Title: A variational wave-function based method for simulating quantum field theories
Date: May 25, 2010 02:00 PM

URL.: http://pirsa.org/10050065

Abstract: TBA

Pirsa: 10050065 Page 1/32



Variational wavefunctions for quantum field theories

Frank Verstraete, University of Vienna

lgnacio Cirac, Max Planck Institute for Quantum Opiics
Tobias Osborne, Jens Eisert. Wissenshaiiskolleg Berlin
Jutho Haegeman, Henri Verschelde, University of zhent



Variational methods for strongly interacting
quantum spin systems (l)

« Starting point: Wilson’s numerical renormalization group for
simulating Kondo impurity (*75)
— Crucial ingredient: exponentially decreasing energy scales

— Central problem: does not work for translational invarnant
sysiems

« Breakthrough: White’s density matrix renormalization group ("92)

— Crucial ingredient: information about all long-range correlations
of the wavefunction are stored in a local density matnx

— vyields extremely precise results for simulating ground states of
spin and fermionic systems in 1+1 dimension




Variational methods for strongly interacting
quantum spin systems (ll)

» Recent conceptual advances:

— NRG and DMRG work so well because they are variational
methods within the class of matrix product states

Romer. Usiiund_Nisihino, Versiraete and Cirac

— Matrix product states capture the physics for representing any
ground state of a local Hamiltonian faithfully: area laws

Versiraete and Cirac, Hasiings)

- Rephrasing DMRG in language of MPS allowed to extend the
formalism to

— higher dimensions: Pro;ected Entangled F’alr States
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fersitacte and Cirac. precursors by Mariin- '—"'" SO0, SEITa. NISTTINO

-- real-time evolution of low-energy states naea




What about using MPS-methods for simulating
quantum field theories?

 Obvious approach: discretize theory and put it on a lattice
— Exampie: discretization of Lieb-Liniger model leads to Bose-Hubbard modei:

« Problems:

— For MPS, the 2-point correlation functions are decaying exponentially in the
number of sites between them; so it seems impossible to consiruct scaie-
invariant solutions that yield the same correlation functions independent of the
lattice parameter

— Forfinite filling factor, the probability of having a particle is proportionai to the
lattice constant; this implies that all matrices in MPS have to become singular

— In case of bosonic systems, we have to allow for large local occupation numbers;
this increases numerical cost badly

— Discretization of relativistic bosonic field theories: what mass to chose?
— Fermion doubling problem




Is it possible to construct variational wavefunctions
in the continuum?

» Itwould be very interesting to develop wave-function based
formalism to describe quantum field theory

— Divergencies may disappear automatically if the wavefunctions
have some build-in cut-off

— Would open the door for describing non-equilibrium behaviour in
Minkowski space

— Might lead to a better understanding of topological quantum
order

— Would describe current expenments in optical lattices, atom
chips, etc.




« Feynman’s last talk: “Difficulties in Applying the Vanational Principle

o Quantum Field Theories”

Proc. int. Workshop on Variational Calculus in Quantum
Field Theory, Wangerooge, West Germany, Sept. 1-4, 1987.

— “.__ Il didn’t get anywhere. So | want to take, for the sake of
arguments, a very strong view — which is stronger than | really
believe — and argue that it is no damn good at alll ~

— 3 Major Objections:

- Sensitivity to high frequencies
» Only exponential trial states
- We still have to do a functional integral in 1 dimension lower

— One visionary insight: local parametetization of the global
wavefunction




Feynman Objection I:
Sensitivity to High Frequencies

« Energy contnibutions to the total energy of the high frequency modes
are much more important than the low-energy ones (cifr. Zero-point
energy)

« Therefore any vanational method will try to get the high-frequencies
right, even at the cost of getting low-energy behaviour wrong

— “... what happens when | allow it to adjust its parameter (o lower the total
energy). is it improves the imperfect function | was using at the high
frequencies._..”

» This is obviously not what we wantl

— We are interested in long-range low-energy physics, this is the
point of a quantum field theory




Feynman Objection II:
Only exponential trial states

For atoms, very good vanational wavefunctions are of the form

uxl=z=\l— L0 Jlexp\—ax™)

This is not possible in the case of QF I, as the dimensions do not fit
in formulae like
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as the wavefunction has to be “size extensive”
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What we want instead is corrections of the form exp{—/ |9(x) x| but
then we have to evaluate non-Gaussian functional integrals which is
extremely hard to do with good enough precision



Feynman Objection lli:
We still have to do a functional integral

« Very much related to objection lI: we wanted to avoid taking
functional integrals in the first place, and the only thing the
variational treatment helps if a good wavefunction has been found is
that the functional integral has now to be taken in 3 dimensions
instead of 4; this is still a very hard problem




Feynman visionary suggestion as a way out:

“It's really quite insane actually: we are trying to find the energy by
taking the expectation of an operator which is located here and we
present ourselves with a functional which is dependent on
everything all over the map. That's something wrong. Maybe there is
some way to surround the object, or the region where we want to
calculate things, by a surface and describe what things are coming
In across the surface. It tells us everything that’'s going on outside.
I’'m talking about a new kind of idea but that's the kind of stuff we
shouldn’t talk about at a talk, that's the kind of stuff you should
actually dol”



Continuous Matrix Product States

Provides an ansatz for low-energy quantum states of quantum field
theories for which none of the objections of Feynman apply, and
which actually implement his idea as a way out

— cMPS have an automatic high-energy cut-off builtin

— CcMPS are of the exponential form but not Gaussian

— Expectation values can be calculated exactly and with minimal effort

— All information about long-range correlations is stored in the “density matrix”

Furthermore:

— Allow for large local occupation number without an increase in the total number
of variational parameters

— Scale invanant by consiruction

— Seem to capture the physics for describing low-energy behaviour of any local
quantum field theory (just as MPS to for quantum spin systems)



Definition of cMPS:

Q(x), R(x) are DxD matrices acting on an auxiliary Hilbert space. The
wavefunction is automatically normalized and the total number of
parameters is exactly D? if we use the gauge condition

Varsitraate Cirsc PRI 2010



cMPS in second quantization




How to calculate expectation values?

O(x) () Tr [e"“(R2 R)].
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Using the abovementioned gauge condition, the real parts of the
eigenvalues of T are guaranteed to be non-positive, and there is 1
eigenvalue equal 1o 0

The correlation functions are decaying exponentially fast, and the
correlation length is proportional to the inverse gap of the
Lindbladian




cMPS in second quantization

On = Trauz [uQ(x1.0)Rug(z2.x1)R . .. Rug(L.xy,))

ug(y.x) = Pexp [[? Q(x)dx]




How to calculate expectation values?
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Using the abovementioned gauge condition, the real parts of the
eigenvalues of T are guaranteed to be non-positive, and there is 1
eigenvalue equal 1o 0

The correlation functions are decaying exponentially fast, and the
correlation length is proportional to the inverse gap of the
Lindbladian




cMPS as limit of MPS

Divergencies 1/eps and 1/eps”*2
automatically cancel in the case
of bosons; in case of fermions,
we require R?=0 for the (non-
relativistic) kinetic energy to be
finite



lllustration: the Lieb-Liniger model (I)
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lllustration: The Lieb-Liniger model (ll)

Not just energies are well reproduced, also the cormrelation functions!

<n(x)n(0)=




What about high frequencies?

« Expectation value of the non-relativistic kinetic energy:

-‘;‘I.J'E
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— This is automatically bounded if all matrices involved are
bounded in norm

— Ifa cMPS wavefunction is such that its second order derivative is
continuous, then the expectation value of its high-frequency
components scales like 1

nK) ~ —

éf
= This imposes an effective high-energy cut-off as all expectation

values become finite; hence we can go and look at relativistic
theories!
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Relativistic free fermions with m=1, A=10, awxahary fermions TR
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ilation of free Dirac fermions by infroducing an effective cut-off: plotied is n(k) obtained as
Fourer transform of the 1-pariicle density mafrix ESQEENESFESTE S ISW I ST E s oW




Scale invariance of cMPS
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cMPS are therefore invariant under coarse-graining: there are exact
fixed points of coarse-graining transformations on the state.

— This situation is much simpler than in case of MPS in quantum spin systems:
cMPS have nicer and more natural properties

— Note that cMPS do not violate an area law!
— i3 it possible to formulate field-theoretic version of MERA ?

(Verstraete, Wolf, Rico, Latorre, Cirac 05)



The density matrix (l)

« There is a simple way of calculating expectation values of CMPS in
terms of a Lindblad equation if working in the natural gauge:
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 The density matrnix of the auxiliary field is exactly the density matrix
arising in DMRG, and it parameterizes all the correlations present in
the state.




The density matrix (ll)

The dynamics of this density matnx is governed by a local
Markovian Lindblad equation (cfr. CP-map in case of MPS)

d

o - L l - L -
;}—J,r;[..f'} — —J"_H. I.-_i{_r}-——ﬂlpi.f'}ﬁ“ = —_}* R'R. p\x) .
d.r . h

The eigenvalues of this density matrnx are the Schmidt coefficients
of the half-chain

» Note 1: entanglement eniropy for cMPS is always bounded by the

dimension of underlying matrices Q. R; to get a divergence, those
mairices have to become infinite dimensional (cfr. Cirac, Sierra “10)

» Note 2: relativistic theories always exhibit infinite entanglement
entropy, but the divergence is due to the high-frequency modes,
and those are not present if a cut-off is imposed.



Holographic quantum states

Osbomnme. Eiseri. Versiraete “10

This connection to the evolution of the auxiliary system exactly does

what Feynman envisaged: if yields a local parameterization of global
properties |

It also leads to an equivalent way of parameterizing cMPS:

— the physical system of interest can be interpreted as the
purification of the dissipative evolution of the auxiliary system!

— This is continuum version of the sequential generation scheme

of MPS using a quantum circuit Schon, Wolf. Verstraete. Solano, Cirac ‘05



Cavity QED

D-level atom in the cavity
Coupled to the cavity modes by a Hamiltonian H
Photons leak out of the cavity

Evolution of atom described by a Lindblad equation; the Lindblad
terms comrespond to quantum jumps and generate photons leaking
out of the cavity

Global quantum State of all photons leaking out of cavity is precisely
described by a cMPSI



More formally:

- - - T — -

=

— H specifies the internal dynamics of the atom
— R specifies how the atom couples to the cavity field

Those are precisely the type of systems that have been studied in
cavity QED since the ‘80s

— Time-time-time-. .. correlation functions of photons are equivalentto all

correlations functions of cMPS: P. Zoller et al. effectively wrote down formulae
for cMPS back in the '80s!

— Provides connection between quantum measurement theory and quantum field
theoryl

----- This opens up possibility of simulating quantum field theories like Lieb-Liniger
with cavity QED
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» More formally:
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— H specifies the internal dynamics of the atom
— R specifies how the atom couples to the cavity field

« Those are precisely the type of systems that have been studied in
cavity QED since the ‘80s

— Time-time-time-... correlation functions of photons are equivalentto all
correlations functions of cMPS: P. Zoller et al. effectively wrote down formulae
for cMPS back in the '80s!

— Provides connection between quantum measurement theory and quantum field
theory!

----- This opens up possibility of simulating quantum field theories like Lieb-Liniger
with cavity QED




non-equilibrium dynamics of a zero-dimensional vs
static properties of a 1-dimensional system

« Interestingly, this way of looking at the problem indicates that static
properties of quantum field theories have a counterpart into time-time
correlation functions of non-equilibrnium systems in a dimension lower:

HOLOGRAPHIC principle

— Cir. Classical stochastic processes in 1-D that exhibit phase transitions (trafficl) very
much like 2-D classical partition funcfions

— Same holds of course for MPS: instead of continuous evolution, we have evolution
using CP-maps. This picture provides intuitive explanation for the emergence ofthe
density matrix

« Dissipative systems actually exhibit very rich structure

— Other manifestations: universal quantum computation using dissipative dynamics
(Verstraete, Wolf, Cirac Nat. Phys. '09), quantum Metropolis sampling (K. Temme.
K. Vollbrecht, T. Osborne, D. Poulin, F. Verstraete ‘09), mixiing times in random
walk algorithms (K. Temme. M. Kastoryano, M. Ruskai, M. Wolf, F. Verstraete '10)




Conclusions

We have a dream that we can develop quantum field theory with
wavefunctions instead of functional integrals

Feynman’s obstacles can in principle be overcome

Continuous Matrix Product States seem to capture the low-energy
physics of 1+1 dimensional quantum field theories (both relativistic
and non-relativistic)

Intniguing connections between quantum field theory, quantum
measurement theory, dissipative non-equilibrium phenomena and
the holographic principle



