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Kahler geometry

The basic foundation of K3hler geometry is that the holonomy
group of the metric is U(n) and the Laplacian operator acting on
the differential form (2™ commutes with the projection operator:

Q™ — QP9 with p + g = m. This is due to the Kahler form
W=V —12 g’} dZ; N\ dfj
being covariantly constant.
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w, €2 can actually be constructed from two parallel spinors. In type
Il string theory, having two parallel spinors results in N =2
supersymmetry. [ his allows the possibility of mirror symmetry and

leads to many important consequences in algebraic geometry of

Calabi-Yau manifolds.
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M. Reid made a proposal based on the construction of
Clemens-Friedman. Clemens wanted to take a rational curve in CY
manifold M whose normal bundle is O(—1) & O(—1) and contract
such a curve to a rational double point. Friedman proposed the
condition to deform such a manifold into a smooth complex
manifold. By blowing down enough such rational curves, H*( M)
can be killed and we end up with a complex manifold which is

diffeomorphic to a connected sum of S x S, but it is not Kihler.
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Reid conjectured that one can connect any CY three-fold to any
other through such conifold transitions. It is a nice picture and can

be checked in many cases. However, one needs to understand the

geometry of such non-K3hler manifolds.

In order to do this, we find that the most suitable structure is the

hermitian metric with torsion introduced by Strominger.
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The important point here is that supersymmetry still exists. (There
are still parallel spinors.) There are four equations in the

Strominger system. (We will write them down explicitly.)

The last equation of Strominger’s system is equivalent to the

existence of a certain hermitian form w that satisfies
d(q.:z) —0.

Such class of metrics were studied by Michelsohn and

Alessandrini-Bassanelli. They called them balanced metrics.
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Balanced metrics are found on non-K3hler manifolds such as
Iwasawa manifolds and twistor spaces of self-dual Riemannian
four-manifolds. Furthermore, it is known that balanced manifolds
respect fiber bundle construction, and importantly, a complex
manifold birational to a balanced manifold must admit a balanced

metric.

Hence, we believe that the balanced manifold as required for the
Strominger system is a good class of manifolds. We shall now
introduce the Strominger’'s equations and prove the existence of

solutions.
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The important point here is that supersymmetry still exists. (There
are still parallel spinors.) There are four equations in the

Strominger system. (We will write them down explicitly.)

The last equation of Strominger’s system is equivalent to the

existence of a certain hermitian form w that satisfies
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Balanced metrics are found on non-Kahler manifolds such as
Iwasawa manifolds and twistor spaces of self-dual Riemannian
four-manifolds. Furthermore, it is known that balanced manifolds
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manifold birational to a balanced manifold must admit a balanced
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Strominger's system

Let X be a compact complex threefold X with a trivial canonical
bundle, i.e. there is a non-vanishing holomorphic three-form 2.

Let V be a holomorphic vector bundle V over X.

Consider the pair (w, h), where w is 2 hermitian metric on X, and

h is a hermitian metric on V.

The following eguations are required to admit supersymmetry.
(1) d(]| Q |l w?) =0

O E"—FE =8, EA”—0

(3) V-100w =% (tr(R, AR,) — tr(Fa A Fp))
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The first equation is equivalent to the existence of a balanced
metric. |he second is the Hermitian-Yang-Mills equations. And

the third equation is the anomaly equation.

When V is the tangent bundle TX and w is Kahler, the system is
solved by the Calabi-Yau metric. So Strominger’'s system should be
viewed as a generalization of Calabi’'s conjecture for the case of

non-Kahler Calabi-Yau threefolds.
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Strominger's system
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Since 2004, with Jun Li and Jixiang Fu, we have solved the

Strominger system in two cases:

e Using the perturbation method, Li and Yau constructed

irreducible smooth solutions on a class of Calabi-Yau's with

U(4) and U(5) principle bundles.

e Fu and Yau constructed solutions to this system on

non-K3hler threefolds that are T2-bundles over a K3 surface.

For the Reid’s conjecture, Fu-Li-Yau have also shown the existence
of balanced metrics on connected sums of S x S3. We expect

that the Strominger system can also be solved in this case.

| shall describe our work in the following.
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Li-Yau: Perturbation method

Assume that X is a Calabi-Yau threefold and wq is a2 Calabi-Yau
metric. [ake the vector bundle V=E=TX & (C%’ and
h = wg & hy, where h; is a standard constant metric on Cﬁ’ , then

(X. E.wq. h) is a solution, which is called a reducible solution by
Li-Yau.

For any small deformations &< of the holomorphic structure of
X %C’f}r, Li and Yau derived a sufficient condition for Strominger
system being solvable for (X, d;): it is that the Kodaira-Spencer

class of the family 9. at s = 0 satisfies certain non-degeneracy

condition.
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By showing this sufficient condition to hold on following Calabi-Yau
manifolds, we provided the first example of regular irreducible
solution to Strominger system with gauge group U(4) and U(5):

1. X c P*: a smooth quintic threefold:;

2. X ¢ P2 x P3: cut out by three homogeneous polynomials of
bi-degree (3.0), (0,3) and (1,1).
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Li-Yau: Perturbation method

Assume that X is a Calabi-Yau threefold and wqg is a2 Calabi-Yau
metric. Take the vector bundle V =E=TX & (C;(e" and
h = wqg & hy, where hy is a standard constant metric on C%’, then

(X. E.wq. h) is a solution, which is called a reducible solution by
Li-Yau.

For any small deformations 8. of the holomorphic structure of
X %CE", Li and Yau derived a sufficient condition for Strominger
system being solvable for (X, d;): it is that the Kodaira-Spencer

class of the family 9. at s = 0 satisfies certain non-degeneracy

condition.
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By showing this sufficient condition to hold on following Calabi-Yau
manifolds, we provided the first example of regular irreducible
solution to Strominger system with gauge group U(4) and U(5):

1. X ¢ P*: a smooth quintic threefold:;

2. X < P3 x P3: cut out by three homogeneous polynomials of
bi-degree (3,0), (0.3) and (1,1).

irsa: 10050035 Page 27/138



Let E. be a smooth family of holomorphic vector bundles over a

Calabi-Yau space X. Let hg be a Hermitian-Yang-Mills metric on

E.

We would like to extend hg to a smooth family of

Hermitian-Yang-Mills metrics.
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The interesting case is when hg is reducible.

Let (X.wp) be Kahler.
Let (E1. DY) and (E>. D7) be degree zero and slope-stable vector
bundles.

Let h; and h, be the hermitian metrics on E; and E> respectively.

Then h; © e® hs is still a hermitian metric that corresponds to the

connection Dy = D & D5’
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Suppose we are given a deformation of holomorphic structure D7

of Dgy. Then Kodaira-Spencer identifies the first order deformation

of D7 at 0 to an element

ke H(X,s* ®¢)

(n

where ¢ is the sheaf of holomorphic section s of (E, D).

T herefore

ke W:,; IHl("' ' Ej)'

: 10050035
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Suppose we are given a deformation of holomorphic structure D_

of Dy. Then Kodaira-Spencer identifies the first order deformation

of DZ at 0 to an element

ke H(X,s* ®¢)

where ¢ is the sheaf of holomorphic section s of (E, D).

Therefore

keg ‘“H-fl,; IHI(*' ' Ej)'

: 10050035
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Theorem

Suppose k1> and ko1 are nonzero. Then there is a unique t so that

for s sufficiently small ho(t) = h1 © e*ha extends to a smooth

family of Hermitian-Yang-Mills metrics on (E. D).
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We can construct irreducible solutions to Strominger’'s system

perturbatively.

Start with a Calabi—Yau manifold,
(E.Df) =c" Vg 71X,

the metric is identified with | : E — E.

For all ¢ > 0, (/. cwyg) is a solution to L = 0.
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Theorem

Let X be a Calabi-Yau three-fold with w a Ricci-flat Kahler form.

Let DZ be a smooth deformation of holomorphic structure Dy on

E = Cx & TX. Suppose the associated cohomology classes [ C;5]

and [ (5] are non-zero. Then for sufficiently large c, there is a

family of pairs of hermitian metrics and hermitian forms (hs, ws)

for 0 < s < = such that

1. wg = cw and the harmonic part of ws is equal to cw.

2. The pair (hs.w:) is a solution to Strominger’s system for the

holomorphic vector bundle (E. D).
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Li-Yau: Perturbation method

Assume that X is a Calabi-Yau threefold and wqg is a Calabi-Yau

metric. Take the vector bundle V = E = TX & Ci"’ and
h = wg = hy, where h; is a standard constant metric on CZ", then

(X. E.wg. h) is a solution, which is called a reducible solution by
Li-Yau.

For any small deformations 8. of the holomorphic structure of
X :E.CE", Li and Yau derived a sufficient condition for Strominger
system being solvable for (X, d;): it is that the Kodaira-Spencer

class of the family 8. at s = 0 satisfies certain non-degeneracy

condition.
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Strominger's system

Let X be a compact complex threefold X with a trivial canonical
bundle, i.e. there is a non-vanishing holomorphic three-form 2.

Let V be a holomorphic vector bundle V over X.

Consider the pair (w, h), where w is a hermitian metric on X, and

h is a hermitian metric on V.

The following eguations are required to admit supersymmetry.
(1) d(|  |lw w?) =0

2 F°=F"=0, FAL2=0

(3) V-100w =% (tr(R, A R,) — tr(Fn A Fp))
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Strominger's system

Let X be a compact complex threefold X with a trivial canonical
bundle, i.e. there is a non-vanishing holomorphic three-form (2.

Let V be a holomorphic vector bundle V over X.

Consider the pair (w, h), where w is a hermitian metric on X, and

h is a hermitian metric on V.

The following eguations are required to admit supersymmetry.
(1) d(]| Q [lo w?) =0

O E"—E —0. EAs"—1
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By showing this sufficient condition to hold on following Calabi-Yau
manifolds, we provided the first example of regular irreducible
solution to Strominger system with gauge group U(4) and U(5):

1. X ¢ P*: a smooth quintic threefold:;

2. X ¢ P32 x P3: cut out by three homogeneous polynomials of
bi-degree (3,0), (0.3) and (1,1).
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The interesting case is when hg is reducible.

Let (X.wq) be Kahler.

Let (E;. DY) and (E>. D7) be degree zero and slope-stable vector

bundles.

Let h; and h» be the hermitian metrics on E; and E> respectively.

Then h; © ef hs is still a hermitian metric that corresponds to the

connection Dy = D & D5’
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Suppose we are given a deformation of holomorphic structure D_

of Dy. Then Kodaira-Spencer identifies the first order deformation

of D7 at 0 to an element
ke H(X,s* ®¢)

where ¢ is the sheaf of holomorphic section s of (E, Df).

Therefore

keqg:. . I 25)

g
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Theorem

Let X be a Calabi-Yau three-fold with w a Ricci-flat Kahler form.

Let DZ be a smooth deformation of holomorphic structure Dy on

E = Cx & TX. Suppose the associated cohomology classes [ C;5]

and [(5;] are non-zero. Then for sufficiently large c, there is a

family of pairs of hermitian metrics and hermitian forms (hs,w;)

for 0 < s < = such that

1. wg = cw and the harmonic part of ws is equal to cw.

2. The pair (hs.w:) is a solution to Strominger's system for the

holomorphic vector bundle (E. D).
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Theorem

Let X be a Calabi-Yau three-fold with w a Ricci-flat Kahler form.
Let D? be a smooth deformation of holomorphic structure Dy on
E = Cx & TX. Suppose the associated cohomology classes [ C;5]
and [(51] are non-zero. Then for sufficiently large c, there is a
family of pairs of hermitian metrics and hermitian forms (hs, w;)

for 0 < s < = such that
1. wg = cw and the harmonic part of ws is equal to cw.

2. The pair (hs.w.) is a solution to Strominger’s system for the

holomorphic vector bundle (E. D).
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Let
D! =Df + Az, A, < Q% (EndE)

G CIZ) 0.1
— c Q" “(End E).
i (C21 (2 ( )

We can assume Cj; are Df harmonic. Since HY(X,Ox) = 0,

Gy —0
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In general, we consider the r + 3 holomorphic vector bundle

?—% I'X. We also have

0 Go
Dl =
= ( (1 sz)

where

Gz =(a, ... )" € OX(TX)
C1 =(b,---, 8,) € Q®L(TX )%

Gz € Q%1(End TX).

Suppose [ai], - - - . [a] € HY(X, TX*) are linearly independent and
[31]. - ... [3/] € HY(X, TX*) are linearly independent. Then the

rrse: 0@@OVE theorem holds. page 51138




Example: Consider X = {73 +---+z2 =0} e P*
0 0

T [

R ot SRR, S

T [ |

0 —— F —— Ox(1)® —— Ox(5) —— 0

T T

0

Ox Ox
I [
0 0

Here F is the cokernel of Ox(1)®® — Ox(5) and fill in
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Example: Consider X = {7 +---+z2 =0} c P*
0 0

T [

X > TxP* ——— Ox(5) —— 0
I I |
0 —— F —— Ox(1)® —— Ox(5) —— 0

T [

0

Ox Ox
I [
0 0

Here F is the cokernel of Ox(1)®® — Ox(5) and fill in
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Example: Consider X = {73 +---+z2 =0} e P*
0

T T

X ™ )8

T |

I
0 —— F —— Ox(1)® —— Ox(5) —— 0
I

T

0

Ox Ox
I [
0 0

Here F is the cokernel of Ox(1)®® — Ox(5) and fill in
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The above sequence is a non-split extension.
Making use of this element in Ext}( TX.Ox) we can perform a

deformation of the holomorphic structure D{ with C;2 # 0 and

(1 #0.

Hence we have proved:

Let X be a smooth quintic three-fold and w be any K3hler form on
X. Then for large ¢ > 0, there is a smooth deformation of
Cx & TX such that for small s, there are pairs (hs,ws) of

hermitian metrics on E and hermitian forms w. on X that solves

Strominger’'s system.
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For the Calabi—Yau manifold with three generations that |

constructed:

given by

quotient by Z3. One can also construct irreducible solution to

X cP? xP3

Zx? —= |
>4
ZXLVFZO

. ' ~ (52
Strominger’s system on TX ¢ C¢”.
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Fu-Yau: Non-Kahler manifolds

Fu and Yau constructed the solution of Strominger system on a

class of non-K3hler three-dimensional complex manifolds,

especially on a class of non-Kahler Calabi-Yau threefolds. These

are T2-bundles over K3-surfaces which were constructed by

Goldstein and Prokushkin.
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On these manifolds, Goldstein and Prokushkin observed that there
exist natural metrics:

e
Wy — EULJ;..’KB - E 8 N 9_.

which satisfy the first equation of Strominger system. Here u is
any function of K3 surface, @ is the connection 1-form on the
T?-bundle. Similar ansatz were also considered by

Dasgupta-Rajesh-Sethi and Becker-Becker-Dasgupts-Green earlier.
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By explicit calculation on tr(R A R), Fu and Yau reduced the third
equation of the Strominger system to the following Monge-Ampere

equation:
A(e” = fe ") +4a' e +u=0
2 det g;; sl

where f and p are functions on K3 surface satisfying f > 0 and

Js pwigz = 0.

This equation is more complicated than the equation for the Calabi
conjecture. For example, the estimate of volume form gives extra
complications. We obtained some crucial a priori estimates up to

third order in derivatives and then used the continuity method to

e 5@lve the equation.




On these manifolds, Goldstein and Prokushkin observed that there
exist natural metrics:

e
Wy — EULJKB - = 59 N\ 9_.

which satisfy the first equation of Strominger system. Here u is
any function of K3 surface, @ is the connection 1-form on the
T?-bundle. Similar ansatz were also considered by

Dasgupta-Rajesh-Sethi and Becker-Becker-Dasgupts-Green earlier.
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By explicit calculation on tr( R A R), Fu and Yau reduced the third
equation of the Strominger system to the following Monge-Ampere

equation:
A(e” = fe )+ 4o/ ety +u=0
2 det g;; et

where f and p are functions on K3 surface satisfying f > 0 and

Jsmeis=0.

This equation is more complicated than the equation for the Calabi
conjecture. For example, the estimate of volume form gives extra
complications. We obtained some crucial a priori estimates up to

third order in derivatives and then used the continuity method to

- 5lve the equation.
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third order in derivatives and then used the continuity method to

e 5lve the equation.




Fu-Yau thus found the existence theorem on Strominger's system:

Theorem

lLet S be a K3 surface with Calabi-Yau metric ws. Let wy and w»>
be anti-self-dual (1,1)-forms on S such that 2,52 € H*(S.Z).
Let X be a T?-bundle over S constructed (twisted) by w; and w>.
Let E be a stable bundle over S with the gauge group SU(r).

Suppose w1, ws and c(E) satisfy the topological constraint

v aE) = (a(22) +o(2))

Then there exists a3 smooth function u on K3 surface and a
Hermitian-Yang-Mills metric h on E such that (X,7*E,w,.7"h) is
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Theorem

let S be a K3 surface with Calabi-Yau metric ws. Let wi and w»>
be anti-self-dual (1,1)-forms on S such that 2,52 € H*(S.Z).
Let X be a T?-bundle over S constructed (twisted) by w; and w>.
Let E be a stable bundle over S with the gauge group SU(r).

Suppose wy, wy and c(E) satisfy the topological constraint

- alE) = (2(2) + ().

Then there exists a2 smooth function u on K3 surface and a
Hermitian-Yang-Mills metric h on E such that (X, 7*E,w,,.7"h) is
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From Mukai's theory of stable vector bundles over K3 surface, we
know that a sufficient condition for the existence of a stable bundle

E with (r.c(E) =0.(E)) on K3 surface is given by the

inequality
2Zref{E) — 2" > —2

So we can determine all (wy.ws, &(E)) which satisfy topological

constraint in the theorem.
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From Mukai’'s theory of stable vector bundles over K3 surface, we
know that a sufficient condition for the existence of a stable bundle

E with (r.c(E) =0.(E)) on K3 surface is given by the
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From Mukai's theory of stable vector bundles over K3 surface, we
know that a sufficient condition for the existence of a stable bundle
E with (r.c(E) =0.(E)) on K3 surface is given by the
inequality

2rc(E) — 21 > —2.
So we can determine all (wy,ws, (E)) which satisfy topological

constraint in the theorem.
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From Mukai's theory of stable vector bundles over K3 surface, we
know that a sufficient condition for the existence of a stable bundle
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Let (S5.ws.Qs) be the K3 surface.

Let 22 %2 ¢ H*(S.Z) and let w; and w> be anti-self-dual
(1,1)-forms.

Then there is a non-K3hler manifold X such that 7 : X — S is a

holomorphic T2 bundle over S.
If we write locally w; = day and wy = das, then there are

coordinates of the T2 fiber, x and y, such that dx + 7*a; and

dy + m* a, are globally defined 1-forms on X.
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From Mukai's theory of stable vector bundles over K3 surface, we
know that a sufficient condition for the existence of a stable bundle

E with (r.c(E) =0.o(E)) on K3 surface is given by the

inequality
2re(E) —2r" > —2.

So we can determine all (wy.ws, &(E)) which satisfy topological

constraint in the theorem.
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Let
0=dc+m a1+ V-—1(dy +7a2).

Then the hermitian form on X is

B

= papee
wg =mws +—O6NE6
2
and the holomorphic 3-form is
SE—alicAl.

wo satisfies the forth equation d(|| Q ||, w3) = 0.

Let u be any smooth function on S and let

=3

S,
wy =7 (e"ws) + TQ A6 .

Then w, is a hermitian metric on X and (w,,2) also satisfies
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Let
0=dc+7m a1+ V-—1dy +7a2) .

Then the hermitian form on X is

5

5= e
wg=mws+—6ONE
2
and the holomorphic 3-form is
—x"C<cA0.

wq satisfies the forth equation d(|| Q ||, w3) = 0.

Let u be any smooth function on S and let

3

3 e
wy =7 (e"ws) + ?9 NG .

Then w, is 2 hermitian metric on X and (w,,{2) also satisfies
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As w1 and w> are harmonic, Ow; = dwz = 0. Then according to

d-Poincare Lemma, we can write w; and w» locally as
wy = 0§ = d(&1dzy + E2d2)

and

wy = 8¢ = NGrdzr + (2dz),

where (z1. z3) is the local coordinate on S.

Let
B: ( ‘51_}_\.{_1(;1 )
S+vV—1O ]
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If we let R, to be the curvature of the hermitian connection of the

metric w, on the holomorphic tangent bundle, then

trR, AR, = trRs A\ Rs +288u N du

+299(e "tr(0B AIB* - g 1)).
So the third equation in Strominger’s system can be reduced to

vV —180e"Nws — 208u N\ 80u — 299(e “tr(0B A OB* - g 1))
2
J
— trRs A Rs —tr Fy A Fp — (|Jen||” + ||u21|2)2—|5 =R
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Since tr Fy A F, > 0 and tr Rs A Rs = 0 for the case where the

base S = T* base, we obtain

Proposition

There is no solution of Strominger’s system on the torus bundle X

over T* for the metric ansatz

s -
e”_;..‘g — T9 A\ g.
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We consider the case of a K3 surface base. Let (E. h) be the
Hermitian-Yang-Mills vector bundle over S with the gauge group
SU(r). Then (V = n*E. h) is also the Hermitian-Yang-Mills vector
bundle over X. We can consider equation (1) as the equation on

the K3 surface S. Integrating equation (1) over S,

gl

JtuRs AR —weFu n B} = [[(len I3 + 1l w2 12.)55-
S S .

We use Q(5%) to denote the intersection number of anti-self-dual

(1,1)-form ££. As L [ trRs A Rs = 24, the above condition can

be written as

22 -a(E)=—(Q(52) +Q(52))- 2)
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Hermitian-Yang-Mills vector bundle over S with the gauge group
SU(r). Then (V = n*E. h) is also the Hermitian-Yang-Mills vector
bundle over X. We can consider equation (1) as the equation on

the K3 surface S. Integrating equation (1) over S,

2
[ tuRs ARs —weFun B} = [[(len I3 + 1l w2 12.) 55
S S -

We use Q(5%) to denote the intersection number of anti-self-dual
(1,1)-form £ As L; [ trRs A Rs = 24, the above condition can

be written as

c0-aE)=-(2(2)+0(2) @

irsa: 10050035 Page 85/138




Certainly we can choose w; and w> and SU(r) vector bundle E
such that they satisfy the condition (2). Then there is a smooth
function u such that

2 =9

trRs A Rs — trFp A Fp — (uulnz + ||u2n2) g =
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Certainly we can choose w; and w> and SU(r) vector bundle E
such that they satisfy the condition (2). Then there is a smooth
function u such that

A

2 @
trRs A Rs — trFy A F, — (lenz % ||u2|;2) e
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Certainly we can choose w; and w> and SU(r) vector bundle E
such that they satisfy the condition (2). Then there is a smooth
function u such that

=

.. @
trRs A Rs — trFy A Py — (llan ) + lwzl®) 23 = —n=3.
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: 10050035

So we obtain the following equation:

v —190e” A ws — d8u N Hdu

= w2 (3)
—99(e "tr(0B AN OB* - g™ 1)) =T 2| =0

In particular, when w> = nwy, n € Z, we have

1+ n?

tr(0BAOB* -g 1) =v—1 > lwn |2, ws -

1+n2

Hence in this case, if we set f = |53 H .+ We can rewrite

equation (3) as the standard complex Monge-Ampére equation:

det Uz

A(e " —fe¥)+38  +p—0.

det g7
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We solve equation (3) by the continuity method and get

Theorem

Equation (3) has a smooth solution u such that
W = ews +2v/—180u — /—1le *tr(6BAOB* - g 1)

is 3 hermitian metricon S.
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Theorem

Equation (3) has a smooth solution u such that
W = ews +2v/—180u — /—1le *tr(6B A OB* - g 1)

is 3 hermitian metricon S.
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We solve equation (3) by the continuity method and get

Theorem

Equation (3) has a smooth solution u such that
W = e"wes +2v —190u — Y —le_”tr(gB A dB™ - g_l)

is 3 hermitian metricon S.
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: 10050035

So we obtain the following equation:
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So we obtain the following equation:

v —199€e” A ws — 30u A Hu

w2 (3)
—39(e "tr(0BANOB* - g 1)) + u—= 2| =0

In particular, when ws> = nwy, n € Z, we have

S
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Hence in this case, if we set f = 1+"2 w1 H .+ We can rewrite

equation (3) as the standard complex Monge-Ampére equation:
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det g7
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So we obtain the following equation:
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det Uz
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So we obtain the following equation:

v —100€e” A ws — 88u N Hdu
2 2 (3)
—0d(e “tr(0BANOB* - g~ ))+,u2| =

In particular, when ws> = nwy, n € Z, we have

1+ n?

(@B A OB - g7!) = V—I—— |lwn|i2, ws -

Hence in this case, if we set f = 1+"2 leﬂ .+ We can rewrite

equation (3) as the standard complex Monge-Ampére equation:

det Uz

A(e " —fe¥)+38 0.

det g
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We solve equation (3) by the continuity method and get

Theorem

Equation (3) has a smooth solution u such that
W = e'ws +2v/—180u — \/—1le *tr(6BA8B* - g 1)

is 3 hermitian metricon S.
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We solve equation (3) by the continuity method and get

Theorem

Equation (3) has a smooth solution u such that
W = e"ws +2v/—180u — /—1le *tr(6BAOB* - g 1)

is 3 hermitian metricon S.
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Theorem

Let S be a2 K3 surface with Calabi-Yau metric ws. Let wy and w»
be anti-self-dual (1,1)-forms on S such that 2 € H*(S.Z) and
22 ¢ H*(S.Z). Let X be a T*-bundle over S constructed by wr
and w>. Let E be a stable bundle over S with the gauge group
SU(r). Suppose wy, w> and c(E) satisfy the topological
constraint (2). Then there exists a smooth function u and a
Hermitian-Yang-Mills metric h on E such that

(X, V=n"E,w,.7"h) is a solution of Strominger’s system.
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Theorem

Let S be a2 K3 surface with Calabi-Yau metric ws. Let wy and wo
be anti-self-dual (1.1)-forms on S such that 2 < H*(S.Z) and
22 ¢ H*(S.Z). Let X be a T*-bundle over S constructed by un
and w>. Let E be a stable bundle over S with the gauge group
SU(r). Suppose wy, w> and c(E) satisfy the topological
constraint (2). Then there exists a smooth function u and a
Hermitian-Yang-Mills metric h on E such that

(X, V=n"E,w,.7"h) is a solution of Strominger’s system.
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For simplicity, we consider the equation

det u-
Ale ™ —fe ™) +8 L+ =0.
detg’-;

We impose the following elliptic condition
W = (e + fe ")w +2v/—-188u > 0

and the normalization condition

: 10050035

Page 101/138
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det u-
Ale ™ —fe ) +38 L+ u=0.
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For simplicity, we consider the equation

det u-
A(e ™ —fe ) +38 L+ =0.
detg;}

We impose the following elliptic condition
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: 10050035
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For simplicity, we consider the equation

det u-
A(e ™ —fe ) +8 L+ =0.
detg;}

We impose the following elliptic condition
W = (e + fe " w 4+ 2v/—-186u > 0

and the normalization condition

: 10050035
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Pi

IIIII

/eroth order estimate

let P —2g° i 32?;%. We have two methods of calculating

det g- w2
fP(e )detg 21

Then using the Sobolev inequality, Moser iteration and Poincare

inequality, we obtain

Proposition: If A < 1, then there is a constant C; which depends

on f, u and the Sobolev constant of ws such that

irf_l,fu > —In(GA) .

Moreover, if A is small enough such that A < (C) ™%, then there is

an upper bound of sups u which depends on f, u, Sobolev

: 10050035 Page 105/138
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/eroth order estimate

let P =24 i az?;fj. We have two methods of calculating
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Then using the Sobolev inequality, Moser iteration and Poincare

inequality, we obtain

Proposition: If A < 1, then there is a constant C; which depends

on f, u and the Sobolev constant of ws such that
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Moreover, if A is small enough such that A < (C) ™%, then there is
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/eroth order estimate

fet ¥ — D09 i 32?231_. We have two methods of calculating

det g- w2
/P(e )detg r. o

Then using the Sobolev inequality, Moser iteration and Poincare

inequality, we obtain

Proposition: If A < 1, then there is a constant C; which depends

on f, u and the Sobolev constant of ws such that

igfu > —In(GA) .

Moreover, if A is small enough such that A < (C) ™%, then there is

an upper bound of sups u which depends on f, u, Sobolev
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An estimate of the determinant

We need to estimate the lower bound of the determinant

det g{I

o .
det g;

We apply the maximum principle to the function
e ‘ Ju |2 K 2e—einfu

and obtain
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An estimate of the determinant

We need to estimate the lower bound of the determinant

B det gﬁ
detg;

F

We apply the maximum principle to the function
N, e L, inf u

and obtain
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An estimate of the determinant

We need to estimate the lower bound of the determinant

= det gfj
detg;

F

We apply the maximum principle to the function
) G W g € inf u

and obtain
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Proposition: Given any constant k € (0.1), we fix some positive

constant € satisfying
e < min{l, 2_15',} .

Suppose that A satisfies

A< min{l, " {2(1 + sup f)}_% €

1
1—x\- 3 —6¢
" C -
(2(-:3) | C4 5}

where (3 and C4 depend on f and u, C4 also depends on the

curvature bound of ws, and (s depends on k,e and (3. Then

F > ke > x(GA)2 .
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For simplicity, we consider the equation

e 8detu,.} :
(e —fe ")+ detg;}+#_ .

We impose the following elliptic condition
W = (e + fe ")w 4+ 2v/—-186u > 0

and the normalization condition
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So we obtain the following equation:

v —100e” A ws — d0u A ddu
= (3)
—0d(e “tr(0BANOB* - g~ ))+,u.2| =il

In particular, when w> = nwy, n € Z, we have

Pt

(@B A OB -g7!) = V=1—— |lwn|l2, ws -

1—|—n2

Hence in this case, if we set f = lws H .+ We can rewrite

equation (3) as the standard complex Monge-Ampeére equation:

det Uz

A(e " —fe ")+ 38 Lt —@.

det g;
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Since tr Fy A Fp, > 0 and tr Rs A Rs = 0 for the case where the

base S — T* base, we obtain

Proposition

There is no solution of Strominger’s system on the torus bundle X

over T* for the metric ansatz

5 —
e'ws + Y50 ND.
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We consider the case of a K3 surface base. Let (E. h) be the
Hermitian-Yang-Mills vector bundle over S with the gauge group
SU(r). Then (V = n*E. h) is also the Hermitian-Yang-Mills vector
bundle over X. We can consider equation (1) as the equation on

the K3 surface S. Integrating equation (1) over S,

=3
[S{trRs AN Rs — trFy A Fh} — L(H Wi His = H w2 ||3,5)%

We use Q(5%) to denote the intersection number of anti-self-dual
(1,1)-form £. As L5 [ trRs A Rs = 24, the above condition can

be written as

0t -aE)=-(2(2)+0(2) @
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An estimate of the determinant

We need to estimate the lower bound of the determinant

det gﬁ

= .
det g;

We apply the maximum principle to the function
& ‘ vu |2 L, T 2e—£infu

and obtain
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Third order estimate

Let

®©
|

€ O
|

ij ki
g'g" ujuz

IiF _Isj

g g
&g gy

rif 1kl _1pg irs.. =
g"'g"'g""g U ilorY jkqs

rkt
g UT ifk Urst

rij tkl _rpg _rrs.. =
E & & & Uylikge

where indices preceded by a comma indicate covariant

differentiation with respective to the metric ws.
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Second order estimate

Since

e’ +fo ¥+ Au> Fz > a‘«.:%(left)_1 > 0,

it is sufficient to have an upper estimate of e + fe ¥ + Au.

Applying the maximum principle to the function
e—,\lu—l—)\ﬂvulz . (eu ey &U) :

where \; and \» are positive constants that can be determined, we

can obtain the second order estimate.
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Second order estimate

Since

e’ +fe¥ + Au> Fz > H:%(ClA)_l > 0,

it is sufficient to have an upper estimate of e¥ + fe ¥ + Au.

Applying the maximum principle to the function
E—Alu—l—)\z[vulz ; (Eu 4 fe ¥t AU) s

where A\; and \» are positive constants that can be determined, we

can obtain the second order estimate.
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Third order estimate

Let

©
|

¢ ©
|

ij ki
g'g" ujuz

IiF _Isj

rkt
E £ & Ui lUrst
i kil Pq ., i
gj gl gJ u__rkpqua
tij 1kl _rpqg irs e
85 B K ilprYjkgs

rif tkl _rpg s, -
R ET R Ba_m_

where indices preceded by a comma indicate covariant

differentiation with respective to the metric ws.
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Again, we apply the maximum principle to the function
(k1 + Au)O + ko(m+ Au)l + k3 | syu |2 T + Kal,

where all 5; are positive constants that can be determined and m
is a fixed constant such that m+ Au > 0. We can then obtain the

third order estimate.

Pirsa: 10050035 Page 123/138



Topology of the total space

(1) ®Y(X) = h%Y(S)+1
(2) PO(X) = K2(S)
3) ;u(X) = B(S)+1
(43) bo(X) = bo(S)—1
if wy is a multiple of wy
(4b) b2(X) = b(S) -2

if wy is not a multiple of w>.
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Topology of the total space

(1) %Y(X) = A*(S)+1
(2) A(X) = K-2(S)
3) ;u(X) = B(S)+1
(43) b2(X) = Bby(S)—1
if wy is a multiple of wy
(4b) B2(X) = Bb2(S)—2

if w1 is not a multiple of w>.
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Topology of the total space

(1) Y(X) = A*Y(S)+1
(2) A2(X) = BO(S)
3) bu(X) = B(S)+1
(43) b>(X) = Bby(S)—1
if wy is a multiple of wy
(4b) b2(X) = B2(S)—2

if wi is not a multiple of w>.
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Fu-Li-Yau: Connected sums of S3 x S3

Main T heorem

Let Y be a smooth Kahler Calabi-Yau threefold and let Y — X
be a contraction of mutually disjoint (—1, —1)-curves. Suppose Xg
can be smoothed to a family of smooth complex manifolds X:.

Then for sufficiently small t, X; admit smooth balanced metrics.

Our construction provides balanced metrics on a large class of

threefolds. In particular,

Corollary

There exists a balanced metric on #(S3 x S3) for any k > 2
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Fu-Li-Yau: Connected sums of S3 x S3

Main T heorem

Let Y be a smooth Kahler Calabi-Yau threefold and let Y — Xg
be a contraction of mutually disjoint (—1, —1)-curves. Suppose Xg
can be smoothed to a family of smooth complex manifolds X:.

Then for sufficiently small t, X admit smooth balanced metrics.

Our construction provides balanced metrics on a large class of

threefolds. In particular,

Corollary

There exists a balanced metric on #(S3 x S3) for any k > -
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Theorem

Let S be a2 K3 surface with Calabi-Yau metric ws. Let wy and wo
be anti-self-dual (1. 1)-forms on S such that & < H*(S.Z) and
22 ¢ H*(S.Z). Let X be a T*-bundle over S constructed by w1
and w>. Let E be a stable bundle over S with the gauge group
SU(r). Suppose wi, w> and c(E) satisfy the topological
constraint (2). Then there exists a smooth function u and a
Hermitian-Yang-Mills metric h on E such that

(X, V=n"E,w,.7"h) is a solution of Strominger’s system.
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Let
0=dx+7m a1+ V—1(dy +7 a2).

Then the hermitian form on X is

e

= A
wg=mws+ —6O6ANE
2
and the holomorphic 3-form is
—x"SIcAD.

wq satisfies the forth equation d(|| Q ||, w3) = 0.

Let u be any smooth function on S and let

3

=5 I
wy =7 (e"ws) + TQ NG .

Then w, is a hermitian metric on X and (w,,2) also satisfies
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On these manifolds, Goldstein and Prokushkin observed that there

exist natural metrics:

S —
Wy — EUL:..?KB -+ 59 /\ 9_.

which satisfy the first equation of Strominger system. Here u is
any function of K3 surface, @ is the connection 1-form on the
T?-bundle. Similar ansatz were also considered by

Dasgupta-Rajesh-Sethi and Becker-Becker-Dasgupts-Green earlier.
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In general, we consider the r + 3 holomorphic vector bundle

Cir o TX. We also have

8 ¢
= 12
= ( (1 sz)

where

G2 =(1,- -, )" € QOH(TX)®
G {1, ) =~ (FEXT )™
G € Q%' (End TX).

Suppose [ai], - - - . [a,] € HY(X. TX*) are linearly independent and
2L re— [8-] € HY( X, TX*) are linearly independent. Then the

rrse v@@OVE theorem holds. Page 132/138




Let E. be a smooth family of holomorphic vector bundles over a

Calabi-Yau space X. Let hg be a Hermitian-Yang-Mills metric on

E.

We would like to extend hg to a smooth family of

Hermitian-Yang-Mills metrics.
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The first equation is equivalent to the existence of a balanced
metric. |he second is the Hermitian-Yang-Mills equations. And

the third equation is the anomaly equation.

When V is the tangent bundle TX and w is Kahler, the system is
solved by the Calabi-Yau metric. So Strominger's system should be
viewed as a generalization of Calabi’s conjecture for the case of

non-K3ahler Calabi-Yau threefolds.
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Reid conjectured that one can connect any CY three-fold to any
other through such conifold transitions. It is a nice picture and can

be checked in many cases. However, one needs to understand the

geometry of such non-K3hler manifolds.

In order to do this, we find that the most suitable structure is the

hermitian metric with torsion introduced by Strominger.
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Balanced metrics are found on non-K3hler manifolds such as
Iwasawa manifolds and twistor spaces of self-dual Riemannian
four-manifolds. Furthermore, it is known that balanced manifolds
respect fiber bundle construction, and importantly, a complex
manifold birational to a balanced manifold must admit a balanced

metric.

Hence, we believe that the balanced manifold as required for the
Strominger system is a good class of manifolds. We shall now
introduce the Strominger’'s equations and prove the existence of

solutions.
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Strominger's system

Let X be a compact complex threefold X with a trivial canonical
bundle, i.e. there is a non-vanishing holomorphic three-form 2.

Let V be a holomorphic vector bundle V over X.

Consider the pair (w, h), where w is a hermitian metric on X, and

h is a hermitian metric on V.

The following eguations are required to admit supersymmetry.
(1) d(]| Q [lo «?) =0

(D E"—F£ —8. Erot—0

(3) V-100w =% (tr(R, A R,) —tr(Fn A Fp))
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Strominger's system

Let X be a compact complex threefold X with a trivial canonical
bundle, i.e. there is a non-vanishing holomorphic three-form 2.

Let V be a holomorphic vector bundle V over X.

Consider the pair (w, h), where w is a hermitian metric on X, and

h is a hermitian metric on V.

The following eguations are required to admit supersymmetry.
(1) d(]| Q [lo w?) =0

2 F=F” =0, FAL2=0

(3) V-100w =% (tr(R, A R,) — tr(Fn A Fp))
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