Title: Motivic degree zero Donaldson - Thomas invariants

Date: May 08, 2010 01:45 PM

URL: http://pirsa.org/10050038

Abstract: The Hilbert scheme X[n] of n points on variety X parameterizes length n, zero dimensional subschemes of X. When X is a smooth surface, X[n] is also smooth and a beautiful formula for its motive was determined by Gottsche. When X is a threefold, X[n] is in general singular, of the wrong dimension, and reducible. However if X is a smooth Calabi-Yau threefold, X[n] has a canonical virtual motive --- a motification of the degree zero Donaldson-Thomas invariants. We give a formula analogous to Gottsche's for the virtual motive of X[n]. The key computation gives a q-refinement of the classical formula of MacMahon which counts 3D partitions.

Pirsa: 10050038 Page 1/59

projective = Hillb"(X)= } Z < X [N] Pirsa: 10050038

projective din HO(02)=n = Hilb"(X)= } Z-CX

Pirsa: 10050038

Pirsa: 10050038

dinx then Ens mere Betti numbers of computed by MacDon Page 5/59 a: 10050038

it is a res. of singularities Symix dim-2n Betti numbers were computed by Göttschy (1990).

Pirsa: 100500

dinension a Calabi-Yan Smosth is a moduli space of shares - hranus) There are good hotions of virtue.
Betti #5 virtuel Euler char. vir Euler char = (deg O) Donaldson Thomas invo of X

There are good notions of virtue.

Betti #5 virtuel Euler char. vir Euler char = (deg O) Donaldson Thomas inva of X As are refinements of invaviouts.

There are good hotims of virtue.

Betti #5 virtuel Euler char. vir Euler char = (deg O) Donaldson Thomas inva of X As are refinements of invaviouts.

/59

(virtual) trustiles of Motives: KolVora isomorphism classes of CX Varietie

(virtual) trustiline of isomorphism classes of cx varieties V] = [2]+[V-2] = 70 [V].[W] = [VXW]

homewor phikm

space of showes invaviant is given associated $DI(M) = \chi(M)$ 5/ KX(J'M(K))

pue of showes invaviant is given associated D1(M) Behrend fac.

0050038

space of showes invaviant is given associated Behrend fuc.

Pirsa: 10050038

such that $X([M]_{Mr}) = bT(M)$ [M] vir would be the motivice by

10050038

such that X ([M]ur) = bT (M) [M] vir would be the motivice DT Can be done for your

irsa: 100<mark>5</mark>0038

action on E, then

Pirsa: 10050

Page 32/59

ar dinx=Z

Pirsa: 10050038

Page 34/50

din X = 1 ar din X = Z X (Zx(t)) usual DT part fine.

Page 35/59

POSSE STEPPENT 1+4 Motel (I+ tMcT+I) × Mc A(t)W (A(4), W) -A(t) = 1, A(t) = A(t), A(t) A(t) = A(t) WAY t) = (1+V++0(+2) (A(+)M)V = A(DW.V

POSSE STEPHEN 1+ LMattl (I+ tMcT+T) × Mc A(t)W (A(+), W) -A(+)'= 1, A(+)'= A(+), A(+)"A(+)"= A(+)" (1+t) = (1+V++0(+2) (A(t)m) = A(t)m.v

Page 41/59

sa: 10050038

Pirsa: 1005003

Page 42/59

Pirsa: 10050038

Page 43/59

MacDullan Guissan Zoda Szendroi.

Pirsa: 1005003

age 44/59

Pirsa: 100500

Page 46/59

f(A,B,C,v)=++(A(B,F]) (H=0 <> [BC]=0, [A,B]=0, [A,B]=0, [A,B]=0 isomorphism C[x1412] = Ch

f(A,B,C,1) = ++ (A[8,6]) 124=0 (=> [B,]=0, [A,B]=0, [A,C]= fix an isomorphism CEXMIZI/ = Ch A, B, C correspond to nultiplication by 4,4, 2 v conresponds to 1

(A,B,C,v) = Matney

Pirsa: 10050038

(A,B,C,v) & Matrun

(A,B) & Matax PO EM S T61, W=

(A,B) & Matax -60 2 M3 T61, 1=0

0x(0/G) McKay Qui

Pirsa

ADE rost system [I(03/640)