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Abstract: | discuss a class of systems with avery special property: exact results for physical quantities can be found in the many-body limit in terms
of the original (bare) parameters in the Hamiltonian. A classic result of this type is Onsager and Y ang's formula for the magnetization in the Ising
model. | show how analogous results occur in a fermion chain with strong interactions, closely related to the XXZ spin chain. This is done by
exploiting a supersymmetry, and noting that certain quantites are independent of finite-size effects. | also discuss how these ideas are related to an
interacting generalization of the Kitaev honeycomb model.

Pirsa: 10050074 Page 1/58



From few to many

P. Fendley

How do we deal with many degrees of freedom?
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“Mathematically. the composition-temperature curve in a solid solution

presents the same problem as the degree of order in a ferromagnetic with
a scalar spin. B. Kaufman and | have recently solved the latter problem
(unpublished) for a two-dimensional rectangular net with interaction
energies .J. J'. if we write sinh(2.J/kT ) sinh(2.J' /kET) = 1/k. then

the degree of order for & < 1 is simply (1 — &2 )y

L. Onsager. Nuovo Cim. Suppi. 2(9)(1949):261 (in Rushbrocke’s article)
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Solving a system with more than a few degrees of freedom is usually an

iImpossible task.

A common approach is usually Landau theory, or more generally, effeciive field

While almost always valuable qualitatively, and often valuable quantitatively, at

and near many interesting critical points it often fails miserably.
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Take the two-dimensional Ising model, or equivalently. the quantum Ising chain.

3 1N

The Hilbert space is a chain of two-state systems. ie. (C~)- N The Hamiltonian

includes a term which can flip the “spin”, and a nearest-neighbor interaction term:

H—Y (kof +o%0%,,) ,
i

where the o are the Pauli matrices acting at site ;. and the identity on the other

sites.
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For & < 1, the model should be ordered: neighboring spins want to line up,

=nonta

aneously breaking the Zo spin-lip symmetry.

Landau theory is easy to apply: it predicts that near the critical point & = 1:

“" w1 —k

But Onsager, Kaufman and Yang tell us that

=

."-': = _l_ _Jf;.lll

]

exactly as L. — ~c!!
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Now we know a lot about how to understand behavior at critical points:

|.:_i‘|'|.';‘ IO en<iion %:"':I"':":"["

D, epslol ontormal nielad theot arg

But why is the result for the spontaneous magnetization in the Ising model both

ridiculously simple and exact?
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Qutline:

1. What's so special about the 2d Ising model/1d quantum Ising chain?

2. The XYZ chain

3. Simple and exact formulas for the magnetization and gap by exploiting scale

free behavior
4. Models with explicit supersymmein,

5. Completely unbelievable (but true) resulis

new work with C. Hagendorf
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What's so special about the Ising chain?

Yes, | know it can be mapped onto free fermions. But:

The map from spins onto fermions is non-local. Thus the computation of the
magnetization is still pretty complicated, as opposed to the computation of the

free energy.

The analogous computation for dimers on the triangular lattice was only done a
few years ago
Fendley. Moessner and Sondhi: Basor and Ehrhardt
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So the question should be:

Are there any non-free fermion models with simple and exact
formulas for expectation values?
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The N -state chiral Potis model is a parity-breaking Z x generalization of the Ising

model with some amazing properties

Howes. Kadanoif and den Nijs; von Gehlen and Rittienberg.

It is definitely not a free-fermion model (except for the Ising case N = 2).

Yet the order parameters for spontaneously breaking the Z - symmetry are

¢ j.TFF‘-"_'T'._- _‘\- == _I_ > = L: .i_r"-_: _“'-_—J'“I_' j_-"l.'_:

conjectured in 1989 by Albertini, McCoy, Perk and Tang, proved in 2005 by Baxier.
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So the question should be:

What's so special about the chiral Potts models?

e Along a parameter line (the “superintegrable” line), it possesses an unusual

symmeiry algebra. the Onsager algebra. Writing H — Hg + &£ H, . then

[HEJ- [H}- [Hd:l- Hl:ﬂ = :E}' Hl]

=X

This was how Onsager originally solved the Ising model! [t allows the explicit

construction of an infinite sequence of conserved quantities.

e The coupling of the chiral symmetry-breaking term in the field theory does not
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The N -state chiral Potis model is a parity-breaking Z x generalization of the Ising

model with some amazing properties

Howes. Kadanoff and den Nijs; von Gehlen and Ritienberg.

It is definitely not a free-fermion model (except for the Ising case N = 2).

Yet the order parameters for spontaneously breaking the Z symmetry are

2miro; /N EE = I,J u N—r)/(2N")

conjectured in 1989 by Albertini, McCoy, Perk and Tang, proved in 2005 by Baxier.
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So the question should be:

What's so special about the chiral Potts models?

e Along a parameter line (the “superintegrable” line), it possesses an unusual

symmeiry algebra. the Onsager algebra. Writing H — Ho + £ H, . then

[Ho. [Ho. [Ho. H,[]] = [Ho- Hq]

This was how Onsager originally solved the Ising model! It allows the explicit

construction of an infinite sequence of conserved quantities.

e The coupling of the chiral symmetry-breaking term in the field theory does not

renormalize
eENnormaillie.
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Supersymmetric field theories have such properties. In particular, they often have

non-renormalization theocrems.

For example, in 1+1 dimensional N =(2.2) supersymmetiric field theories, the

potential energy receives no cormrection beyond naive scaling.

Thus if the potential has muliiple minima, you can compute the kink energy

exactly with a pedestrian computation.
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So we should look for statistical-mechanical models that turn into supersymmetric

field theories in their scaling limit.

One way to do this is to look at models with explicit supersymmeiry on the

This we can do. However, there are more famous models that turn into

supersymmetric field theories...
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The XYZ spin chain

E
8 _z : ¥ _I_.t‘n_‘r A .-,ij-‘r'y e e ,: g |
H- = :_.T_r..-} j_i_]- 1 ":'ry _fl _,i"f—l T “T:‘f_}rr___}—i—l__:
—1
ecomes a supersymmetiric field theory in the scaling limit when

2L Bt AT 4

z=rz g |

This is easy to prove at and near the critical point .J, = .i’i,: the field theory is

that of a free massless boson at the supersymmetric radius. The operator
perturbing away from criticality has the same dimension as the

supersymmeiry-preserving one in the field theory.
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There are host of properties similar to those occurring in supersymmetric models.

) D

Old Baxter result: ground state energy is Fg = —3(s~ +3)Las L — .

(Partially proved) conjecture of Stroganov: the shifted Hamiltonian H — E has

exactly zero energy at finite size when the number of sites is odd.
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The XYZ spin chain

L
[ ot | ~7 U | o
_— E : -_"T-r“j Y31 T "T*.U"j s SR "T:"J",H—l_-
—1
ecomes a supersymmedric field theory in the scaling limit when

ot LE 5

u

=3

This is easy to prove at and near the critical point ./, = 'Iy: the field theory Is
that of a free massless boson at the supersymmetric radius. The operator
perturbing away from criticality has the same dimension as the

supersymmeiry-preserving one in the field theory.
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There are host of properties similar to those occurring in supersymmetric models.

) )

Old Baxter resuli: ground state energy is Fg = —3(s~ +3)Las L — .

(Partially proved) conjecture of Siroganov: the shifited Hamiltonian H — Ey has

exactly zero energy at finite size when the number of sites is odd.
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e e Sl W e
H = _Z _'II”J = - IR ‘IU"_}"_;—_—l | "T:"J J+1]

We dub the XYZ chain on the supersymmetric line .J,..J, + J,..J. + J,.JJ. =0

the sXYZ chain. It can be parametrized as

1. —Zsfs—3) -Iu — 2s{s L 3). ¥ A — 0 _ g~
so that s — ==1. oc are crifical.
The symmetries s — (3 — s} /(s + 1) and s — —s permute the couplings.
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At s = 0. only the .J. term remains, with a negative coefficient. Thus the spins

are ordered in this limit.

The magnetization

A ff_ LS

obeys Mz (1) = 1 in this limit.
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e

- - L L 1 \ o
_.F'.r. -'Jr II.I_‘;I—:—]_ :_ a}'-u-'-'--'i |'ﬂr-.;l_'_1 = T .I_::-'J: Ill__.r—i—l__

L

1

We dub the XYZ chain on the supersymmetric line .J,..J, + J,..J. + J,J. =0

y

the sXY/Z chain. It can be parametrized as

1. —2Z2asls 3, 1. —2sts | 3, R —
so that s — ==1. oc are crifical.
The symmetries s — (3 — s} /(s + 1) and s — —s permute the couplings.
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At s = 0. only the .J. term remains, with a negative coefficient. Thus the spins

are ordered in this limit.

The magnetization
_Urf_ { S

obeys M (1) = 1 in this limit.
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Expanding around the ordered limit (using Maple), the magnetization M ( 5} with

periodic boundary conditions on L sites:

8 10

M — T 45 125" L 188" 844" | 3905
M- — 1 43" 195 529 %16 190005 | ___

M, — 1 a5 12 =2 s rames" .

i 45 125 573% 94" 11645

|'.__'_I
P
-
ok

|

The terms up to order L are independent of L !!!
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The XYZ spin chain

L
= i = . = e ~Z = |
H— E .. L'II‘"J"_.J+1 - “Tv"j’ s St g £ 2 0
=1
becomes a supersymmetric field theory in the scaling limit when

¥ RSN WIS S e

This is easy to prove at and near the critical point .J, = 'Iy: the field theory is
that of a free massless boson at the supersymmetric radius. The operator
perturbing away from criticality has the same dimension as the

supersymmeiry-preserving one in the field theory.
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There are host of properties similar to those occurring in supersymmetric models.

)

Old Baxter result: ground state energy is Fy = —3(s®> +3)Las L — ~«.

(Partially proved) conjecture of Sitroganov: the shified Hamiltonian H — E has

exactly zero energy at finite size when the number of sites is odd.
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At s = 0. only the .J. term remains, with a negative coefficient. Thus the spins

are ordered in this limit.

The magnetization

M L\S

obeys V(1) = 1 in this limit.
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Expanding around the ordered limit (using Maple), the magnetization M ( 5} with

periodic boundary conditions on L sites:

Ms — 1451251 1885° —8145° 1+ 3805 4. ..

My — 1—453*— 125" 5235% 1 925165 —1800435" + . .

M, — 145 175* 5255 93" 335163 .
M — 143 125 525% s vieas"™

The terms up to order L are independent of L !!!
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We say that that quantities are scale free when the first L terms in the expansion

are independent of L.

The expansion
M__(s)=—1 — 432 125 59255 _9843F% 14394

should be exact. We've obtained exact . — ~c results by solving at (very) finite

L

To sum this series, we do what any good combinatorialist would do: go to the

On-Line Encyclopedia of Infeger Sequences:
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We say that that quantities are scale free when the first L terms in the expansion

are independent of L.

The expansion
_11.,{_‘__._-. y—1 — _L:—-' +3 l;}:—L ¢ -i;}:‘h s _}\_‘—L:T E— _I_s-‘;—]:::'l” b=

should be exact. We've obtained exact . — ~c results by solving at (very) finiie

L!

To sum this series, we do what any good combinatorialist would do: go to the

On-Line Encyclopedia of Integer Sequences:
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So we have to think a little harder (although that locks an awful lot like a partition

function_..)

From Baxter we know that the dimension of the perturbing operator is 4/3, and
from standard Coulomb gas/CFT arguments, the magnetization operator has
dimension 1/3. Indeed, the finite-size values at criticality fit nicely to

M;(1) = 9552745 L 1/3(1 + O(L—2)),

Thusas s — 1. M __(s) should vanish as

with 5 = (1/3}/{2—4/3) = 1/2 (as opposed to 1 /3 for Ising).
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The expected square-root singularity at the critical point means that it might be a

good idea to square the series for M (s):

(Mr(s)>=1—85>—85* —85° 83" 8" —___ 1 O(s"*H

So our conjecture for the exact magnetization as L — ~c:

1/2

M. _(s)—3 ( fj = ﬁ: )

Not much more complicated than Onsager, Kaufman and Yang's formula!
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Z
it
. (8 }] o

-
N

o

0.2 0.4 06 08 1

The solid red curve is the conjecture for A/ _ ( s}, while the dashed curves are for
E—59IX1T
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Other quantities are scale free.

For example, fors < 1

- e _5) _5) = B g
@& __a . 2, 2> 4 =06 , —8
"|JJr‘JT-—l—I_'II S J_T = :—j_—_-.' :—‘_‘}L\-, '—_J_-.., = = ‘:_‘- _'...I
Dy D )
Tt —3) k
= B, e,
g= — 4 j=

We can find this expectation value for s > 1 by expanding around s — 3, where
}—f — .jr: —4{). Leﬂ].ﬂg —— !:} == f-;_

-

== 1 . .
0l0202,4]10) = =(2t+3t> +483 + 51 +. )
s+ 9113 — s E
== = = = f_)l f"[_l |
23+ 5)2
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The one-kink gap also is scale free.

Since there is a spontaneously broken Zo symmeiry away from the critical points.
think of the gapped excited states as kinks separating regions of the two ground

states.

To define the gap to the one-kink state, we consider an even number of sites with

twisted boundary conditions (aka a spin-flip defect)
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We found the exact one-kink energy /\ ; for sizes up to L. — 10. Expanding this

in a power series around s — 3 interms of v = 1 — 3/ 5, we find that

y

At the critical point s — ~¢, the gap vanishes with exponent »r — 3 /2, exactly
what one expects with dimension-4/3 thermal operator:

rp—1/(2—4/3) =3/2.
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So what's going on??!771?

| haven't yet found the symmetry algebra and related conserved quantities

analogously to free fermions or chiral Potts. but | expect that this is possible.

Studying chains with an explicit supersymmetry illuminates the situation:
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N = 2 supersymmetry:

There are two conserved fermionic charges  and Q' obeying

(Q)* = (Q")? = 0. The Hamiltonian is
H—{Q. Q)

() increases fermion number by one, ()" decreases it.

All one needs to do is find a () which squares to zero to create a supersymmetric

lattice model.
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This supersymmeiry has many deep consequences.

L ]

L ]

Pirsa: 10050074

The energy E is never negative.

An E' = 0 ground state is annihilated by both () and Q7.

All other states form boson-fermion doublets under the supersymmetry.

A lower bound on the number of £ — 0 ground states (the Witten index)

often can be computed exacily.
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N = 2 supersymmetry:

There are two conserved fermionic charges () and Qi_ obeying

-{‘;J 12 — { t‘_};_ 12 — (). The Hamiltonian is
H—10.4Q")

() increases fermion number by one, ()7 decreases it.

All one needs to do is find a () which squares to zero to create a supersymmetric

lattice model.
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This supersymmeiry has many deep consequences.

e The energy E is never negative.

e An ' — 0 ground state is annihilated by both () and Q7.

e All other states form boson-fermion doublets under the supersymmetry.

e A lower bound on the number of £ — 0 ground states (the Witten index)

often can be computed exacily.

Pirsa: 10050074

Page 45/58



A too-simple model with supersymmeitry has
Q— Z el

where ¢ creates a (spinless) fermion at lattice site 1.

;
42 E 3 3 =FE
tf‘l..'I = -r._.fJ— |'|r_1"l_.;li_11

The Hamiltonian is trivial:

H — f_;}_{_:}'_ : = E]Ir'_]_r': : Z .-".:._} — _-"'In_

F

.7 2.7

for N lattice sites.
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A model in the same universality class as the sXYZ model comes by from

considering the “hard-core™ fermion chain, where fermions are forbidden ioc be on

f‘_:.]: E "\'}':J-_'”.i—}_:ir'jl.]-_":73—]_]

adjacent sites:

where n; — c. ¢;.

For any choice of the A;, L}z — (), and

357

H — E [I. J_ = “_;_]_ I ll\ ‘\1‘__?——}_*-'_""}—}—]_ = = h,f', 1 J_ = .";J,_ﬂ ]
1

:—|,\j|j[l — e il — )

l.e. a hopping term and a finite-tuned potential.
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One might expect that the ground states are the three “Neel™ states with

This is partially right: for any choice of the ;. the ground states have [ fermions
on 3 f sites, but there are only two of them

Fendley. Schoutens and de Boer
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To favor or disfavor putting particles on every third site, we stagger the model by

choosing A3; — Ag:0.3 — 1, A3; 1 — =

There is one ground stafe for each parily, which we label | ==). The analogs of the

magnetization are then the staggered densities )= (z) = :|+r_3 _4€3i = -

Then the now-usual miracle happens:

D+ IF = =2 ; 94 26 , =8
/ —+ = —eRE fRE —RE e — .-
% ¥
N — 2= = )
= €N ]
9=
3 B = —-“-2 e ' '"'.: . "'i"
0 — 535 - %" 1n"—
e
/] — ==
W = = )
— - = —(_)5:-JL
N L =
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e

XYZ model comes by from

(¥ ]

P -
= =1
S LSS

']

¥

] e~
e

:r‘ J'.._T-r:_': ZIT.Ir »
considering the “hard-core” fermion chain, where fermions are forbidden toc be on

)

A model in the same

adjacent sites:
& — Z Al — 11 )e f_l'l — 753 1)

T
gt i

where n; — «

I-r'j_;_l = = JI.;' . | J_ = “_}—1 |

'_f

3f
e — Z[[ == BT \_:_ \jp16

For any choice of the \;, Q- = 0, and
J=1
:—|.\Jiji, . I m )
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l.e. a hopping term and a finite-tuned potential.
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To favor or disfavor putting particles on every third site, we stagger the model by

choosing A3; — A3;.1 = 1. A3;_ 1 —=.

There is one ground state for each parity. which we label | ). The analogs of the

magnetization are then the staggered densities D= (z} = :|r; e, T e

Then the now-usual miracle happens:

D‘i—_D— = =R, ol o, o=
i —_— LS I =N 1T =k i
8 24 )
— = —-—f_}l'._f
o i
I = e — = - i
w—J — 1 5% 3 9% 7
- el
v 1 > .
— = = —(_)5:_r
':q,|_"'-
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One might expect that the ground states are the three “Neel™ states with

This is partially right: for any choice of the A;. the ground states have [ fermions
on 3 [ sites, but there are only two of them

Fendley. Schoutens and de Boer
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To favor or disfavor putting particles on every third site, we stagger the model by

choosing A3; = A3i11 =1.A3; 1 = =.

There is one ground state for each parily, which we label | ==). The analogs of the

magnetization are then the staggered densities D= (=) = (L] ; _ g 3l

Then the now-usual miracle happens:

e - ey e il il
[} ps o ) — -1 T
Q_ 92
— - -'
— :—'I(__)I:_
a-i—=
g - e i =
= 3 — - -5* % 9g* >t -
et "
-, R
‘-.,J_ o = ¥
—— = —(_)5:-JL|
N4 2=
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The series expansion around - — >C gives

Dt 4 D 2 6 % 134 ®T AWM
o == Jam = e W gl RN Caga— = gl W
4 = 3
= —— 1+ O(z—)
*j_Lx;;_LJ_-'J
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If this isn't amazing enough...

The XYZ model has a duality s — {3 — s} /(s + 1) that exchanges ordered and
disordered phases. The field theory does as well; it corresponds to changing the

sign of the off-critical perturbation.
No duality is cbvious in the supersymmetric model. Nevertheless,

DY(S)D (S) = D"(S)D (S)

forS =(3—S}/(S + 1). even at finite size!!
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But wait. there's more!

Let's look at the explicit zero-energy ground states. For sXYZ with 7 sites, the

coefficients the parity- and translation-invarnant states:

—_— = =2 ., - —if &~ =2 2 v =3 T v )
[1/vV7(45* +35% +1).5(45* + 352 +1).57(75% +1).57(72 +-1).
~2 ¢c - ~2 ~4 -4 fose =23 2, S y ~4,—=2 9=
$2(2+55% + 3%, 5'V2(5+ 35%), 5°(45* + 352 +- 1), 58732 +1). 5°(5+ 35%)]

with the first one the state with all spins up (the completely magnetized staie).

Now look at the supersymmeiric model with 12 sites. The coefficient of the

completely staggered state (parficle on every third site):

"- =~ 5

(—3-1-S*¥1 - 38* 1 AS"

True in general!
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But wait, there's still more!

In a remarkable series of papers. Bazhanov and Mangazeev showed that (at least
for the same small systems we are studying here) these magic polynomials are

related to the tau function of the Painleve VI non-linear differential equation.

Using this, they find a recursion relation for these polynomials v, ( s}:

5 o 9 -
259is —3WM3s—1 \ O L_H:_s' ) + Na - Jxrtis— 1| {3 ]_u_n;-__f i
e 2 Un1¥%n—1 NPT P : — -
+72(2n + 1)~ > — 9[4(3n+1)(3n +2)+ (3s — 1)n(5n + 3)]
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Many, many open questions...

e Can we prove it in less than 15 years?

e Such models seem to be the simplest possible generalizations of free

fermions in 1d. Can we make a Kitaev honeycomb model out of these?

e In some ways, these seem simpler than Ising. Could that be?

e |s there a direct map between the sXYZ chain and the supersymmetric model

away from the critical point also?

e What's with Painleve VI?
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