N#.jn“ N pi = fojffr“
- n

The two wave functions are related by a LU trans. iewen wen 02
N Nk m N

(I
F-move: & (\3?/) T Y ; Ff:,f; Ko
J

=8 v—) &3

wliesmatrix £, — (F)7"." is unitary and has a dimension Njj s

X0




1e pentagon identity

F mkn. 5"

IDg.0€

ittt 2

) r'J"' a

K.Y.q9.0.0

The two paths Should lead to the same LU trans.:
ym.a5 itn.g ‘x Jkt.1 mkn. 53X ijm.ce
F F Fvc}' ) Z Ff ) F::;fps.:-*

Knt.ny ~ Ips.t pq.o¢
K, [ Fo 0 -

Such a set of non-linear algebraic equations is the famous
PEtEgon identity. Page 41/55




1e second kind of wave function renormalization: P-move

First way: _7¥, 7
" N

But notice that, through the F-move,

Second way:

A
I

: k. ﬁ tD _I-._ Levin. Wen. 04 or
_—

The support dimension of ®
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Y & 3 o > Fimespi -
Pf f‘..lnr?ct) L —— F,{Ilrﬂ‘ \ PJ L ,...;'nci) (
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we find more non-linear equation

L{fj(\,lﬁ K

M,;_I_-K:
maaye & 00 ffm \ P.X1
P_r' Oim035 = E PJ'
-"-.:]-

for all k. i. [l satisfying Nij= >
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classification of topological orders

The data Nj. F, o P’{ " classify the fixed-point LU

In. X )
transformation and topological orders. They satisfy

O PIPXT for all k. i, | with Nig-
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insistent conditions between Fﬁ}f "t and P2~

NP Fay
i s k i s k

NS ijm.ce3 N 7%
@ | R § > Flames @ | N7

I n—0 x.o I

s E .k
‘ LET) T \'\B )
Pﬁp "Oim® '// F”m P‘“D - ,md;) \?/
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] )In.x
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we find more non-linear equation

Ny
e & 2 : rfrr pP.X7
P_.r' Oim035 — klk & Pi
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for all k. i. [ satisfying Ni;-
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classification of topological orders

The data Njj. —— PF{ " classify the fixed-point LU

kin.x 9
transformation and topological orders. They satisfy

E N{."a'm" N il — ,; Nﬂ_."rv* N =i -
Yy ry

{F{.":_r*‘.l.w.___'- - F X8
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nple solutions of the non-linear equations

We choose Npoo = Ni110 = Nio1 = No11 = 1. other N =0, and
find two sets of solutions

e —1
i (=R )=
Fi?llll\_\ \L\ == 11(%}11/'/ I

FESI( X =n==1

Both solutions are closed-string states:

Freedman, Nayak, Shtengel, Walker, Wang, 04: Levin, Wen, 04

n=1: ®(loops) =1

Effective theory: /> gauge theory

5 ——1- ®(loops) —(—1)F oo

EfFective theory' U( ) x U(1) Chern-Simons gauge theory
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We choose
N[]Dg = Nll{j = NlDl = N(Jll = N111 — 1. other ijk = O_, and find
only one set of solutions:

P =~ =1
A 4 L= (Foo ™ )" = ( Falfér{ ) =Foar ) X =1
RN X = (RIS X
A X =Fun A0 = &11%)-\1 (Fior £ X)°
1111{:[:}) ( e
1111{}> { X =Fue)X )=V

111111)‘(:(—— v=(vV5—-1)/2

N —=i String—net STate Freedman, Nayak, Shtengel, Walker, Wang, 04; Levin, Wen, 04
Low energy effective theory: SO(3) x SO(3) Chern-Simons theory
with non-Abelian statistics.
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Local unitary transformation defines quantum phases:
Equivalent classes of LU transformation —
universality classes of quantum phases.
With no symmetry,
all short-range entangled states belong to the same phase

— the trivial topological order
Other states can belong to the different classes

— many patterns of long-range entanglement

and many different non-trivial topological orders.

Topological orders = patterns of long-range entanglement
The data N;j. Fﬂfh P;}‘j'” " that satisfy a set of non-linear
equations classify a kind of topological orders.
- All the topological properties can be calculated from the data.

- Exact soluble Hamiltonian can be constructed from the data.
- A generalization of string-net approach.
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We choose

N@{}(} = Nllﬂ = NlDl = N()ll = N111 — 1. other N,;j;( = O, and find

only one set of solutions:

Fooo == . =1

et Bt ) (F&f&ri s el ).}
Forr X X = (Fror /£ X0)°

P — (R A L R 3 = (R 307

Frud{ X=—

1111{j> L X =0 =

111111)‘(:(—— v =(v5—1)/2

N =) String—net Statle Freedman, Nayak, Shtengel, Walker, Wang, 04; Levin, Wen, 04
Low energy effective theory: SO(3) x SO(3) Chern-Simons theory
with non-Abelian statistics.

Pirsa: 10050076 Page 50/55




nple solutions of the non-linear equations

We choose Npoo = N110 = N1o1 = No11 = 1. other Nj =0, and
find two sets of solutions

R0 X =1
(L (FEY Y (R 7= R X -
RIS = (AL A )

1111[?) ( —~ g -

Both solutions are closed-string states:

Freedman, Nayak, Shtengel, Walker, Wang, 04: Levin, Wen, 04

n—=1: ®(loops) =1

Effective theory: /> gauge theory

n = —1: ®(loops) = (—1)7 ©f loops

EfFective theory' U( ) x U(1) Chern-Simons gauge theory
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We choose
Nooo = N110 = Ni1or = No11 = N7 = 1. other Nfljk — 0, and find
only one set of solutions:
Fos = - —1
A A L= (Foo ™ X)) (F&f&r{ ) =Foor )= X =1
Fori X = (Fio1 /4 X)°
P — (R A L R 3 = (R 07
110) < .
110 =
RN X = (R0 = v

111111)‘(:(—— ":(v'fg—l) 2

N = String-net State Freedman. Nayak, Shrengel. Walker, Wang, 04; Levin, Wen, 04
Low energy effective theory: SO(3) x SO(3) Chern-Simons theory
with non-Abelian statistics.
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classification of topological orders

The data Njj. m 8 P 17 classify the fixed-point LU

transformation and topological orders. T hey satisfy

S Nr* Nk:m P S Nﬂﬁ N =i
5 3 .

=y e
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..,: 1.|‘r .Z.\lr"'-.'."i.

Hf ¥ .'-
E F-« nt.mn

s PIXT for all k. i, | with Nig-
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we find more non-linear equation
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for all k. 1. ] satisfying N
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classification of topological orders

The data Njj. F, A P’( classify the fixed-point LU
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transformation and topological orders. They satisfy
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