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Abstract: In the past year, motivated by physics, a rich structure has emerged from studying certain contour integrals in Grassmannians. Physical
considerations single out a natural meromorphic form in G(k,n) with a cyclic structure. The residues obtained from these contour integrals have been
shown to be invariants of a 'Y angian algebra. These residues also control what happens deep inside collisions of protons taking place at colliders like

the Large Hadron Collider or LHC at CERN. Applications of the Global Residue Theorem give rise to relations among residues which ensure
important physical properties.
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Space-Time:

Affine Space R*. Coordinates r#. Quadratic form:

042 1,2 YAV 332

|
wll

Lorentz group: SO(3. 1

InZ
Fid

Poincare Group: 4 <’ Hwith A =B*and H = SL
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Space-Time:

Affine Space R*. Coordinates r#. Quadratic form:
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Lorentz group: SO(3. 1

Poincare Group: 4 <’ Hwith A =R*and H = SL(2.C).
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Space-Time:

Affine Space R*. Coordinates r*. Quadratic form:
(N2 (212 — (£232 __ (£3)2

Lorentz group: SO(3.1)
Poincare Group: 4 <’ H with A =R*and H = SL(2.C).

Particles:

Particles are described and classified as irreduclible representations of the

Poincare group (Wigner 1939).

A: Group of characters of A: B* with coordinates Do

E}:IJ{'}:{J-_\F \;:;F—

This is what we call momentum space.
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Orbits of 4 under H:
X =2 =—m"} m>0

m is called the mass of the particle and the stabilizer of apointp = X, is
called the little group .

Irreps of A <’ H are classified by the irreps of the little group G

Form > 0: G = SU(2) and irreps are j = ~Z called spin.
- = M > = —_— ) = g -
For m = 0: G is the group of motions in B2 and irreps are h = ~Z called
helicity.
In our case:

Gluons: Massless particles of helicity 7 — 1.
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How do we construct objects with the correct properties?

Building blocks: For each particle (:
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How do we construct objects with the correct properties?

Building blocks: For each particle ()

1 1
AL
Properties: F({\'". A L)
e It only depends on €%\, A’ = (i.j) and eab )Y F\}_f =z, 7]

e [t is homogeneous
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Hints of a Grassmannian

Physical Scattering Data:

N\ e N g
o A Ay 2" A
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Proposal: The Grassmannian Formula

The Grassmannian GG( k. n ): Space of A-planes containing the origin in
|ﬁ.r?
( 3 S 53 C1E Cik+1 Cin—1 Cin \
> cxn Cpxp On Cok  €C2k+1 Con—1 C2n
e
\ Ckl CE2 Ck3 CEkK Ckk+1 Ckn—1 Ckn /

Modulo the action of G L( A ) on the right.
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Proposal: The Grassmannian Formula

where
.ir;"-E:”';:(; ( \4)
and
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Making The proposal Well-Defined

New variables:

where
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Making The proposal Well-Defined

New variables:

where

Hodges 2009, Skinner, Mason 2009, Arkani-Hamed.F.C..Cheung 2009
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Making The proposal Well-Defined

where

. T E—2)(n—k+2 =5 =ro o ol k—2 o4
- D I— :  ——— ¢ A e H —1 " {--—-l.?'?l_l 1
Rn.i’ =

k2123 . 1) int._. . E—3

Obs: L,, o contains the delta function imposing momentum conservation.

This means that the left over piec

Y]

s not a distribution and our task of

defining it has simpilified.

The new object R,, 1 is defined over G(Ak — 2. n
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General definition of residues:

™ ___ C™ one defines a functional called

Given a holomorphic map f : C
the local residue res¢ [ | at p = f~'(0) which is a assumed to be

isolated. One gets a number if one plugs a function /. halomarphic at p.

o h(7)
resgp, h = d"T— : :
i Tm AT IstT) - - - EmiT)
where 1™ isdefined by f; — ¢; with orientation
d(arg f1) N ...d(arg f.) > 0.

A consequence of this is that residues are antisymmeiric under the
exchange of f; with f;. 1. In otherwords, if f = ( f1. fo) and

g = ( fo. f1). then their local residues are the same up a sign.

The global residue theorem siaies that the sum over all the local residues

Is zero. (Under some assumptions)
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General definition of residues:

™ — ™ one defines a functional called

Given a holomorphic map f : C
the local residue res¢ [ | at p = f'(0) which is a assumed to be

isolated. One gets a number if one plugs a function /. holomorphic at p,

h{T)

resg ,|h| = " il &

Tm BtE)ElT) .- . . fl7)
where 1™ is defined by f; — ¢; with orientation
d(arg f1) N ...d(arge f,.) > 0.

A consequence of this is that residues are antisymmeiric under the
exchange of f; with f;. 1. In otherwords. if f = ( f1. fo) and

g = ( f>. f1). then their local residues are the same up a sign.

The global residue theorem sizies that the sum over all the local residues

Is zero. (Under some assumptions)
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Back to Physics:

It has been explicitly shown that:

All & = 3 and k& = 1 scattering amplitudes are given as sums of local

residues obtained from R, ..

Example:
A3 =A+B=C+D+F
with
45+6i1)°
_‘]_: = = = = |
;—L__} } y. D) ?!_J_ 2_;—4i Po -+ P3 i pa)r
6i1 | 213)°
7T — - : = ,
6.1 1.21(3.4(4.5) 23 +-45)(pg —p1 -p2)-
and
il f‘}—.- a) — J'!_a ;ja —_— L. ¢ f J;_'F
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New Formulation Makes Hidden Symmetries

Manifest

Small Improvement: Introduce 4 superdirections 17! and promote Z to be a
superobject!
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Yangian

¥ LA E A & e O . :
- — ;_ - S ...:.- ; = = ] — i
- * 9Z€ I 9pZB .

ol S - J

These are the level 0 and level 1 generators of the Yangian of the

superconformal group psu(2.2 1),

It has been shown that R, z with contours that compute residues is

annihilated by these operaiors.

Drummond. Ferro 2010)
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Conjecture: The set of all local residues of R,, ;. provide all invariants of

Y (psu(2.2 1)) and their relations in the form of global residue thearems.

Conjecture: The set of residues of ¥, 1 and the set of leading singularities

of scattering amplitudes (in \" = 1) are the same.
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Conjecture: The set of all local residues of R, i provide all invariants of

Y (psu(2.2 1)) and their relations in the form of global residue theorems.

Conjecture: The set of residues of R,, ;. and the set of leading singularities

— 1) are the same.

of scattering amplitudes (in _\
6

-
L

Fascinating product structure!
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Conclusion:

We have only started to understand the properties of F,,  and its

connection with physics!
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