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Abstract: Loop quantum gravity and spin foams are two closely related theories of quantum gravity. There is an expectation that the sum over
histories or path integral formulation of LQG will take the form of a spin foam, although a rigorous connection between the two is available only in
2+1 gravity. Understanding the relation between them will resolve many open questions of both theories. We probe the connection through an
exactly soluble model of loop quantum cosmology. Beginning from the canonical theory we construct a spin foam like expansion of LQC. This
construction reveals a number of insights into spin foams including the nature of the continuum limit.
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e Major open question: Connection between loop quantum gravity
(LQG) and spin foams (SF).

¢ Rigorous connection will resolve many open questions of both.

e We use an exactly soluble model of LL.oop Quantum Cosmology
(LQCO) to probe this connection.

e We construct an expansion of [.QC that is akin to the vertex
expansion of SFM.

¢ Using this expansion we gain insight into many open questions :
Continuum limit of SF, Physical meaning of GFT coupling constant,
cte.

irsa: 10050018 Page 3/49

.
—




hitroduction

Ty
-y

e Major open question: Connection between loop quantum gravity
(LQG) and spin foams (SF).

e Rigorous connection will resolve many open questions of both.

e We use an exactly soluble model of Loop Quantum Cosmology
(LQC) to probe this connection.

e We construct an expansion of [.LQC that is akin to the vertex
expansion of SFM.

e Using this expansion we gain insight into many open questions :
Continuum Iimit of SF, Physical meaning of GFT coupling constant,
>

irsa: 10050018 Page 4/49

|
| |||
|
i
/




QG — SFM

e Goal: Derive SF from the group averaged inner product.

([s], [s:]) = fde (ss| €M [s;) or [DN (s¢| ™ |s;) (1)

¢ One motivation for SFM - expansion of amplitude (s7| W) |s;)
expressed as sum over histories of spin networks [Reisenberger,
Rovelli 97]

e Divergent term by term due to integral over lapse

e Rigorous construction of SFM for 2+1 gravity - group average then
expand result as SF [Noui, Perez 04]

e Difficult to generalize 2+1 construction — expand amplitude first.
e Non-trivial - Perturbatively computing something that gives a
distribution!
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FM — LQG
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e Goal: Find SF that shares as many of the features of L.QG as
possible.

e Important recent advances.

e Inclusion of Immirzi parameter [Friedel, Krasnov 07; Engle,
Pereira, Rovelli 07]

e Connection to kinematics of .LQG - boundary states are SU(2) spin
networks.

e Extension of EPRL to arbitrary graphs [Kaminski, Kisielowski,
I .ewandowski 09]
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e Open questions..

e Spin Foam models defined on fixed triangulation A: Continuum
Limit? Refinement of single triangulation, sum over all
triangulations, or...?

e Meaning of theory on one triangulation or a finite sum?

e Meaning of the GFT coupling constant A?
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IQC as toy model
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e We will study these issues using k=0 [.LQC with a massless scalar
field [Ashtekar, Pawlowski, Singh 06].

e While far from the full theory, L.QC provides a physically
interesting yet technically simple arena to explore these issues.

e [L.QC has many of the key features of LQG (new representation,
constrained, etc.) and shares many of its conceptual difficulties
(problem of dynamics,..).

e This model i1s exactly soluble [Ashtekar, Corichi, Singh 08]
allowing us to perform precise calculations. The calculations are not
formal - they rely on just one assumption.
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xpansion of LQC

e Want the ’transition amplitude’ between basis vectors |, @) in Hiin
which are the LQC analogs of spin networks that are used to specify
the boundary states in SFMs

W, o |v,0) =6, 6(d,0). 2)

e Given by the group averaged inner product between the physical
states generated from the basis vectors

([vr: o7ls [, &i]) = 2 [ da (v, &¢ €€ |pg 13, 3) . (3)

e Where the constraint is written in terms of © - a difference operator
acting on |v)
s
C=p;—© 4)

e Strategy: Obtain an expansion for amplitude under the integral of
(3) such that we can integrate each term in the expansion.
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e Begin with expanding the amplitude:

A(vr, Og Ui, 015 @) = 2 {v7, 07| € |pg| |vi, &%) (3)

e Closely follow the standard Feynman construction for the
gravitational part to obtain a sum over histories.

(vrle ) = Jm (vfle | on_1) (Fn—1]e 7 |oN_2) ...
UN—13---5¥1

(6)
e Evaluate each term of the sum in the lIimit ¥V — o (e = 1/N — 0)

e Due to the discreteness of the kinematic states v the weighting for
each path is not ¢~ and the limit € — 0 is non-trivial (For
configuration space path integral)

(61{;*,@—1 T ieaevf W—l)(5W—I-DN—2 o iEaew—l VN—E) X -- (7)
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hscrete Histories

S
T

{ rearrange the sum over paths.
(8)

Z Z Z V1 n :—..+HZ_': =N+1

S DU 7 | M=0 vM-1
I"'lrir:-_/éif-“'i".':—l

e M : Number of times v changes value along the path

~ sum over triangulations
o (UpM—1,---. v1): The sequence of values v along the path

~ sum over labels of triangulation
e 7,,: number of succesive points taking value 1,

e At fimite N
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hscrete Histories

e At fimite N rearrange the sum over paths.

P> 303 2. ®)

7| M=0 VM—1.....V m ..+ =N+1
I"'1I'|r:‘_/élf-“'ir:ﬂ:—l

e M : Number of times v changes value along the path
~ sum over triangulations

e (Vp—_1,--.,v1): The sequence of values v along the path
~ armm nver lahale af trianaonlatinn
e To get the "transition amplitude” we still need to carry out the group
averaging.

(Ivr, ol i, @il) :/daA(fo Of : Vi, Oi; ) (11)
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e By rearranging the sum over histories in terms of those paths whose
volume 1s constant nearly everywhere, changing value only M
times, the limit N — oo can be taken and the amplitude can be
written as a sum o¥er discrete histories

M—=—0 YM_1.----V1

UmFVm+1
®)
e In the limit N — oc amplitude for each discrete history,
A(VM, ) Ct:) —
féd‘rM faydTM_l as fgldﬁ e~ (1-m)2®upy (—iaO,,,,,, ,) %
. e (m)a®un (a0, ) e 1m0 (10)

e To get the 'transition amplitude” we still need to carry out the group
averaging.

(. 7). We.0l) = [ da Ay dpividia)  AD
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hscrete Histories
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{ rearrange the sum over paths.

Z Z 2. 2. ®
m+..+y =N+1

7 M=0 vVM-1.
Vm -_/éym—l

e At fimite N

e M : Number of times v changes value along the path

~ sum over triangulations
o (Up—1,---. v1): The sequence of values v along the path

~ sum over labels of triangulation.
e n,: number of succesive points taking value v,
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e By rearranging the sum over histories in terms of those paths whose
volume 1s constant nearly everywhere, changing value only M
times, the limit N — oc can be taken and the amplitude can be
written as a sum o¥er discrete histories

M=0 YM—1:----V1

UmFVm+1
)
e In the imit N — oc amplitude for each discrete history,
Alvy. ..., vp; ) =
Jodny [g¥amy—y ... [gdn e 1=m0eCnm (—iaB,,0, )
. e i)eCup (_iaQ,,.) e 1S (10)

e To get the 'transition amplitude” we still need to carry out the group
averaging.

(. 7). We.0) = [ da Ay dividia)  AD
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e By rearranging the sum over histories in terms of those paths whose
volume is constant nearly everywhere, changing value only M

times, the limit N — o¢ can be taken and the amplitude can be
written as a sum over discrete histories

M—0 VYM—_1..---V1

Vm#ym:—l
)
e In the limit N — oc amplitude for each discrete history,
Alvy. ... vp ) =
[odmy [dr [Pdr e {1-)e®upy (—ia
oM Jo M—1 ---Jo @71 € ( I VMUM_l)X
. e (m)a®un (a0, ) e 1 (10)

e To get the "transition amplitude” we still need to carry out the group
averaging.

(. 7). e 0) = [ da Ay dpivioia)  AD

Page 21/49

— - -
= =

irsa: 10050018




e We have a well-defined expansion if we can carry out the group
averaging integral Yor each term of the expansion seperately.

e Our assumption is that the integral over alpha commutes with the
sum over M.

(. . [vf.of])fdaf > =% ¥ [ da-..

M:{} UM—1.---.1 M:O UM 1.----V1

(12)

e Surprisingly the integral converges for each discrete history.

A(vy, - - . v0; 07, 01) = [da [dp, ¢! giPs DG pslA(var, - - ., v0; @)
(13)
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e We have a well-defined expansion if we can carry out the group
averaging integral Tor each term of the expansion seperately.

e Our assumption is that the integral over alpha commutes with the
sum over M.

([, ol [Vf-@i])/dai b :i *: /dﬁl---

M—0 YM—1..-..11 M=0 VM—1,.--,V1

VmFVm1 Um7FVm+1

(12)
e Surprisingly the integral converges for each discrete history.
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EFM Vertex Expansion - Continuum Limit

Arrived at an expansion akin to SFM vertex expansion
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([vr, o7l v, 4il)
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]
>
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Each term M can related to a triangulation A4 - with sums over

labellings of the dual triangulation. Each term then corresponds to
the SFM amplitude on a fixed trangulation

The full group averaged inner product is then obtained by summing
over all such triangulations.

This is a concrete realization of the expectation that the "continuum
Iimit” of SFM i1s given not by a refinement of a given triangulation

e i20h DY @ sum over all trangulations. Page 2645
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EFM Vertex Expansion - Continuum Limit

e Arrived at an expansion akin to SFM vertex expansion
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e Each term M can related to a triangulation A4 - with sums over

labellings of the dual triangulation. Each term then corresponds to
the SFM amplitude on a fixed trangulation

e The full group averaged mner product is then obtained by summing
over all such triangulations.

e This is a concrete realization of the expectation that the "continuum
Iimit” of SFM i1s given not by a refinement of a given triangulation
- 4% DY @ sum over all triangulations.
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EM Vertex Expansion - Continuum Limit

e Arrived at an expansion akin to SFM vertex expansion
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e Each term M can related to a triangulation A4 - with sums over

labellings of the dual triangulation. Each term then corresponds to
the SFM amplitude on a fixed triangulation

e The full group averaged mner product is then obtained by summing
over all such triangulations.

e This is a concrete realization of the expectation that the 'continuum
Iimit” of SFM i1s given not by a refinement of a given triangulation
e i20h DY @ sum over all triangulations. Page 3115
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EM Vertex Expansion - Continuum Limit

e Arrived at an expansion akin to SFM vertex expansion
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e Each term M can related to a triangulation A4 - with sums over

labellings of the dual triangulation. Each term then corresponds to
the SFM amplitude on a fixed trnangulation

e The full group averaged mner product is then obtained by summing
over all such triangulations.

e This is a concrete realization of the expectation that the "continuum
Iimit” of SFM i1s given not by a refinement of a given triangulation
e i20h DY @ sum over all triangulations. page 3215

— = — - -
[T = = =




An alternative derivation makes contact with GFT.

Formally split the constraint into a "free’ and interaction’ term
introducing the coupling constant A

C=(p; —D)— XK (15)
Using textbook interaction picture perturbationu;theory we arrive at
the same expansion (if A = 1).

(.ol o) =D M| 3" A(wss,---.v0:67.3)
M=0 UM —15---sV1
UmFVm+1
(16)
If GFT is more fundamental what i1s the meaning of the coupling
constant A and what happens as it flows under renormalization?
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An alternative derivation makes contact with GFT.

Formally split the constraint into a “free’ and “interaction” term
introducing the coupling constant A

C=(p; —D)— XK (15)
Using textbook interaction picture perturbation‘iheory we arrive at
the same expansion (if A = 1).

(.ol o) =D M| 3" AW ---.v0:67.3)
M=0 UM —15---sV1
UmFVUm<1
(16)
If GFT 1s more fundamental what 1s the meaning of the coupling
constant A and what happens as it flows under renormalization?
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blution of the constraint

e Viewed as a function of vr and of the "transition amplitude’ should
solve the constraint.

(lvr, ol Vi, @i]) = W00 (v, &) (17)
e Important consistency check to see that the expansion does give the
correct physical inner product. =

e To check this it is instructive to keep the coupling constant A

(7. o7l o) = > AMA[Ay] and © =D+ XK (18)
M=0

e The vertex expansion then solves the constraint order by order in A

M’k
05, — (D + AKp)] > XMA[Ay] =0T (19
M=0
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An alternative derivation makes contact with GFT.

Formally split the constraint into a "free’ and “interaction” term
introducing the coupling constant A

C=(p; —D)— XK (15)
Using textbook interaction picture perturbation TI‘Eheory we arrive at
the same expansion (if A = 1).

(.ol o) =D M| 3" AW v0:67.3)
M=0

VM—15---:11

Um7Vmi-1

(16)

If GFT 1s more fundamental what is the meaning of the coupling
constant A and what happens as it flows under renormalization?

irsa: 10050018 Page 36/49

= E _




blution of the constraint

e Viewed as a function of vr and ¢f the "transition amplitude’ should
solve the constraint.

(. ol i, 6i]) = Vo 0:(v, 9) (17)
e Important consistency check to see that the expansion does give the
correct physical inner product. S

e To check this it is instructive to keep the coupling constant A

(7. o7l vi-oi]) = > AMA[Ay] and © =D+ XK (18)
M=0

e The vertex expansion then solves the constraint order by order in A

M‘k
05, — (D + AKf)] > XMA[Ay] =0T (19
M=0
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e Our expansion is a solution of the constraint if
(aéf — Df) A[Ay] — K A[Ay 1] =0 (20)
e Further we find that this equation is solved “path by path’

(aéf—Df) Z A(vs, vM—1 - - -, Vis O, Oi)—KeA(vp. vp—2 - - ., Vi O, &) =
UM—1 T'"
(1)
e At a fixed order in A the cancellations occur between very similar
paths - for every path acted on by the off-diagonal part there are two

acted on by the diagonal part that cancel it.

e If SF satisfy the scalar constraint then it can likely be seen by
cancellations between incredibly similar amplitudes - triangulations
differing by one vertex carrying the same labels almost everywhere.
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blution of the constraint

e Viewed as a function of vr and ¢f the "transition amplitude’ should
solve the constraint.

(. ol v, 6i]) = Wos 0w, 9) (17)
e Important consistency check to see that the expansion does give the
correct physical inner product. S

e To check this it is instructive to keep the coupling constant A

(. o], i) = > _ AMA[Ay] and © =D+ XK (18)
M=0

e The vertex expansion then solves the constraint order by order in A

M‘k
05, — (D + AKp)] > XMA[Ay] = oY) (19
M=0
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e Our expansion is a solution of the constraint if
(83, — Dr) A[Ay] — Kr A[Apy 1] =0 (20)
e Further we find that this equation is solved “path by path’

(aif—Df) Z A(I/f_. UM—1 - - -, Vi, OF, @f)_KfA(fijf’ VM—_2 -- -, Vi OF, o) =
UM—1 #
(21)
e At a fixed order in A the cancellations occur between very similar
paths - for every path acted on by the off-diagonal part there are two

acted on by the diagonal part that cancel it.

e If SF satisfy the scalar constraint then it can likely be seen by
cancellations between incredibly similar amplitudes - triangulations
differing by one vertex carrying the same labels almost everywhere.
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blution of the constraint

e Viewed as a function of vr and ¢f the "transition amplitude’ should
solve the constraint.

e Important consistency check to see that the expansion does give the
correct physical inner product. S

e To check this it is instructive to keep the coupling constant A

(. o], i) = > AMA[Ay] and © =D+ XK (18)
M=0

e The vertex expansion then solves the constraint order by order in A

M*
05, — (D + AKp)] > XM A[Ay] = o) (19
M=0
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e Our expansion is a solution of the constraint if
(83, — Dr) A[Ay] — Kz A[Apy 1] =0 (20)
e Further we find that this equation is solved “path by path’

(aif—Df) Z A(vr,vm—1 - - -, Vi OF, C}I‘)—“KfA(ji/f, UM—2 -..,Vi; Of, 0i) =
UM—1 -
(1)
e At a fixed order in A the cancellations occur between very similar
paths - for every path acted on by the off-diagonal part there are two

acted on by the diagonal part that cancel it.

e If SF satisfy the scalar constraint then it can likely be seen by
cancellations between incredibly similar amplitudes - triangulations
differing by one vertex carrying the same labels almost everywhere.
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e What is the physical meaning of A %+ 1?
e Consider k=0 FRW with a cosmological constant A
e Same expansion can be carried out for this model.

e There is an isomorphism between the theory with A &% 1 and A and
the theory with A = 1 and A where

m

N3 -, (22)

~ N
. A 242720

e Taking A ## 1 then corresponds to a shift in the value of the
cosmological constant

e If we take A = O we find that taking \ # 1 is equivalent to changing
the cosmological constant

3

A= (1-2) (23)
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lultiple Expansions

e There actually exist two distinct expansions - at least

e If one first carmies out the group averaging procedure and then the
vertex expansion we arrive at a distinct expansion.

e While the two converge to the same result - terma by term they look
very different.

e This leads to an observation: In attempting to construct a SFM from
L.QG we may arrive at an expansion that looks quite different but
actually gives the same physics.

e We may thus need to work carefully on both ends to ensure that the
two match up!
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hscrete Action

e The physical inner product can be written as a phase space path
integral - [da [ DvDb €°

e Further there is a path integral expression for the amplitude from
each triangulation Aj; as we have for Spin Foams.

AlAy] = f do f Dy Dy &M 24)

e Where the integral ranges over paths that are step functions in v
changing value M times and the M values of b at those points.

U(T) = Vi X(0,n) T Y1 X(nm) T - - - T VF X(mae1) (25)

e (Can see that

[da [DvDb €° = [da(3"y; [Duv) [Dbe® = >, A[Au] (26)

e Can we reverse this for spin foams?
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onclusions

e We have obtained a well defined Spin Foam like expansion of .LQC
- with one assumption.

(. o). o) = D M| 3" Awm....v0:67.03)
M=0 UM 1.---s1
UmFVme1
(Z7)
e Gives insight into many open questions of both .LQC, SFM, and the
connection between them.

¢ Indicates that the continuum limit is given by a sum over all
triangulations.

e The group field theory parameter may be physically related to the
cosmological constant.

e There are multiple expansions that look very different term by term
— may be non-trivial to compare construction from L.QG to SFM.
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lultiple Expansions

e There actually exist two distinct expansions - at least

e If one first carries out the group averaging procedure and then the
vertex expansion we arrive at a distinct expansion.

e While the two converge to the same result - term by term they look
very different.

e This leads to an observation: In attempting to construct a SFM from
LLQG we may arrive at an expansion that looks quite different but
actually gives the same physics.

e We may thus need to work carefully on both ends to ensure that the
two match up!
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e Our expansion is a solution of the constraint if
(83, — Dr) A[Ay] — Kz A[Apy 1] =0 (20)
e Further we find that this equation is solved “path by path’

(aif—Df) Z A(vr,vM—1- .., Vi; O, 0i)—KfA(vr, vm—2 - . ., Vi OF, 03) =
UM—1
(1)
e At a fixed order in A the cancellations occur between very similar
paths - for every path acted on by the off-diagonal part there are two
acted on by the diagonal part that cancel it.

e If SF satisfy the scalar constraint then it can likely be seen by
cancellations between incredibly similar amplitudes - triangulations
differing by one vertex carrying the same labels almost everywhere.
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An alternative derivation makes contact with GFT.

Formally split the constraint into a "free’ and “interaction” term
introducing the coupling constant A

C={p; =D)—=XK (15)

Using textbook interaction picture perturbation theory we arrive at
the same expansion (if A = 1).

(-0l o) =D M| 3" AW, v0:67.3)
M=0

VM—15---:V1

Um7Vm1

(16)

If GFT 1s more fundamental what 1s the meaning of the coupling
constant A and what happens as it flows under renormalization?
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