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Abstract: The Petrov classification of the Weyl tensor is an important tool in the study of exact solutions of the Einstein equation in 4d. For
example, the Kerr solution was discovered in a study of spacetimes with algebraically specia Weyl tensors. Algebraic classification of the Weyl
tensor has been extended to higher dimensions. | shall review this classification and describe known families of algebraicaly specia solutions.
Recent progress towards obtaining a higher dimensional generalization of the Goldberg-Sachs theorem will be described.
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Background
Hntivaﬁnn :

Higher dimensional GR

@ Known vacuum black hole solutions: Myers-Perry, black rings
@ many other topologies appear permissible

@ rigidity theorem gives single rotational symmetry, less than

known solutions
@ approximate methods suggest existence of many new solutions "
@ need to develop new methods for solving Einstein equation

@ most important 4d technique: algebraically special solutions
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Background

Petrov classification

@ At any point of a 4d spacetime, a (non-zero) Weyl tensor
defines 4 Principal Null Directions. If 2 or more of these
coincide everywhere then the spacetime is algebraically special.

@ Kerr solution is "type D": two pairs of coincident null
directions. Discovered in a search for algebraically special
solutions.

@ The algebraically special property can be used to help solve
Einstein’s eq. e.g. Kinnersley determined all type D vacuum
solutions: includes Kerr-NUT, spinning C-metric.
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de Smet classification
Higher dimensional classification CMPP cdlassification
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de Smet classification de Smet 03

4d: can classify Weyl tensor using spinors. Equivalent to method
based on null vectors.

bd: define
Pr.u,ﬁ":.f:ﬁ == Cabcd(crab)cxﬁ(crcd)'}rﬁ

Let ¢* be (Dirac) spinor. Paﬁ.ﬁ,gw“@bﬁgﬁwﬁ is a homogeneous
degree 4 polynomial in 4 complex variables (quartic in CP?).
Classify Weyl tensor according to whether, and how, this factorizes. &

@ Myers-Perry: square of a quadratic polynomial
e Black string: product of quadratic polynomials

d > 5: spinors not useful for classifying Weyl tensor?
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P dlassification

Higher dimensional classification Ciu'l P.
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CMPP Classificatian Coley, Milson, Pravda & Pravdova 04

In a d-dimensional spacetime, introduce a null basis
{ = g, n=eq, m; = €;, p=2...d—1L,
P=n*=0-mi=n-m; =0, 2on—1 m; - mj = ;.
Bases related by SO(1, d — 1) transformations, including boosts:
£ — A, I m; — m;

A tensor component has boost weight w if it scales as AY
e.g. Weyl tensor: Cyjo; has w =2, Gyjjx has w =1, ...
(w = number of "0" indices minus number of "1"” indices)
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Higher dimensional classification CMP

02 is a Weyl Aligned Null Direction (WAND) iff all w = 2 Weyl
components vanish everywhere.

irsa: 10050028

Basis independent: equivalent to E[aCb}m[efﬂfcf“' —
d = 4: WAND = Principal Null Direction — d exactly 4

d > 4: WANDs need not exist, e.g., "static Kaluza-Klein
bubble” ds?* = —dt? + ds?(Euclidean Schwarzschild)

WANDs need not be discrete, e.g., dS; x $%: any null vector

field tangent to dS3 is a WAND
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Higher dimensional classification CMPP dassificati
Gold berg Sachs
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Multiple WANDs

£2 is a multiple WAND iff all w = 2,1 Weyl components vanish
everywhere. A spacetime is algebraically special if it admits a

multiple WAND.

@ Basis independent
@ d = 4: multiple WAND = repeated Principal Null Direction
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Classification of the Weyl tensor

The spacetime/Weyl tensor is of type

irsa: 10050028

G < # WAND

| <= w = 2 Weyl cpts vanish (£ WAND)

Il <= w = 2,1 Weyl cpts vanish (£ multiple WAND)

Il <= w =2,1,0 Weyl cpts vanish (£ multiple WAND)

N < w=2,1,0,—1 Weyl cpts vanish (¢ multiple WAND)
D «<— w=2,1,—1, -2 cpts vanish (£, n multiple WANDs)

0 < Cabcd =1
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Higher dimensional classification

@ Schwarzschild, black string, Myers-Perry, dS3 x S, all type D
@ pp-waves are type N

@ Black ring: type G in one open subset, type | in another open
subset Pravda & Pravdova 05 = type |/G distinction not
useful (not true for algebraically special types - proof?)
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Higher dimensional classification 'I.';.M.PP- c:la'.ﬂ'ﬁc;itlm

Examples

@ Schwarzschild, black string, Myers-Perry, dS3 x S2 all type D
@ pp-waves are type N

@ Black ring: type G in one open subset, type | in another open
subset Pravda & Pravdova 05 = type |/G distinction not
useful (not true for algebraically special types - proof?) k
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Higher dimensional classification EMPPdamﬁr:ztnm

Classification of the Weyl tensor

The spacetime/Weyl tensor is of type
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G < 7 WAND

| <= w = 2 Weyl cpts vanish (£ WAND)

Il <= w = 2,1 Weyl cpts vanish (£ multiple WAND)

Il < w =2,1,0 Weyl cpts vanish (£ multiple WAND)

N < w=2,1,0,—1 Weyl cpts vanish (¢ multiple WAND)
D «<— w=2,1,—1, -2 cpts vanish (£, n multiple WANDs)

Page 12/48




Higher dimensional classii%c;atinr; 'Ciu'IPPda_‘ sificatic

_.l.l-_.t'-_-__ ol el B

! 3 a
& i et rie we e
h, E L BjL=i®

Classification of the Weyl tensor

The spacetime/Weyl tensor is of type
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G < #AWAND

| <= w = 2 Weyl cpts vanish (£ WAND)

Il <= w = 2,1 Weyl cpts vanish (£ multiple WAND)

Il <= w =2,1,0 Weyl cpts vanish (£ multiple WAND)

N < w=2,1,0,—1 Weyl cpts vanish (£ multiple WAND)
D «<— w=2,1,—1, -2 cpts vanish (£, n multiple WANDs)

0 & Cabcd =1{
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Classification of the Weyl tensor

The spacetime/Weyl tensor is of type
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G < # WAND

| <= w = 2 Weyl cpts vanish (£ WAND)

Il <= w = 2,1 Weyl cpts vanish (£ multiple WAND)

Il <= w =2,1,0 Weyl cpts vanish (£ multiple WAND)

N < w=2,1,0,—1 Weyl cpts vanish (¢ multiple WAND)
D «<— w=2,1,-1, -2 cpts vanish (£, n multiple WANDs)

0 <= Cabcd — 1
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Higher dimensional classification CMPP dassification

1 Wl B
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@ Schwarzschild, black string, Myers-Perry, dS3 x S, all type D
@ pp-waves are type N

@ Black ring: type G in one open subset, type | in another open
subset Pravda & Pravdova 05 = type |/G distinction not
useful (not true for algebraically special types - proof?) X
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Higher dimensional classification

Gokdberg-Sachs

Goldberg-Sachs theorem

In 4d, starting point in using algebraically special property to solve
Einstein eq is

For d = 4 Einstein spacetime (not type O), £2 is a multiple WAND
iff it is geodesic and shearfree.

Extension to d > 4 cannot be straightforward:

@ Multiple WAND needn’t be geodesic, e.g. dS3 x S any null
vector field tangent to dS3 is multiple WAND

@ Multiple WAND can be geodesic but shearing
e.g. black string ds® = ds?(Schw.) + dz?: multiple WAND =
repeated PND of Schw. —> expands in Schw. directions

e DUL NOt Zz-direction = shearing.
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Higher dimensional classification CMPP dassification
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@ Schwarzschild, black string, Myers-Perry, dS3 x S2 all type D

@ pp-waves are type N

@ Black ring: type G in one open subset, type | in another open

subset Pravda & Pravdova 05 = type |/G distinction not
useful (not true for algebraically special types - proof?)
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Higher dimensional classification

Goldberg-Sachs

Goldberg-Sachs theorem

In 4d, starting point in using algebraically special property to solve
Einstein eq is

For d = 4 Einstein spacetime (not type O), £2 is a multiple WAND
iff it is geodesic and shearfree.

Extension to d > 4 cannot be straightforward:

@ Multiple WAND needn’t be geodesic, e.g. dS3 x S any null
vector field tangent to dS3 is multiple WAND

@ Multiple WAND can be geodesic but shearing
e.g. black string ds® = ds?(Schw.) + dz?: multiple WAND =
repeated PND of Schw. —> expands in Schw. directions

e DUL NOt Zz-direction = shearing.
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Higher dimensional classification

Towards d > 4 Goldberg-Sachs

Can we generalize " geodesic part” of Goldberg-Sachs to higher
dimensions’

e PPCM 04: the multiple WAND of a type Il or type N
Einstein spacetime is geodesic.

Durkee & HSR 09: In an Einstein spacetime, 3 a multiple WAND
iff 4 a geodesic multiple WAND.

< trivial.
=> assume o non-geodesic multiple WAND, appeal to following

theorem. Tl
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Higher dimensional classification CMPP dassification

Goldberg-Sachs

Theorem (Durkee & HSR 09)

An Einstein spacetime admitting a non-geodesic multiple WAND is
foliated by constant curvature, totally umbilic, Lorentzian
submanifolds of dimension 3 or greater, and any null vector field
tangent to the leaves of the foliation is a multiple WAND.

"Totally umbilic”: equivalent definitions

@ Extrinsic curvature K%, = £°hp. where £° L submanifold,
h,p induced metric.

@ Any null geodesic of submanifold is a null geodesic of full
spacetime.

Hence any geodesic null vector field of submanifolds gives a
geodesic multiple WAND of spacetime. Example: dS3 x S2.
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Higher dimensional classification

Goldberg-Sachs

Theorem (Durkee & HSR 09)

An Einstein spacetime admitting a non-geodesic multiple WAND is
foliated by constant curvature, totally umbilic, Lorentzian

submanifolds of dimension 3 or greater, and any null vector field
tangent to the leaves of the foliation is a multiple WAND.

"Totally umbilic”: equivalent definitions

@ Extrinsic curvature K. = £°hp. where £€° L submanifold,
h.p induced metric.

@ Any null geodesic of submanifold is a null geodesic of full
spacetime.

Hence any geodesic null vector field of submanifolds gives a

Page 21/48




Higher dimensional classification

Idea of proof.

Einstein spacetime =—> Weyl tensor obeys Bianchi identity.

For non-geodesic multiple WAND, Bianchi = strong restrictions
on certain w = 0 Weyl components.

These restrictions plus Bianchi imply that can perform a null
rotation (Lorentz transformation fixing £) to make n a multiple
WAND =— type D.

Now perform null rotation about n:

1
F—f—zm: — Ez,-z,-n, o —n m: = m; + z;£ N

Restrictions on Weyl — d n > 1-dimensional space of solutions
z; s.t. £ is multiple WAND. ¢, n’ and z;m; define a n+ 2
dimensional distribution. Turns out to be integrable —>
submanifolds. Restrictions on Weyl — totally umbilic, constant
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Higher dimensional classification

Towards d > 4 Goldberg-Sachs

Can we generalize " geodesic part” of Goldberg-Sachs to higher
dimensions?

@ PPCM 04: the multiple WAND of a type Il or type N
Einstein spacetime is geodesic.

Durkee & HSR 09: In an Einstein spacetime, 3 a multiple WAND
iff 4 a geodesic multiple WAND.

< trivial.
=> assume o non-geodesic multiple WAND, appeal to following

theorem. Tl
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Higher dimensional classification

Theorem (Durkee & HSR 09)

An Einstein spacetime admitting a non-geodesic multiple WAND is
foliated by constant curvature, totally umbilic, Lorentzian
submanifolds of dimension 3 or greater, and any null vector field
tangent to the leaves of the foliation is a multiple WAND.

"Totally umbilic”: equivalent definitions

@ Extrinsic curvature K%, = £°hp. where £€° L submanifold,
h.p induced metric.

@ Any null geodesic of submanifold is a null geodesic of full
spacetime.

Hence any geodesic null vector field of submanifolds gives a
geodesic multiple WAND of spacetime. Example: dS3 x S2.
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Higher dimensional classification

Goldberg-Sachs

Idea of proof.

Einstein spacetime —> Weyl tensor obeys Bianchi identity.

For non-geodesic multiple WAND, Bianchi = strong restrictions
on certain w = 0 Weyl components.

These restrictions plus Bianchi imply that can perform a null
rotation (Lorentz transformation fixing £) to make n a multiple
WAND = type D.

Now perform null rotation about n:

1
V' =4 — zzm; — =z;z;n, g —n m: = m; + z;£ N

Restrictions on Weyl — 4 n > 1-dimensional space of solutions
z; s.t. £ is multiple WAND. ¢, n’ and z;m; define a n+ 2
dimensional distribution. Turns out to be integrable —>
submanifolds. Restrictions on Weyl — totally umbilic, constant
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Stronger result in 5d

In 5d, restrictions on Weyl are so strong that we can prove

A 5d Einstein spacetime admitting a non-geodesic multiple WAND
is locally isometric to one of

@ Minkowski or (anti-)de Sitter spacetime.

Q@ dS; x S% or ad53 x H?

© d? =r2ds} + fi5 +f(r)d¢?,  f(r)=k—5+47
where ds3 is the metric on a Lorentzian space of constant
curvature of sign k € {—1,0,1}.

Special cases of (3):
o Kaluza-Klein bubble (k =1, A = 0) Witten 82
o0 @ AdS soliton (k= 0, A < 0) Horowitz & Myers 99
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Higher dimensional classification

Goldberg-Sachs

d > 5 solutions with non-geodesic multiple WAND

For d > 5 4 many solutions with non-geodesic multiple WAND
Example: consider d = 6 static axisymmetric solution (3 many!)

ds®* = —A(r, z)°dt* + B(r, z)*(dr* + dz°) + C(r, z)*d25
Analytically continue t = i¢ and dQ2% — ds?(dS3):
ds® = A(r, z)%d¢? + B(r, 2)*(dr? + dz?) + C(r, z)%ds*(dS3)

any null vector field tangent to dS3 is a multiple WAND.
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Higher dimensional classification

Goldberg-Sachs

"Shear part” of Goldberg-Sachs

A geodesic multiple WAND need not be shearfree. But Bianchi
and Ricci identities constrain possible form of "optical matrix”
pii = V;¢; (i.e. shear+rotation+expansion). Can we determine
most general solution? What about converse?

(Work in progress with Durkee, Pravda & Pravdova.)

Example: type N Pravda et al 04

Warm-up: consider Maxwell (p + 1)-form field F,5. _ instead. F is
algebraically special iff £ is multiply aligned with F, i.e., boost
weight 1,0 components vanish.
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Higher dimensional classification

Goldberg-Sachs

"Shear part” of Goldberg-Sachs

A geodesic multiple WAND need not be shearfree. But Bianchi
and Ricci identities constrain possible form of "optical matrix”
pii = V;¢; (i.e. shear+rotation+expansion). Can we determine
most general solution? What about converse?

(Work in progress with Durkee, Pravda & Pravdova.)

Example: type N Pravda et al 04

Warm-up: consider Maxwell (p + 1)-form field F.p. _ instead. F is
algebraically special iff £ is multiply aligned with F, i.e., boost
weight 1,0 components vanish.
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Higher dimensional classification CMPP dassification
Goldberg-Sachs

Algebraically special Maxwell fields

Theorem (Mariot-Robinson)

In a 4d spacetime, £ is multiply aligned with a (non-zero) 2-form
solving the Maxwell equations if, and only if, it is geodesic and

shearfree.
Note: same result as for £ to be multiply aligned with Weyl tensor!

Page 30/48
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Higher dimensional classification CMPP d

assification
Goldberg-Sachs

Let p;j = V£; (shear+rotation+expansion), p = pii

Theorem (Durkee, Pravda, Pravdova & HSR 10)

If £ is multiply aligned with a non-zero (p + 1)-form solving the
Maxwell equations then p;y has p eigenvalues which sum to p/2.

For multiple WAND in Schwarzschild: all eigenvalues of p(;;) are
p/(d —2). So £ can be multiply with both Weyl and (p + 1)-form

iff d =2(p+1) (e.g. 2-form in 4d).
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Higher dimensional classification

Gnl::l Gk

"Shear part” of Goldberg-Sachs

A geodesic multiple WAND need not be shearfree. But Bianchi
and Ricci identities constrain possible form of "optical matrix”
pii = Vj&; (i.e. shear+rotation+expansion). Can we determine
most general solution? What about converse?

(Work in progress with Durkee, Pravda & Pravdova.)

Example: type N Pravda et al 04

Warm-up: consider Maxwell (p + 1)-form field F,p._ instead. F is
algebraically special iff £ is multiply aligned with F, i.e., boost
weight 1,0 components vanish.
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Higher dimensional classification CMPP da

Goldberg-Sachs

Let p;j = V£; (shear+rotation+expansion), p = pii

Theorem (Durkee, Pravda, Pravdova & HSR 10)

If £ is multiply aligned with a non-zero (p + 1)-form solving the
Maxwell equations then p;y has p eigenvalues which sum to p/2.

For multiple WAND in Schwarzschild: all eigenvalues of p(;;) are
p/(d —2). So £ can be multiply with both Weyl and (p + 1)-form

iff d =2(p+1) (e.g. 2-form in 4d).
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Higher dimensional classification CMPP dlassification
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Algebraically special, axisymmetric, solutions Godazgar & HSR 09

A d-dimensional spacetime is axisymmetric if 3 a SO(d — 2)
isometry group with $9—3 orbits.

For d > 4, action of SO(d — 2) is "orthogonally transitive”, i.e.,
ds? = gp(x)dx?dx? + r(x)?dQ3

Examples: Schwarzschild, black string, non-uniform black string,
Randall-Sundrum black hole. S

@ might be time-dependent
@ most general static axisymmetric vacuum solution not known
ford >4

@ goal: determine general algebraically special axisymmetric
ez Einstein spacetime
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Higher dimensional classification

Algebraically special, axisymmetric, solutions Godazgar & HSR 09

A d-dimensional spacetime is axisymmetric if 3 a SO(d — 2)
isometry group with S92 orbits.

For d > 4, action of SO(d — 2) is "orthogonally transitive”, i.e.,
ds? = gp(x)dx?dx? + r(x)?dQ3

Examples: Schwarzschild, black string, non-uniform black string,
Randall-Sundrum black hole. A

@ might be time-dependent

@ most general static axisymmetric vacuum solution not known
ford >4
@ goal: determine general algebraically special axisymmetric
ez Einstein spacetime
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Higher dimensional classification

R imenic salestins

Kramer-Neugebauer solutions (1968)

4d analogue of d > 4 axisymmetric spacetimes: spacetimes
admitting hypersurface L spacelike Killing vector field. If
algebraically special then vacuum spacetime with this symmetry
must be either

@ Robinson-Trautman: 3 null geodesic congruence with
vanishing shear and rotation, non-vanishing expansion
(includes Schwarzschild, C-metric)

@ Kundt: 4 null geodesic congruence with vanishing expansion,
rotation and shear.

(For d > 4, Robinson-Trautman is very restrictive Podolsky &
Ortaggio 06)
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Higher dimensional classification
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Algebraically special, axisymmetric, solutions Godazgar & HSR 09

A d-dimensional spacetime is axisymmetric if 3 a SO(d — 2)
isometry group with S92 orbits.

For d > 4, action of SO(d — 2) is "orthogonally transitive”, i.e.,
ds? = gp(x)dx?dx? + r(x)?dQ3

Examples: Schwarzschild, black string, non-uniform black string,
Randall-Sundrum black hole. A

@ might be time-dependent

@ most general static axisymmetric vacuum solution not known
ford >4
@ goal: determine general algebraically special axisymmetric
e Einstein spacetime
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Higher dimensional classification CMPP dlassification
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Kramer-Neugebauer solutions (1968)

4d analogue of d > 4 axisymmetric spacetimes: spacetimes
admitting hypersurface L spacelike Killing vector field. If
algebraically special then vacuum spacetime with this symmetry
must be either

@ Robinson-Trautman: 3 null geodesic congruence with
vanishing shear and rotation, non-vanishing expansion
(includes Schwarzschild, C-metric)

@ Kundt: 4 null geodesic congruence with vanishing expansion,
rotation and shear.

(For d > 4, Robinson-Trautman is very restrictive Podolsky &
Ortaggio 06)
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Higher dimensional classification

Assume spacetime is Einstein with multiple WAND £°, wlog
geodesic.

Case 1. #7 not axisymmetric. Act with SO(d —2) —
continuous family of multiple WANDs. Only solutions:

@ KK bubble
ds? = r? (—dt? + cosh® t dQ3_;) + iy + F(r)de?,
f(r)=1—- 5 —Ar?
@ dS,;_» x S?
Both are type D.
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Higher dimensional classification CMPP
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Case 2. #2 axisymmetric. All solutions:
o generalized Schwarzschild (type D)
@ generalized black string (type D)

@ axisymmetric Kundt solutions (type Il or more special)
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Higher dimensional classification CMPP dlassification
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Axisymmetric Kundt solutions

ds* = —U(v,r,z)dv’ + 2dvdr +2C(v,r,z)dvdz
+ Dlv, r,2)-dz" + E(v,r,z)"d95 ,

¢ = @/0r. Solutions involves arbitrary functions of v,
r-dependence fixed, z-dependence reduced to ODEs.

irsa: 10050028 '

Type N explicit: gravitational waves in Minkowski or (anti)-de
Sitter.

No type lIl.

Type D: ds? = dz* + A(z)*d¥3 + R(z)?dQ5_5, d¥3 is metric
on 2d Lorentzian space of constant curvature (cf Bohm
metrics). AdS/CFT applications.

Type |I: gravitational waves in type D? Page 4113




Higher dimensional classification CMPP dassification

Loldberg-Sachs
Axisymmetric solutions

Axisymmetric Kundt solutions

ds* = —U(v,r,z)dv’ + 2dvdr +2C(v,r,z)dvdz
+ Dwv,r,z)°dz" + E(v,r,z)°dQ5 ,

¢ = @/0r. Solutions involves arbitrary functions of v,
r-dependence fixed, z-dependence reduced to ODEs.
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Type N explicit: gravitational waves in Minkowski or (anti)-de
Sitter.

No type lIl.

Type D: ds? = dz* + A(z)*d¥3 + R(z)?dQ5_5, dX3 is metric
on 2d Lorentzian space of constant curvature (cf Bohm
metrics). AdS/CFT applications.
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Introduction

GHP formalism : t_-r-- :F__ — GHE

Geroch-Held-Penrose formalism

4d Newman-Penrose formalism involves writing out all components
of Bianchi and Ricci equations in a null basis {£, n, m, m}. All
derivatives are partial derivatives (D = 20, etc)

Often interested in spacetimes with 2 preferred null directions, e.g.,

type D or spacetimes with preferred family of 2 surfaces: don't
care about choice of m, m.

GHP formalism: "improved” version of NP that is covariant under k
rotations of spatial basis: m — e’ m and under boosts £ — M\,

n — A~ 1n. Discrete symmetries hugely reduce number of
equations.
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Higher dimensional GHP

GHP formalism

Higher-dimensional GHP formalism Durkee, Pravda, Pravdova, HSR 10

Straightforward to extend GHP to higher dimensions: introduce
new derivative operators b, b’, 8;, write out components of Bianchi
and Ricci.

4d GHP streamlines analysis of perturbations of Kerr spacetime, or
general type D Stewart & Walker 74 N

d > 4 GHP also useful for analyzing perturbations of type D
spacetimes e.g. Myers-Perry
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GHP formalism F' e;t urhat inﬁs; onal G

Perturbations of higher-dimensional spacetimes Durkee & HsR

For algebraically special spacetime, §2;; = Cpjg; is a traceless
symmetric matrix that
@ Is invariant under infinitesimal diffeomorphisms and
infinitesimal changes of basis
@ Has the same number of components as the number of
degrees of freedom of the graviton A
o d =4 Q,-j ~ Wq: Teukolsky scalar, satisfies decoupled
equation. Does £2;; decouple for d > 47
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Decoupling of perturbations

d = 4: §2;; decouples iff £7 geodesic and shearfree: guaranteed by
Goldberg-Sachs!

d > 4: decoupling requires that £° be geodesic, and free of
expansion, rotation and shear.

@ no decoupling for Myers-Perry, or even Schwarzschild

@ decoupling does occur for the near-horizon geometry of k
extreme Myers-Perry
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Outlook

Outlook

Much to do:

o Generalize "shearfree” part of Goldberg-Sachs to higher
dimensions

@ Determine all algebraically special solutions in certain classes
or with certain symmetries

e Study perturbations of near-horizon extreme Myers-Perry
@ What can be done with de Smet scheme?
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Much to do:
@ Generalize "shearfree” part of Goldberg-Sachs to higher
dimensions
@ Determine all algebraically special solutions in certain classes
or with certain symmetries
@ Study perturbations of near-horizon extreme Myers-Perry

@ What can be done with de Smet scheme?
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