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T he study of D-branes at singular points of Calabi-Yau
rhreefolds has revealed interesting connections between
rertain noncommutative algebras and singular algebraic
varieties. In many respects, the choice of an appropriate
noncommutative algebra is analogous to finding a resolution
pf singularities of the variety. We will explain this connection
n detail, and outline a program for studying such
“noncommutative resolutions” globally, for compact
algebraic (Calabi—Yau) threefolds.
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D-branes were introduced into string theory in 1995_ In the D s
priginal formulation, D-branes are submanifolds on which

strings end, and the submanifold must support a gauge field
which provides a gauge degree of freedom at the endpoints
pf the string.
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D-branes were introduced into string theory in 1995 In the
priginal formulation, D-branes are submanifolds on which
strings end, and the submanifold must support a gauge field
which provides a gauge degree of freedom at the endpoints
pf the string.

n practice, when compactifying on a Calabi—Yau threefold
X , the D-brane should be supported on a calibrated
submanifold of X. For today’'s lecture, we set aside the
nteresting case of special Lagrangian submanifolds and
focus on complex submanifolds. So the data for a D-brane in
yersion one of our story is a complex submanifold and a
holomorphic vector bundle on it.
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n version two of our D-brane story, one recognizes that a
holomorphic vector bundle on a complex submanifold of X is
b special case of a coherent sheaf on X, and that more
veneral coherent sheaves can be used. So version two of
)-branes is the category Coh(X) of coherent sheaves on X.

Pirsa: 10050040




MNoncommurtatv
algeoras and

COmMmMmUitative

algebraic gromen

n version two of our D-brane story, one recognizes that a
holomorphic vector bundle on a complex submanifold of X is
h special case of a coherent sheaf on X, and that more
eneral coherent sheaves can be used. So version two of
-branes is the category Coh(X ) of coherent sheaves on X.

n topologically twisted string theory, Douglas showed that
he natural structure is the (bouded) derived categon
5(Coh(X). This is version three of D-branes, and was
anticipated by Kontsevich's homological mirror symmetry
ronjecture, which was formulated before D-branes were even

Hefined!
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There is a physical theory which exists directly on the
branes: the gauge theory defined by the gauge fields we have
specified. This theory is a Yang—Mills theory with maximal i
supersymmetry, whose gauge group is U(N) when the
rorresponding vector bundle has rank N.
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T here is a physical theory which exists directly on the
pranes: the gauge theory defined by the gauge fields we have
specified. This theory is a Yang—Mills theory with maximal
supersymmetry, whose gauge group is U(N) when the
rorresponding vector bundle has rank N.

An often-studied case is that of D3-branes located at a point
pf the associated Calabi—Yau manifold, and filling the
=ffective 3 + 1-dimensional spacetime. In this case, one gets
the N’ = 4 super Yang—Mills theory in 4 dimensions.

Pirsa: 10050040




Noncommutativ

lauge theory on D-branes e

SOmmuiatve

SIEEDraiC SEOMmeLl

T here is a physical theory which exists directly on the
pranes: the gauge theory defined by the gauge fields we have
specified. This theory is a Yang—Mills theory with maximal
supersymmetry, whose gauge group is U(N) when the
rorresponding vector bundle has rank N.

An often-studied case is that of D3-branes located at a point
of the associated Calabi—Yau manifold, and filling the
=ffective 3 + 1-dimensional spacetime. In this case, one gets
the N’ = 4 super Yang—Mills theory in 4 dimensions.

ore generally, one can consider Calabi—Yau threefolds with
ingularities and place the D3-branes at the singularities. A
leld theory with less supersymmetry results, and this will be
he topic of today's talk.
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n 1998, Maldacena conjectured that (conformal) field
heories describing D3-branes have a well-behaved “large N
imit” which is described by an anti-de Sitter vacuum of type
IB string theory. Even discussing a large N limit requires a
rertain uniformity for the D3-brane theories with U(N) Large N limit
pauge group, independent of N, and this uniformity can be
seen by writing the theory in V' =1 terms.
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In 1998, Maldacena conjectured that (conformal) field
heories describing D3-branes have a well-behaved “large N
imit” which is described by an anti-de Sitter vacuum of type
IB string theory. Even discussing a large N limit requires a
rertain uniformity for the D3-brane theories with U(N)
pauge group, independent of N, and this uniformity can be
seen by writing the theory in N =1 terms.

An \ = 1 gauge theory in 4 dimensions requires for its
sepecification a (compact reductive) gauge group G, a
“matter representation”’ p (which is a collection of adjoint
and bifundamental fields for the local components G; of the
rauge group), and a superpotential W which is the trace of
3 polynomial W in the matter fields.
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n 1998, Maldacena conjectured that (conformal) field
heories describing D3-branes have a well-behaved “large N
imit” which is described by an anti-de Sitter vacuum of type
IB string theory. Even discussing a large N limit requires a
ertain uniformity for the D3-brane theories with U(N)

auge group, independent of N, and this uniformity can be
n by writing the theory in ' = 1 terms.

n N = 1 gauge theory in 4 dimensions requires for its
pecification a (compact reductive) gauge group G, a
“matter representation”’ p (which is a collection of adjoint
nd bifundamental fields for the local components G; of the
auge group), and a superpotential W which is the trace of
polynomial W in the matter fields.

or N = 4 super Yang—Mills theory with gauge group

= U(N), we have three matter fields X, Y, Z each taking
alues in the adjoint representation, and superpotential

irsa: 10050040 1'1- - tr(XYZ - XZY )-
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For N' = 4 super Yang—Mills theory with gauge group
G = U(N), we have three matter fields X, Y, Z each taking
values in the adjoint representation, and superpotential

W =tr(XYZL — XZY).
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For N' = 4 super Yang—Mills theory with gauge group
G — U(N), we have three matter fields X, Y, Z each taking
values in the adjoint representation, and superpotential

W =tr( XYL — XZY ).

Writing things in this form (suppressing the indices for the
adjoint representation) makes it clear why these theories are
essentially independent of N in their formulation.

Pirsa: 10050040
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For N' = 4 super Yang—Mills theory with gauge group
G = U(N), we have three matter fields X, Y, Z each taking
values in the adjoint representation, and superpotential

W = tr(XYZ — XZY).

Writing things in this form (suppressing the indices for the
ad joint representation) makes it clear why these theories are
essentially independent of N in their formulation.

The classical vacua for an N’ = 1 gauge theory are given by
specifying explicit “expectation values” for the matter fields

X; subject to the so-called F-term constraints
tr(0W /aX;) = 0.

Pirsa: 10050040
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For many singularities of Calabi—Yau threefolds, a similar
pattern has been found for the associated D3-brane theories.
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or many singularities of Calabi—Yau threefolds, a similar
attern has been found for the associated D3-brane theories.
e introduce a “quiver’ graph with a vertex v; for each local
romponent of the gauge group and an arrow X, for each
pifundamental or adjoint matter field (with its head and tail il
ndicating the source and target of the given representation). formulation
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or many singularities of Calabi—Yau threefolds, a similar
attern has been found for the associated D3-brane theories.
e introduce a “quiver’ graph with a vertex v; for each local
omponent of the gauge group and an arrow X, for each
ifundamental or adjoint matter field (with its head and tail
ndicating the source and target of the given representation).
e also introduce a (noncommutative) polynomial

= W/(Xj) whose trace gives the superpotential of the
physical theory.
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or many singularities of Calabi—Yau threefolds, a similar
attern has been found for the associated D3-brane theories.
e introduce a “quiver’ graph with a vertex v; for each local
omponent of the gauge group and an arrow X, for each
ifundamental or adjoint matter field (with its head and tail
ndicating the source and target of the given representation).
e also introduce a (noncommutative) polynomial

= W/(X;) whose trace gives the superpotential of the
physical theory. The associated D-brane algebra is

A = (path algebra of quiver)/(dW /9X,).
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or many singularities of Calabi—Yau threefolds, a similar
attern has been found for the associated D3-brane theories.

e introduce a “quiver’ graph with a vertex v; for each local
omponent of the gauge group and an arrow X, for each
ifundamental or adjoint matter field (with its head and tail R
ndicating the source and target of the given representation). formulation

e also introduce a (noncommutative) polynomial

= W/(X;) whose trace gives the su perpotentlal of the

bhysical theory. The associated D-brane algebra is

A = (path algebra of quiver) /(W /9X,,).

I 'he representations of the D-brane algebra parameterize
rlassical vacua for all of the D-brane theories simultaneously.
n particular, when v; is represented on a vector space of
dimension N, the gauge group is |] U(N

Pirsa: 10050040
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or many singularities of Calabi—Yau threefolds, a similar
attern has been found for the associated D3-brane theories.
e introduce a “quiver’ graph with a vertex v; for each local
omponent of the gauge group and an arrow X, for each
ifundamental or adjoint matter field (with its head and tail .
ndicating the source and target of the given representation). formulation
e also introduce a (noncommutative) polynomial

= W/(Xj) whose trace gives the superpotential of the
bhysical theory. The associated D-brane zalgebra is

A = (path algebra of quiver)/(dW /9X,,).

I he representations of the D-brane algebra parameterize
rlassical vacua for all of the D-brane theories simultaneously.
In particular, when v; is represented on a vector space of
dimension N;, the gauge group is [] U(N;). A large N limit
raf Be™ tudled with N; = N for all ;.




One remarkable property which these D-brane algebras A
appear to satisfy is that the center Z(.A4) is the coordinate
ring of the associated Calabi—Yau threefold. In particular,
rhe algebraic geometry should be recoverable from the field
heory.
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One remarkable property which these D-brane algebras A oenentative
appear to satisfy is that the center Z(_A4) is the coordinate e
ring of the associated Calabi—Yau threefold. In particular,
rhe algebraic geometry should be recoverable from the field
heory.

t turns out that the “superpotential” formulation of these Algebraic
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algebras is very closely tied to having a (Calabi—Yau) variety
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One remarkable property which these D-brane algebras A ~ommutative
appear to satisfy is that the center Z(.A) is the coordinate e
ring of the associated Calabi—Yau threefold. In particular,
Lhe algebraic geometry should be recoverable from the field
theory.

t turns out that the “superpotential” formulation of these Algebraic

formuiagon

algebras is very closely tied to having a (Calabi—Yau) variety
n complex dimension three. To find a general formulation, it
s convenient to sometimes consider more general algebras A
such that the center Z(.A) is a commutative algebra of finite
r'ype over C.
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One remarkable property which these D-brane algebras A
appear to satisfy is that the center Z(.4) is the coordinate
ring of the associated Calabi—Yau threefold. In particular,
rhe algebraic geometry should be recoverable from the field
theory.

t turns out that the “superpotential” formulation of these
algebras is very closely tied to having a (Calabi—Yau) variety
n complex dimension three. To find a general formulation, it
s convenient to sometimes consider more general algebras A
such that the center Z(.A) is a commutative algebra of finite
fype over C. In particular, Spec(Z(.4)) will be an affine
scheme. (By imposing the mild condition

vV (Z(A)) = Z(A), we can even assume that Spec(Z(.A)) is
an affine variety.)
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One remarkable property which these D-brane algebras A S—
hppear to satisfy is that the center Z(.4) is the coordinate e
ring of the associated Calabi—Yau threefold. In particular,

rhe algebraic geometry should be recoverable from the field
heory.

t turns out that the “superpotential” formulation of these <

formulation

algebras is very closely tied to having a (Calabi—Yau) variety
n complex dimension three. To find a general formulation, it
s convenient to sometimes consider more general algebras A
such that the center Z(.A) is a commutative algebra of finite
fype over C. In particular, Spec(=Z(.A)) will be an affine
scheme. (By imposing the mild condition

V (Z(A)) = Z(A), we can even assume that Spec(Z(.A)) is
an affine variety.)

T he key thing to study will be the category Mod—A of
representations of this algebra.

Pirsa: 10050040
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An important example of the types of algebras we will
encounter is the “twisted group algebra”. Let G be 3 finite
subgroup of SU(2) so that G acts on the polynomial algebra
Clx, y]. The twisted group algebra C|x. y| * G consists of
pairs (f(x).g) and a multiplication

(f(x).8)-(o(x).7) = (f(x) - g(o(x)).g 2 7).
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'he McKay correspondence

An important example of the types of algebras we will
encounter is the “twisted group algebra”. Let G be 3 finite
subgroup of SU(2) so that G acts on the polynomial algebra
Clx.,y]. The twisted group algebra C|x. y| » G consists of
pairs (f(x),g) and a multiplication

(f(x),g) - (&(x),7) = (f(x) - g(&(x)), g 2 ¥).

Kapranov and Vasserot interpreted the McKay
rorrespondence as a statement about the structure of this
algebra: we can write

Clx,y] * G = 69 M,=p

p<lrrep(G)

and describe the algebra in terms of the modules M, Its
structure is determined by the graph of representations

Pirsa: 10050040
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X5
n the A,_1 case, for example, the graph forms a cycle and
pne has relations x;y; = v;_1x_;
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=
n the A,_1 case, for example, the graph forms a cycle and
bne has relations xv; = v;_1_1

ts not too hard to determine the center of the algebra from
rhis description: it is generated by

X = Xg---Xp—1 + cyclic permutations
Y =y ---y¥a—1 + cyclic permutations

Z = x;y; + cyclic permutations

subject to the relation Z” = XY . Of course, the center can
hlso be identified with Clx. vI€ so this was not unexpected.
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We have already described the D-brane algebra of a smooth
point of a Calabi—Yau threefold: there is one vertex v and
three matter fields X, Y, Z with superpotential

W = tr (X(YZ — ZY)).

Exampies of
D-brane algebras
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We have already described the D-brane algebra of a smooth
point of a Calabi—Yau threefold: there is one vertex v and
three matter fields X, Y, Z with superpotential

W = tr (X(YZ — ZY)).

The F-term constraint in this case tells us YZ = Y/Z,
XZ = ZX and XY = YX. Thus, we find ﬁ;‘;i‘i“;m

A=C|X,Y, Z],

rhe (commutative) polynomial algebra in three variables.
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We have already described the D-brane algebra of a smooth
point of a Calabi—Yau threefold: there is one vertex v and
three matter fields X, Y, Z with superpotential

W = tr (X(YZ — ZY)).

T he F-term constraint in this case tells us YZ = Y/Z,
XZ = ZX and XY = YX. Thus, we find

A=C|X,Y,Z],

rhe (commutative) polynomial algebra in three variables.

T he associated category is the category of
C[X. Y. Z]-modules; when finite, these are given by triples
pf commuting N < N matrices.

Pirsa: 10050040

Moncommurativ
sigeiwas and
CommuUtatve

SIECDraiC SEOmet]

Exampies of
D brane algebras




xample 2

e

The McKay quiver algebra A,_; is not a D-brane algebra,
put a closely related algebra is: add loops at each of the
vertices, represented by fields o;; then the superpotential

gives the same relations as before. ( This is known to be the
appropriate field theory description for D3-branes at a point

P on a curve of A,_1 singularities on a Calabi—Yau
threefold.)
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xample 2

e

The McKay quiver algebra A,_; is not a D-brane algebra,
put a closely related algebra is: add loops at each of the
vertices, represented by fields o;; then the superpotential

gives the same relations as before. ( This is known to be the
appropriate field theory description for D3-branes at a point
P on a curve of A,_1 singularities on a Calabi—Yau
rhreefold.) The algebra is the twisted group algebra,
rensored with the algebra of the ¢;'s, which have no
relations among them. The center is:

Z(A) = C|x, y]® @ C[®].

where ® = ) ¢;.

Pirsa: 10050040
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| et us modify the theory for A; by adding another term to
he superpotential. That is, we have fields x;, y;, o; for
| — 0.1 with superpotential

W = tr(do(xovo — vix1) + o1(cav: — voxo) + P(og) + F
where P is some fixed polynomial.

X0
1

@0 70 1 01

N \\V/ “ /
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The McKay quiver algebra A,_; is not a D-brane algebra,
put a closely related algebra is: add loops at each of the
vertices, represented by fields o;; then the superpotential

gives the same relations as before. ( This is known to be the
appropriate field theory description for D3-branes at a point
P on a curve of A,_; singularities on a Calabi—Yau
rhreefold.) The algebra is the twisted group algebra,
rensored with the algebra of the ©;'s, which have no
relations among them. The center is:

Z(A) = C[x,y]® @ C[®].

where ® = " ¢;.
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ispinwall-Katz) sgebraic gromes

| et us modify the theory for A; by adding another term to
he superpotential. That is, we have fields x;, y;, o; for
| — 0, 1 with superpotential

where P is some fixed polynomial.

X0
:},0/_\ = é."“z > — I/—\;-

““"—\-—._____X_.__._.—d—""_"—r
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Jne can see that the following elements are central:
X = xpx1 + x1x0
i YiYo — Yown
L — X0Yo — xXx1va
CD — r:}G —— C}l
and satisfy the relation

Pirsa: 10050040 Z",l_ = XY Y ZP;(CD:'
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ispinwall-Katz) [ —

| et us modify the theory for A; by adding another term to
rhe superpotential. That is, we have fields x;, y;, o; for
| — 0, 1 with superpotential

where P is some fixed polynomial.
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Dne can see that the following elements are central:

X = xpx1 + x1x0
W= YiYo — Yon
Z = xgyo +x1y1
CD = f_'}o —_— rjl

and satisfy the relation

Pirsa; 10050040 Z;]- — XY — ZPI(d) :'
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I hese singularities are closely related to flops: by an old
result of Reid, the blowdown of a flop with normal bundle
Op1 & Op1(—2) always has an equation of the above form,
where P has a zero at ® = 0 of order at least 3.
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I he previous example also describes the conifold, if we take
P(P) = %Cbz. The standard physics approach to this is to
“Integrate out’ ¢;, using the F-term equations to solve

Do = Y1X1 — XoYo. @i = YoXo — x1y1- | he new superpotential
S

I his is the standard superpotential for the conifold, first

found by Klebanov and Witten.

/’\
\/
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As our next example, we will compute the superpotential
hlgebra and its center for the “suspended pinch point” (first
ronsidered in hep-th/9810201). The method which Plesser
and | used to find the superpotential in this case was toric
ceometry. | he suspended pinch point singularity can be
described torically as the cone over the following lattice
bolyhedron:

Wi Wo

Pirsa: 10050040
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Plesser and | calculated a field theory dual. which can be
expressed in terms of the quiver

and superpotential

W=tr(o(YY —XX)+MZZXX —ZZYY

E:lany other toric examples were subsequently computed,
ith a large amount of technology devoted to their efficient
romputation (work of Hanany and collaborators, among
pthers).
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As our next example, we will compute the superpotential
algebra and its center for the “suspended pinch point” (first
ronsidered in hep-th/9810201). The method which Plesser
and | used to find the superpotential in this case was toric
ceometry. | he suspended pinch point singularity can be
described torically as the cone over the following lattice
polyhedron:

Wi Wo
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expressed in terms of the quiver slg=braic

and superpotential

W=trlo(YY

|
¥

— i \.r 2. M FF X : N a4

wany other toric examples were subsequently computed,
ith a large amount of technology devoted to their efficient
romputation (work of Hanany and collaborators, among
pthers).
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There are central elements A= 6+ \ZZ + \ZZ.
B—XX 1 XX+ YY.C—YZX 1 ZXY + XYZ
D—XZY + ZYX + YXZ.

T he relation is:

AB? = \CD.
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(Worked out by Aspinwall and myself in arXiv-1005.1042.)
Consider the hypersurface singularity with defining
polynomial

2 3

Fix.y.z.w)=x*+y> +wz> +w

2 4
Yy — Awy® — Aw

T here is a matrix factorization for this polynomial of the
form

[,3()'4 T E)(‘(I4 = E) — FL;

where
i 0 y Z —w |
= = e | 0 (v — Aw)w .4
TEsE —wz —w? 0 —y
(y —Aw)w? —wz (y—Aw)y 0

Pirsa: 10050040
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T he cokernel of xly + = defines a module M over
R=C|x.y,z.w]|/(F) and the ring A = End(R & M) is a
D-brane algebra for this singularity. It turns out that A can
be described by the quiver

.—-r—‘—'_'_d_'_“‘"&

CSsasaaie o

3 b
S
with superpotential

W = tr(b’dc + 3dcdc + a°b+ 1Ab° + 1b°%).

irsa: 10050040
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T he cokernel of xly + = defines a module M over
= Clx,y.z.w|/(F) and the ring A =End(R <+ M) is a
-brane algebra for this singularity. It turns out that A4 can
e described by the quiver

.—-r-"'_'_d_'_“‘"w-

e -8

3 b
~
ith superpotential

W = tr(b°dc + Xdcdc + 2°b + 1Ab° + 1b%).

Pirsa: 10050040




xampie 6 A f'Op OT. |E'r"gt:hl : Noncommutative

SgEDras and

Sommutative

SIEEDraiC SeOmet]

(Worked out by Aspinwall and myself in arXiv-1005.1042.)
Consider the hypersurface singularity with defining
bolynomial

7 3

F(x.y.z.w)=x*+y +wz> +w

y — Awy? — Aw”
T here is a matrix factorization for this polynomial of the
form

(3([4 ‘—E)[X’I‘; — E) — FL;

where
E 0 % z —w |
— |y — Aw)y 0 (v —Aw)w Z
g —wz —w? 0 —y
I Aw)w? —wz (y — Aw)y 0

Pirsa: 10050040
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T he cokernel of xly + = defines a module M over
= Clx,y,z.w|/(F) and the ring A =End(R = M) is a
-brane algebra for this singularity. It turns out that 4 can
e described by the quiver

.‘-r-‘—’_'_d_'—“‘"&

T

3 b
Nt/
ith superpotential

W = tr(b’dc + 3dcdc + a°b + 1Ab° + 1b°%).

Pirsa: 10050040




1. The algebra A is not uniquely determined by the
D-brane configuration (this is related to Seiberg duality
and has been studied extensively).
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The algebra A is not uniquely determined by the
D-brane configuration (this is related to Seiberg duality
and has been studied extensively ).

As stated, this provides a way of passing from a
Lagrangian description of a family of field theories to
the algebro-geometric structure near the corresponding
singular point. It is also possible to go backwards (work
of Aspinwall and collaborators): given P = X, one
studies the (derived) category of coherent sheaves on X
supported at P, and determines a so-called tilting
module for the category. That tilting module, and some
further computations of Ext groups of the sheaves,
gives a Lagrangian description for the family of
D-branes (including a superpotential).
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3. To the best of my knowledge, there is no known algebras ana
algorithm for computing the center of 4. There is also sig=braic zromen
no known algorithm for producing a tilting module for
the derived category of coherent sheaves supported at
X. And of course, there is no proof at present that the

center Z(.A) is isomorphic to the the coordinate ring of

X a8 P
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3. To the best of my knowledge, there is no known
algorithm for computing the center of 4. There is also
no known algorithm for producing a tilting module for
the derived category of coherent sheaves supported at
X. And of course, there is no proof at present that the
center Z(.A) is isomorphic to the the coordinate ring of

X at P

4. Van den Bergh has conjectured that a canonical
singularity P € X in dimension 3 admits an algebra A
whose category of modules describe the coherent
sheaves supported at P if and only if there is a
resolution of singularities ™ : Y — X which is relatively
Calabi—Yau (that is, no zeros are introduced into the
holomorphic 3-form), and he has proven this conjecture
in 2 number of cases. However, neither his conjecture
nor his proof address the question of whether 4 can be
written as a D-brane algebra, that is, as a quiver

Pz 10gfwebra modulo relations coming from a superpotential.
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5. One of the key properties of the algebras which van den algrbraic gromen
Bergh uses (and a property enjoyed by all of our
examples) is that the ring A has finite global dimension.
Generally, the coordinate ring of an affine algebraic
variety only has finite global dimension when the variety
Is nonsingular. Here, we have a class of
noncommutative algebras with a similar property, even
for a class of singular varieties. This is one of the ways
in which specifying a noncommutative algebra of the
type we are considering may be seen as an analogue of
resolving the singularities.
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bince the center of A is expected to be the coordinate ring
pbf the corresponding algebraic variety, a natural question is
nhow A will behave under localization.
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bince the center of A is expected to be the coordinate ring
pf the corresponding algebraic variety, a natural question is
now A will behave under localization. Note that for any
Z(A), the localization makes sense:

slement f €
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Consider the twisted group algebra A = Clx. y| = (Z/2Z), slgebraic gromets
with center Z = Z(_A) generated by

. XpX1 T X1.X0. o — Yovi — Vi Vo. Y e— XoYo — X1y,

subject to Z2 = XY.

Pirsa: 10050040
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Consider the twisted group algebra A = Clx. y| = (Z/2Z), algebraic gromen
with center Z = Z(_A) generated by

X =xpx1 +x1x0, Y =yovi +Vvivo. Z — xgyg + x1Y1.

subject to Z2 = XY. We localize at X which allows us to
solve Y = X172, so that the localized center is

L — :[X_I.X_Z]_

Pirsa: 10050040
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Consider the twisted group algebra A = Clx. y| = (Z/2Z), sigebraic gromet:

with center Z = Z(_A) generated by
X =xpa+x1x0, Y =vovi+VviYo. Z — xgyo+ x1y1.

subject to Z2 = XY.

Loclizing
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lcKay localized

Consider the twisted group algebra A = Clx, y| = (Z/2Z),
with center Z = Z(_A) generated by

X = xpx1 + x1x0.

) a— Yoyi — Vi1 Mo.

Z = xgyo + x1y1.

subject to Z2 = XY. We localize at X which allows us to
solve Y = X172, so that the localized center is

Pirsa: 10050040
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Consider the twisted group algebra A = Clx. y| » (Z/2Z), slgebraic gromet:
with center Z = Z(_A) generated by '

X =xpx1 +x1x0, Y =yovi +Vvivo. Z — xgyo + x1Y1.

subject to Z2 = XY . We localize at X which allows us to
solve Y = X172, so that the localized center is

S — :[X_l.X.Z]-

Now, to invert X, we must invert xg and x; and then it
pasily follows that yg = (X 12Z)x; and y3 = (X12)xg.

Loclizing

Pirsa: 10050040
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Consider the twisted group algebra A = C|x, y] » (Z/2Z), alg=braic gmomet

with center Z = Z(_A) generated by
X =xpa+x1x0, Y =voyi +vivo. Z — xgyo+ x1y1.

subject to Z2 = XY . We localize at X which allows us to
solve Y = X172, so that the localized center is

Zx—CIE " X7

Now, to invert X, we must invert xg and x; and then it
easily follows that yg = (X12Z)x; and y3 = (X 12)xg. It
furns out that the matrix algebra M>(Zx ) is isomorphic to
the localized algebra Ax via:

0

_

0
0
1

Pirsa: 10050040

— —



lorita equivalence

Dne fundamental notion in the theory of noncommutative
rings and algebras is the notion of Morita equivalence. Two
rings A and B are said to be Morita equivalent if there is an
equivalence of categories between the category of left
A-modules and the category of left 5-modules.

Pirsa: 10050040
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Dne fundamental notion in the theory of noncommutative
rings and algebras is the notion of Morita equivalence. Two
rings A and B are said to be Morita equivalent if there is an
equivalence of categories between the category of left
A-modules and the category of left B-modules. For example,
A ring R is Morita equivalent to the ring M,(R) of n x n
matrices over R.

Localizing

Pirsa: 10050040




Moncommutativ

lorita equivalence

SgEDras and
Sommuiatve

algebraic gromen

ODne fundamental notion in the theory of noncommutative
rings and algebras is the notion of Morita equivalence. Two
rings A and B are said to be Morita equivalent if there is an
rquivalence of categories between the category of left
A-modules and the category of left B-modules. For example,
a ring R is Morita equivalent to the ring M,(R) of n x n
matrices over R.

A key fact is that if A and B are Morita equivalent, then the
renters of the rings Z(.A) and Z(B) are isomorphic.

Loclizing
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ODne fundamental notion in the theory of noncommutative
rings and algebras is the notion of Morita equivalence. Two
rings A and B are said to be Morita equivalent if there is an
equivalence of categories between the category of left
A-modules and the category of left B-modules. For example,
a ring R is Morita equivalent to the ring M,(R) of n x n
matrices over R.

A key fact is that if A and B are Morita equivalent, then the
renters of the rings Z(.A) and Z(B) are isomorphic. (This is
bbvious in the case of R and M, ,(R).)

Loclizing
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lorita equivalence

One fundamental notion in the theory of noncommutative
rings and algebras is the notion of Morita equivalence. Two
rings A and B are said to be Morita equivalent if there is an
equivalence of categories between the category of left
A-modules and the category of left B-modules. For example,
a ring R is Morita equivalent to the ring M,(R) of n x n
matrices over R.

A key fact is that if A and B are Morita equivalent, then the
renters of the rings Z(.A) and Z(B) are isomorphic. (This is
pbvious in the case of R and M,(R).)

T he application in the present context is clear: once we
ocalized away from the singularity, we obtained a
Morita-equivalent ring.

Localizing

Pirsa: 10050040
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The key observation to globalizing this setup is to notice
that we don't really care about the noncommutative rings
per se, we care about their representations, which will
determine sheaves on the space.

Pirsa: 10050040
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The key observation to globalizing this setup is to notice
that we don't really care about the noncommutative rings
per se, we care about their representations, which will
determine sheaves on the space. Moreover, we can use

hA -

rita equivalence to identify categories of representations
even in cases where the underlying rings are not isomorphic.
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lobalizing

The key observation to globalizing this setup is to notice
that we don't really care about the noncommutative rings
per se, we care about their representations, which will
determine sheaves on the space. Moreover, we can use
Morita equivalence to identify categories of representations
even in cases where the underlying rings are not isomorphic.

T he details are not all worked out yet, but the construction
we want to give of noncommutative spaces roughly goes like
chis.

Pirsa: 10050040
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The key observation to globalizing this setup is to notice
that we don't really care about the noncommutative rings
per se, we care about their representations, which will
determine sheaves on the space. Moreover, we can use
e

rita equivalence to identify categories of representations
even in cases where the underlying rings are not isomorphic.

T he details are not all worked out yet, but the construction
we want to give of noncommutative spaces roughly goes like
this. We work with spaces modeled on Specyc(.A) (a
noncommutative Spec which we are trying to define).

Pirsa: 10050040
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T he key observation to globalizing this setup is to notice
that we don't really care about the noncommutative rings
per se, we care about their representations, which will
determine sheaves on the space. Moreover, we can use
Morita equivalence to identify categories of representations
even in cases where the underlying rings are not isomorphic.

T he details are not all worked out yet, but the construction
we want to give of noncommutative spaces roughly goes like
this. We work with spaces modeled on Specyc(.A) (a
noncommutative Spec which we are trying to define). Given
h representation M = Mod—A, we define a sheaf M by
sheafifying the presheaf

—

M(Spec(Z(A)r) = M 2z(4) Z(A)f € Mod—As.

T hesersre the quasi-coherent sheaves.
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Now we patch together these local objects, but we don't A romnanas
require an equivalence of rings when matching affine open
sets, we only require an equivalence of module-categories.
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Now we patch together these local objects, but we don't

require an equivalence of rings when matching affine open
sets, we only require an equivalence of module-categories.

That is, a gluing should be a ring isomorphism
v Z(A) — Z(B)
rogether with a compatible equivalence of categories

V : Mod—A — Mod-Fb.

Pirsa: 10050040
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Now we patch together these local objects, but we don't
require an equivalence of rings when matching affine open
sets, we only require an equivalence of module-categories.

That is, a gluing should be a ring isomorphism
v Z(A) — Z(B)
rogether with a compatible equivalence of categories

V : Mod—A — Mod-F.

Andrei Caldararu has pointed out to me that this
construction has many points of contact with algebraic
stacks, at least if the rings A are suitably restricted. It is not
rlear yet if we are providing a new perspective on stacks, or
h generalization (of at least some of them).
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hope | have convinced you that there is a natural class of R
noncommutative algebras which can be used to study

singularities of algebraic varieties.
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noncommutative algebras which can be used to study
singularities of algebraic varieties. This study is still in its
nfancy, although thanks to the origins in physics, there are
many examples which have been worked out.
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noncommutative algebras which can be used to study
singularities of algebraic varieties. This study is still in its
nfancy, although thanks to the origins in physics, there are
many examples which have been worked out. | hope to be
able to report in the near future on a more complete theory
along these line.
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We have already described the D-brane algebra of a smooth
point of a Calabi—Yau threefold: there is one vertex v and
three matter fields X, Y, Z with superpotential

W = tr (X(YZ — ZY)).

Examples of

Ddgrane algebras
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| et us modify the theory for A; by adding another term to
rhe superpotential. That is, we have fields x;, y;, o; for
 — 0, 1 with superpotential

W — tr | DolXoYo — Vixi) — o1l xaya — Yoxo) + P(da) ~ F
where P is some fixed polynomial.
/-"-3-\
/_\} e ,/—\\
@0 Po

e ﬁ;}i_ 2
e e e e “1

N \\ v// e
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T he cokernel of xly + = defines a module M over
R=C|x.y.z,w]/(F) and the ring A =End(R+ M) is a
D-brane algebra for this singularity. It turns out that A4 can
be described by the quiver

.‘-r—‘—’_'_d_'_“‘"w—

B =@

3 b
Nt S
with superpotential

W = tr(b’dc + 3dcdc + a°b + 1Ab° + 1b°%).
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T he cokernel of xly + = defines a module M over
= C|x,y,z,w]/(F) and the ring A = End(R < M) is a
-brane algebra for this singularity. It turns out that 4 can
e described by the quiver

.‘-r—‘—’_'_d_'_“"'w-

_ eRRstes

3 b
~
ith superpotential

W = tr(b°dc + Xdcdc + a°b + 1Ab° + 1b%).
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