Title: An Unparticle Solution to the Hierarchy Problem

Date: May 07, 2010 02:30 PM

URL: http://pirsa.org/10050014

Abstract: The Planck-weak hierarchy is investigated in an extradimensional, soft-wall model originally proposed by Batell and Gherghetta. In this model the soft-wall is dynamically generated by background $\ddot{\eta}$ -elds that, in the Einstein frame, cause the metric factor to deviate from anti-de Sitter by a power-law of the conformal coordinate. This talk will demonstrate that in order to achieve the appropriate Planck-weak hierarchy, the power of the conformal coordinate must be less than one. This in turn implies that the gravitational sector contains scalar $\ddot{\eta}$ -elds that act like unparticles without a mass gap.

Pirsa: 10050014 Page 1/1362

Unparticle Solution to Hierarchy

Nicholas Setzer with T. Gherghetta

University of Melbourne

May 7, 2010

Pirsa: 10050014 Page 2/1362

Introduction

The BG Soft-Wall Model

Achieving the Hierarchy

Fluctuations

Bulk Fields

Summary

Pirsa: 10050014 Page 3/136

Introduction

The BG Soft-Wall Model

Achieving the Hierarchy

Fluctuations

Bulk Fields

Summary

Introduction

The BG Soft-Wall Model

Achieving the Hierarchy

Fluctuations

Bulk Fields

Summary

Introduction

The BG Soft-Wall Model

Achieving the Hierarchy

Fluctuations

Bulk Fields

Summary

Pirsa: 10050014

Page 6/1362

Introduction

The BG Soft-Wall Model

Achieving the Hierarchy

Fluctuations

Bulk Fields

Summary

Introduction

The BG Soft-Wall Model

Achieving the Hierarchy

Fluctuations

Bulk Fields

Summary

Introduction

The BG Soft-Wall Model

Achieving the Hierarchy

Fluctuations

Bulk Fields

Summary

Introduction

The BG Soft-Wall Model

Achieving the Hierarchy

Fluctuations

Bulk Fields

Summary

Pirsa: 10050014 Page 10/136

Introduction

The BG Soft-Wall Model

Achieving the Hierarchy

Fluctuations

Bulk Fields

Summary

Introduction

The BG Soft-Wall Model

Achieving the Hierarchy

Fluctuations

Bulk Fields

Summary

Pirsa: 10050014 Page 12/136

Introduction

utline

Introduction

Pirsa: 10050014 Page 13/1362

Higgs boson sensitive to highest scale of new physics

- With only Standard Model, new physics is Planck scale
- Need a way to separate $M_{\rm Pl}\sim 10^{19}$ GeV and $v_{wk}\sim 1$ TeV
- Warped Extra Dimension provides a way

Higgs boson sensitive to highest scale of new physics

- With only Standard Model, new physics is Planck scale
- Need a way to separate $M_{\rm Pl}\sim 10^{19}$ GeV and $v_{wk}\sim 1$ TeV
- Warped Extra Dimension provides a way

Higgs boson sensitive to highest scale of new physics

- With only Standard Model, new physics is Planck scale
- Need a way to separate $M_{\rm Pl}\sim 10^{19}$ GeV and $v_{wk}\sim 1$ TeV
- Warped Extra Dimension provides a way

Higgs boson sensitive to highest scale of new physics

- With only Standard Model, new physics is Planck scale
- Need a way to separate $M_{\rm Pl}\sim 10^{19}$ GeV and $v_{wk}\sim 1$ TeV
- Warped Extra Dimension provides a way

Higgs boson sensitive to highest scale of new physics

- With only Standard Model, new physics is Planck scale
- Need a way to separate $M_{\rm Pl}\sim 10^{19}$ GeV and $v_{wk}\sim 1$ TeV
- Warped Extra Dimension provides a way

Direa: 10050014

Higgs boson sensitive to highest scale of new physics

- With only Standard Model, new physics is Planck scale
- Need a way to separate $M_{\rm Pl}\sim 10^{19}$ GeV and $v_{wk}\sim 1$ TeV
- Warped Extra Dimension provides a way

Higgs boson sensitive to highest scale of new physics

- With only Standard Model, new physics is Planck scale
- Need a way to separate $M_{\rm Pl}\sim 10^{19}$ GeV and $v_{wk}\sim 1$ TeV
- Warped Extra Dimension provides a way

Direa: 10050014

Higgs boson sensitive to highest scale of new physics

- With only Standard Model, new physics is Planck scale
- Need a way to separate $M_{\rm Pl}\sim 10^{19}$ GeV and $v_{wk}\sim 1$ TeV
- Warped Extra Dimension provides a way

Higgs boson sensitive to highest scale of new physics

- With only Standard Model, new physics is Planck scale
- Need a way to separate $M_{\rm Pl}\sim 10^{19}$ GeV and $v_{wk}\sim 1$ TeV
- Warped Extra Dimension provides a way

Higgs boson sensitive to highest scale of new physics

- With only Standard Model, new physics is Planck scale
- Need a way to separate $M_{\rm Pl}\sim 10^{19}$ GeV and $v_{wk}\sim 1$ TeV
- Warped Extra Dimension provides a way

Higgs boson sensitive to highest scale of new physics

- With only Standard Model, new physics is Planck scale
- Need a way to separate $M_{\rm Pl}\sim 10^{19}$ GeV and $v_{wk}\sim 1$ TeV
- Warped Extra Dimension provides a way

Higgs boson sensitive to highest scale of new physics

- With only Standard Model, new physics is Planck scale
- Need a way to separate $M_{\rm Pl}\sim 10^{19}$ GeV and $v_{wk}\sim 1$ TeV
- Warped Extra Dimension provides a way

Higgs boson sensitive to highest scale of new physics

- With only Standard Model, new physics is Planck scale
- Need a way to separate $M_{\rm Pl}\sim 10^{19}$ GeV and $v_{wk}\sim 1$ TeV
- Warped Extra Dimension provides a way

Higgs boson sensitive to highest scale of new physics

- With only Standard Model, new physics is Planck scale
- Need a way to separate $M_{\rm Pl}\sim 10^{19}$ GeV and $v_{wk}\sim 1$ TeV
- Warped Extra Dimension provides a way

Higgs boson sensitive to highest scale of new physics

- With only Standard Model, new physics is Planck scale
- Need a way to separate $M_{\rm Pl}\sim 10^{19}$ GeV and $v_{wk}\sim 1$ TeV
- Warped Extra Dimension provides a way

Higgs boson sensitive to highest scale of new physics

- With only Standard Model, new physics is Planck scale
- Need a way to separate $M_{\rm Pl}\sim 10^{19}$ GeV and $v_{wk}\sim 1$ TeV
- Warped Extra Dimension provides a way

Higgs boson sensitive to highest scale of new physics

- With only Standard Model, new physics is Planck scale
- Need a way to separate $M_{\rm Pl}\sim 10^{19}$ GeV and $v_{wk}\sim 1$ TeV
- Warped Extra Dimension provides a way

Higgs boson sensitive to highest scale of new physics

- With only Standard Model, new physics is Planck scale
- Need a way to separate $M_{\rm Pl}\sim 10^{19}$ GeV and $v_{wk}\sim 1$ TeV
- Warped Extra Dimension provides a way

Higgs boson sensitive to highest scale of new physics

- With only Standard Model, new physics is Planck scale
- Need a way to separate $M_{\rm Pl}\sim 10^{19}$ GeV and $v_{wk}\sim 1$ TeV
- Warped Extra Dimension provides a way

- Short distances → long distances
- High mass scales → low mass scales

- Short distances → long distances
- High mass scales → low mass scales

- Short distances → long distances
- High mass scales → low mass scales

- Short distances → long distances
- High mass scales → low mass scales

- Short distances → long distances
- High mass scales → low mass scales

- Short distances → long distances
- High mass scales → low mass scales

- Short distances → long distances
- High mass scales → low mass scales

- Short distances → long distances
- High mass scales → low mass scales

- Short distances → long distances
- ▶ High mass scales → low mass scales

- Short distances → long distances
- High mass scales → low mass scales

- Short distances → long distances
- High mass scales → low mass scales

- Short distances → long distances
- High mass scales → low mass scales

- Short distances → long distances
- High mass scales → low mass scales

- Short distances → long distances
- High mass scales → low mass scales

- Short distances → long distances
- High mass scales → low mass scales

- Short distances → long distances
- High mass scales → low mass scales

- Short distances → long distances
- High mass scales → low mass scales

- Short distances → long distances
- ▶ High mass scales → low mass scales

- Short distances → long distances
- High mass scales → low mass scales

- Short distances → long distances
- High mass scales → low mass scales

- Short distances → long distances
- ▶ High mass scales → low mass scales

andall Sundrum Two (RS2)

- Can send IR brane away: R → ∞
- Get infinite extra dimension
- Single massless tensor mode (graviton)
- Continuum of tensor modes with $m^2 > 0$
- Bulk fields also have continuum of modes

andall Sundrum Two (RS2)

- Can send IR brane away: R → ∞
- Get infinite extra dimension
- Single massless tensor mode (graviton)
- Continuum of tensor modes with $m^2 > 0$
- Bulk fields also have continuum of modes

andall Sundrum Two (RS2)

- Can send IR brane away: R → ∞
- Get infinite extra dimension
- Single massless tensor mode (graviton)
- Continuum of tensor modes with $m^2 > 0$
- Bulk fields also have continuum of modes

andall Sundrum Two (RS2)

- Can send IR brane away: R → ∞
- Get infinite extra dimension
- Single massless tensor mode (graviton)
- Continuum of tensor modes with $m^2 > 0$
- Bulk fields also have continuum of modes

andall Sundrum Two (RS2)

- Can send IR brane away: R → ∞
- Get infinite extra dimension
- Single massless tensor mode (graviton)
- Continuum of tensor modes with $m^2 > 0$
- Bulk fields also have continuum of modes

andall Sundrum Two (RS2)

- Can send IR brane away: R → ∞
- Get infinite extra dimension
- Single massless tensor mode (graviton)
- Continuum of tensor modes with $m^2 > 0$
- Bulk fields also have continuum of modes

andall Sundrum Two (RS2)

- Can send IR brane away: R → ∞
- Get infinite extra dimension
- Single massless tensor mode (graviton)
- Continuum of tensor modes with $m^2 > 0$
- Bulk fields also have continuum of modes

andall Sundrum Two (RS2)

- Can send IR brane away: R → ∞
- Get infinite extra dimension
- Single massless tensor mode (graviton)
- Continuum of tensor modes with $m^2 > 0$
- Bulk fields also have continuum of modes

andall Sundrum Two (RS2)

- Can send IR brane away: R → ∞
- Get infinite extra dimension
- Single massless tensor mode (graviton)
- Continuum of tensor modes with $m^2 > 0$
- Bulk fields also have continuum of modes

andall Sundrum Two (RS2)

- Can send IR brane away: R → ∞
- Get infinite extra dimension
- Single massless tensor mode (graviton)
- Continuum of tensor modes with $m^2 > 0$
- Bulk fields also have continuum of modes

andall Sundrum Two (RS2)

- Can send IR brane away: R → ∞
- Get infinite extra dimension
- Single massless tensor mode (graviton)
- Continuum of tensor modes with $m^2 > 0$
- Bulk fields also have continuum of modes

andall Sundrum Two (RS2)

- Can send IR brane away: R → ∞
- Get infinite extra dimension
- Single massless tensor mode (graviton)
- Continuum of tensor modes with $m^2 > 0$
- Bulk fields also have continuum of modes

andall Sundrum Two (RS2)

- Can send IR brane away: $R \to \infty$
- Get infinite extra dimension
- Single massless tensor mode (graviton)
- Continuum of tensor modes with $m^2 > 0$
- Bulk fields also have continuum of modes

andall Sundrum Two (RS2)

- Can send IR brane away: R → ∞
- Get infinite extra dimension
- Single massless tensor mode (graviton)
- Continuum of tensor modes with $m^2 > 0$
- Bulk fields also have continuum of modes

andall Sundrum Two (RS2)

- Can send IR brane away: R → ∞
- Get infinite extra dimension
- Single massless tensor mode (graviton)
- Continuum of tensor modes with $m^2 > 0$
- Bulk fields also have continuum of modes

andall Sundrum Two (RS2)

- Can send IR brane away: R → ∞
- Get infinite extra dimension
- Single massless tensor mode (graviton)
- Continuum of tensor modes with $m^2 > 0$
- Bulk fields also have continuum of modes

andall Sundrum Two (RS2)

- Can send IR brane away: R → ∞
- Get infinite extra dimension
- Single massless tensor mode (graviton)
- Continuum of tensor modes with $m^2 > 0$
- Bulk fields also have continuum of modes

andall Sundrum Two (RS2)

- Can send IR brane away: R → ∞
- Get infinite extra dimension
- Single massless tensor mode (graviton)
- Continuum of tensor modes with $m^2 > 0$
- Bulk fields also have continuum of modes

andall Sundrum Two (RS2)

- Can send IR brane away: R → ∞
- Get infinite extra dimension
- Single massless tensor mode (graviton)
- Continuum of tensor modes with $m^2 > 0$
- Bulk fields also have continuum of modes

andall Sundrum Two (RS2)

- Can send IR brane away: R → ∞
- Get infinite extra dimension
- Single massless tensor mode (graviton)
- Continuum of tensor modes with $m^2 > 0$
- Bulk fields also have continuum of modes

andall Sundrum Two (RS2)

- Can send IR brane away: R → ∞
- Get infinite extra dimension
- Single massless tensor mode (graviton)
- Continuum of tensor modes with $m^2 > 0$
- Bulk fields also have continuum of modes

andall Sundrum Two (RS2)

- Can send IR brane away: R → ∞
- Get infinite extra dimension
- Single massless tensor mode (graviton)
- Continuum of tensor modes with $m^2 > 0$
- Bulk fields also have continuum of modes

andall Sundrum Two (RS2)

- Can send IR brane away: R → ∞
- Get infinite extra dimension
- Single massless tensor mode (graviton)
- Continuum of tensor modes with $m^2 > 0$
- Bulk fields also have continuum of modes

andall Sundrum Two (RS2)

- Can send IR brane away: R → ∞
- Get infinite extra dimension
- Single massless tensor mode (graviton)
- Continuum of tensor modes with $m^2 > 0$
- Bulk fields also have continuum of modes

andall Sundrum Two (RS2)

- Can send IR brane away: R → ∞
- Get infinite extra dimension
- Single massless tensor mode (graviton)
- Continuum of tensor modes with $m^2 > 0$
- Bulk fields also have continuum of modes

andall Sundrum Two (RS2)

- Can send IR brane away: R → ∞
- Get infinite extra dimension
- Single massless tensor mode (graviton)
- Continuum of tensor modes with $m^2 > 0$
- Bulk fields also have continuum of modes

andall Sundrum Two (RS2)

- Can send IR brane away: R → ∞
- Get infinite extra dimension
- Single massless tensor mode (graviton)
- Continuum of tensor modes with $m^2 > 0$
- Bulk fields also have continuum of modes

andall Sundrum Two (RS2)

- Can send IR brane away: R → ∞
- Get infinite extra dimension
- Single massless tensor mode (graviton)
- Continuum of tensor modes with $m^2 > 0$
- Bulk fields also have continuum of modes

andall Sundrum Two (RS2)

- Can send IR brane away: R → ∞
- Get infinite extra dimension
- Single massless tensor mode (graviton)
- Continuum of tensor modes with $m^2 > 0$
- Bulk fields also have continuum of modes

andall Sundrum Two (RS2)

- Can send IR brane away: R → ∞
- Get infinite extra dimension
- Single massless tensor mode (graviton)
- Continuum of tensor modes with $m^2 > 0$
- Bulk fields also have continuum of modes

andall Sundrum Two (RS2)

- Can send IR brane away: R → ∞
- Get infinite extra dimension
- Single massless tensor mode (graviton)
- Continuum of tensor modes with $m^2 > 0$
- Bulk fields also have continuum of modes

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles

CO TON TO CONTINUE DI DOLLOIS.

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles

Unparticles couple to Standard Model

Higgs VEV breaks conformal invariance at low so
Undarticle conformal invariance broken [Fox. Reja

Pirsa: 10050014 Page 86/136

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles

OC TON TO CONTROL OF SOUTHORN

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles

or now to bettile or balline.

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles

CO. TON TO COLLEGE C. COLLEGE

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles

So how to define unparticle?

Pirsa: 10050014 Page 91/136

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles

Shirmani - Shirmani -

Pirsa: 10050014 Page 92/1362

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles

Uncerticle conformal invariance broken [Fox. Rejeramen, and

Pirsa: 10050014 Page 93/136

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles

 Higgs VEV breaks conformal invariance at low scales
 Uncerticle conformal invariance broken [Fox. Rajaraman, and Shirman]

Pirsa: 10050014 Page 94/1362

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles

CO TON TO SUITE OF SUITE

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles

Unparticles couple to Standard Model

Higgs VEV breaks conformal invariance at low scales

Unparticle conformal invariance broken [Fox Rejardman, and Shirman]

Pirsa: 10050014 Page 96/136

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles

Higgs VEV breaks conformal invariance at low scales
 Underticle conformal invariance broken [Fox, Rajaraman, and
 Shirman]

Pirsa: 10050014 Page 97/136

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles

Umparticles couple to Standard Model

Higgs VEV breaks conformal invariance s
Undarticle conformal invariance Broken F

So, how to define unparticle?

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles

OC TON TO SELLIE DE DEL COLO

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles

An operator that is conformally invariant
Restricts scaling dimension: 1 of 2

Emparticles couple to Standard Model

Higgs VEV breaks conformal invariance at low scales

Uncerticle conformal invariance broken [Fox. Rajaraman, and
Shirman]

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles

So how to define unparticle?

Pirsa: 10050014 Page 101/136

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles

Higgs VEV breaks conformal invariance at low scales
 Underticle conformal invariance broken [Fox, Rejaramen, and
Shirman]

Pirsa: 10050014 Page 102/136

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles

So now to dettile of barticle.

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles

00 1011 10 001110 0 001100

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles

An operator that is conformally invariant
Restricts scaling dimension: 1 Ø a 2

Unparticles couple to Standard Model
Higgs VEV breaks comformal invariance at low scales
Unparticle conformal invariance broken [Fox, Rajaraman, and
Shirman]

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles

So how to define unparticle?

Pirsa: 10050014 Page 106/1362

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles

Unparticles couple to Standard Model
Higgs VEV breaks conformal invariance at low scales
Underticle conformal invariance broken [Fox, Rajaraman, and
Shirman]

Pirsa: 10050014 Page 107/1362

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles

Higgs VEV breaks conformal invariance at low scales Uncerticle conformal invariance proken [Fox. Rejaraman, and

Pirsa: 10050014 Page 108/136

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles

An operator that is conformally invariant Restricts scaling dimension: 1 0 2

Uniparticles couple to Standard Model
Higgs VEV breaks comformal invariance at low scales
Uniparticle conformal invariance broken [Fox Rejaraman, and
Shirman]

So, how to define unparticle?

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles

Restricts scaling dimension: 1 d = 2

Higgs VEV breaks comformal invariance at low scales
Uncerticle conformal invariance broken [Fox, Rajaraman, and
Shirman]

Pirsa: 10050014 Page 110/1362

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2

Pirsa: 10050014 Page 117/136

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2

Underticle conformal invariance broken [Fox Rajaraman, and Shirman]

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2

Unparticles couple to Standard Model
 Higgs VEV breaks conformal invariance

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2

00 1011 10 001110 0 001100

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2

Unparticles couple to Standard Model

Higgs VEV breaks conformal invariance at low scales to Unparticle conformal invariance broken [Fox. Rajaraman, and Bhirman]

So, how to define unparticle?

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2

Unparticles couple to Standard Model

Higgs VEV breaks conformal invariance at low scales
Uncerticle conformal invariance broken Fox. Rejeremen, an

many to said here to make the or

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2

Emparticle continual invariance broken Fox, Rejaraman, and

So, how to define unparticle?

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2
- But
 - Unparticles couple to Standard Model
 - Higgs VEV breaks conformal invariance at low scales
 - Unparticle conformal invariance broken [Fox, Rajaraman, and Shirman]

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2
- But
 - Unparticles couple to Standard Model
 - Higgs VEV breaks conformal invariance at low scales
 - Unparticle conformal invariance broken [Fox, Rajaraman, and Shirman]

So how to define unparticle?

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2
- But
 - Unparticles couple to Standard Model
 - Higgs VEV breaks conformal invariance at low scales
 - Unparticle conformal invariance broken [Fox, Rajaraman, and Shirman]

So how to define unparticle?

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2
- But
 - Unparticles couple to Standard Model
 - Higgs VEV breaks conformal invariance at low scales
 - Unparticle conformal invariance broken [Fox, Rajaraman, and Shirman]

So, now to define unparticle

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2
- But
 - Unparticles couple to Standard Model
 - Higgs VEV breaks conformal invariance at low scales
 - Unparticle conformal invariance broken [Fox, Rajaraman, and Shirman]

So how to define unparticle?

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2
- But
 - Unparticles couple to Standard Model
 - Higgs VEV breaks conformal invariance at low scales
 - Unparticle conformal invariance broken [Fox, Rajaraman, and Shirman]

So now to betthe unbarricle

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2
- But
 - Unparticles couple to Standard Model
 - Higgs VEV breaks conformal invariance at low scales
 - Unparticle conformal invariance broken [Fox, Rajaraman, and Shirman]

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2
- But
 - Unparticles couple to Standard Model
 - Higgs VEV breaks conformal invariance at low scales
 - Unparticle conformal invariance broken [Fox, Rajaraman, and Shirman]

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2
- But
 - Unparticles couple to Standard Model
 - Higgs VEV breaks conformal invariance at low scales
 - Unparticle conformal invariance broken [Fox, Rajaraman, and Shirman]

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2
- But
 - Unparticles couple to Standard Model
 - Higgs VEV breaks conformal invariance at low scales
 - Unparticle conformal invariance broken [Fox, Rajaraman, and Shirman]

So, now to define unparticle?

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2
- But
 - Unparticles couple to Standard Model
 - Higgs VEV breaks conformal invariance at low scales
 - Unparticle conformal invariance broken [Fox, Rajaraman, and Shirman]

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2
- But
 - Unparticles couple to Standard Model
 - Higgs VEV breaks conformal invariance at low scales
 - Unparticle conformal invariance broken [Fox, Rajaraman, and Shirman]

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2
- But
 - Unparticles couple to Standard Model
 - Higgs VEV breaks conformal invariance at low scales
 - Unparticle conformal invariance broken [Fox, Rajaraman, and Shirman]

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2
- But
 - Unparticles couple to Standard Model
 - Higgs VEV breaks conformal invariance at low scales
 - Unparticle conformal invariance broken [Fox, Rajaraman, and Shirman]

So, how to define unparticle?

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2
- But
 - Unparticles couple to Standard Model
 - Higgs VEV breaks conformal invariance at low scales
 - Unparticle conformal invariance broken [Fox, Rajaraman, and Shirman]

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2
- But
 - Unparticles couple to Standard Model
 - Higgs VEV breaks conformal invariance at low scales
 - Unparticle conformal invariance broken [Fox, Rajaraman, and Shirman]

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2
- But
 - Unparticles couple to Standard Model
 - Higgs VEV breaks conformal invariance at low scales
 - Unparticle conformal invariance broken [Fox, Rajaraman, and Shirman]

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2
- But
 - Unparticles couple to Standard Model
 - Higgs VEV breaks conformal invariance at low scales
 - Unparticle conformal invariance broken [Fox, Rajaraman, and Shirman]

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2
- But
 - Unparticles couple to Standard Model
 - Higgs VEV breaks conformal invariance at low scales
 - Unparticle conformal invariance broken [Fox, Rajaraman, and Shirman]

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2
- But
 - Unparticles couple to Standard Model
 - Higgs VEV breaks conformal invariance at low scales
 - Unparticle conformal invariance broken [Fox, Rajaraman, and Shirman]

00 1011 10 001110 0 0011100

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2
- But
 - Unparticles couple to Standard Model
 - Higgs VEV breaks conformal invariance at low scales
 - Unparticle conformal invariance broken [Fox, Rajaraman, and Shirman]

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2
- But
 - Unparticles couple to Standard Model
 - Higgs VEV breaks conformal invariance at low scales
 - Unparticle conformal invariance broken [Fox, Rajaraman, and Shirman]

So, now to define unparticle?

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2
- But
 - Unparticles couple to Standard Model
 - Higgs VEV breaks conformal invariance at low scales
 - Unparticle conformal invariance broken [Fox, Rajaraman, and Shirman]

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2
- But
 - Unparticles couple to Standard Model
 - Higgs VEV breaks conformal invariance at low scales
 - Unparticle conformal invariance broken [Fox, Rajaraman, and Shirman]

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2
- But
 - Unparticles couple to Standard Model
 - Higgs VEV breaks conformal invariance at low scales
 - Unparticle conformal invariance broken [Fox, Rajaraman, and Shirman]

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2
- But
 - Unparticles couple to Standard Model
 - Higgs VEV breaks conformal invariance at low scales
 - Unparticle conformal invariance broken [Fox, Rajaraman, and Shirman]

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2
- But
 - Unparticles couple to Standard Model
 - Higgs VEV breaks conformal invariance at low scales
 - Unparticle conformal invariance broken [Fox, Rajaraman, and Shirman]

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2
- But
 - Unparticles couple to Standard Model
 - Higgs VEV breaks conformal invariance at low scales
 - Unparticle conformal invariance broken [Fox, Rajaraman, and Shirman]

So, now to bettine unbalticle

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2
- But
 - Unparticles couple to Standard Model
 - Higgs VEV breaks conformal invariance at low scales
 - Unparticle conformal invariance broken [Fox, Rajaraman, and Shirman]

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2
- But
 - Unparticles couple to Standard Model
 - Higgs VEV breaks conformal invariance at low scales
 - Unparticle conformal invariance broken [Fox, Rajaraman, and Shirman]

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2
- But
 - Unparticles couple to Standard Model
 - Higgs VEV breaks conformal invariance at low scales
 - Unparticle conformal invariance broken [Fox, Rajaraman, and Shirman]

So, how to define unparticle?

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2
- But
 - Unparticles couple to Standard Model
 - Higgs VEV breaks conformal invariance at low scales
 - Unparticle conformal invariance broken [Fox, Rajaraman, and Shirman]

So, how to define unparticle?

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2
- But
 - Unparticles couple to Standard Model
 - Higgs VEV breaks conformal invariance at low scales
 - Unparticle conformal invariance broken [Fox, Rajaraman, and Shirman]

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2
- But
 - Unparticles couple to Standard Model
 - Higgs VEV breaks conformal invariance at low scales
 - Unparticle conformal invariance broken [Fox, Rajaraman, and Shirman]

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2
- But
 - Unparticles couple to Standard Model
 - Higgs VEV breaks conformal invariance at low scales
 - Unparticle conformal invariance broken [Fox, Rajaraman, and Shirman]

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2
- But

- Unparticles couple to Standard Model
- Higgs VEV breaks conformal invariance at low scales
- Unparticle conformal invariance broken [Fox, Rajaraman, and Shirman]

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2
- But
 - Unparticles couple to Standard Model
 - Higgs VEV breaks conformal invariance at low scales
 - Unparticle conformal invariance broken [Fox, Rajaraman, and Shirman]

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2
- But
 - Unparticles couple to Standard Model
 - Higgs VEV breaks conformal invariance at low scales
 - Unparticle conformal invariance broken [Fox, Rajaraman, and Shirman]

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2
- But
 - Unparticles couple to Standard Model
 - Higgs VEV breaks conformal invariance at low scales
 - Unparticle conformal invariance broken [Fox, Rajaraman, and Shirman]

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2
- But
 - Unparticles couple to Standard Model
 - Higgs VEV breaks conformal invariance at low scales
 - Unparticle conformal invariance broken [Fox, Rajaraman, and Shirman]

So now to bettine unparticle

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2
- But
 - Unparticles couple to Standard Model
 - Higgs VEV breaks conformal invariance at low scales
 - Unparticle conformal invariance broken [Fox, Rajaraman, and Shirman]

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2
- But
 - Unparticles couple to Standard Model
 - Higgs VEV breaks conformal invariance at low scales
 - Unparticle conformal invariance broken [Fox, Rajaraman, and Shirman]

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2
- But
 - Unparticles couple to Standard Model
 - Higgs VEV breaks conformal invariance at low scales
 - Unparticle conformal invariance broken [Fox, Rajaraman, and Shirman]

So, how to define unparticle?

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2
- But
 - Unparticles couple to Standard Model
 - Higgs VEV breaks conformal invariance at low scales
 - Unparticle conformal invariance broken [Fox, Rajaraman, and Shirman]

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2
- But
 - Unparticles couple to Standard Model
 - Higgs VEV breaks conformal invariance at low scales
 - Unparticle conformal invariance broken [Fox, Rajaraman, and Shirman]

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2
- But
 - Unparticles couple to Standard Model
 - Higgs VEV breaks conformal invariance at low scales
 - Unparticle conformal invariance broken [Fox, Rajaraman, and Shirman]

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2
- But
 - Unparticles couple to Standard Model
 - Higgs VEV breaks conformal invariance at low scales
 - Unparticle conformal invariance broken [Fox, Rajaraman, and Shirman]

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2
- But
 - Unparticles couple to Standard Model
 - Higgs VEV breaks conformal invariance at low scales
 - Unparticle conformal invariance broken [Fox, Rajaraman, and Shirman]

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2
- But
 - Unparticles couple to Standard Model
 - Higgs VEV breaks conformal invariance at low scales
 - Unparticle conformal invariance broken [Fox, Rajaraman, and Shirman]

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2
- But
 - Unparticles couple to Standard Model
 - Higgs VEV breaks conformal invariance at low scales
 - Unparticle conformal invariance broken [Fox, Rajaraman, and Shirman]

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2
- But
 - Unparticles couple to Standard Model
 - Higgs VEV breaks conformal invariance at low scales
 - Unparticle conformal invariance broken [Fox, Rajaraman, and Shirman]

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2
- But
 - Unparticles couple to Standard Model
 - Higgs VEV breaks conformal invariance at low scales
 - Unparticle conformal invariance broken [Fox, Rajaraman, and Shirman]

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2
- But
 - Unparticles couple to Standard Model
 - Higgs VEV breaks conformal invariance at low scales
 - Unparticle conformal invariance broken [Fox, Rajaraman, and Shirman]

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2
- But
 - Unparticles couple to Standard Model
 - Higgs VEV breaks conformal invariance at low scales
 - Unparticle conformal invariance broken [Fox, Rajaraman, and Shirman]

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2
- But
 - Unparticles couple to Standard Model
 - Higgs VEV breaks conformal invariance at low scales
 - Unparticle conformal invariance broken [Fox, Rajaraman, and Shirman]

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2
- But
 - Unparticles couple to Standard Model
 - Higgs VEV breaks conformal invariance at low scales
 - Unparticle conformal invariance broken [Fox, Rajaraman, and Shirman]

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2
- But
 - Unparticles couple to Standard Model
 - Higgs VEV breaks conformal invariance at low scales
 - Unparticle conformal invariance broken [Fox, Rajaraman, and Shirman]

So how to define unparticle?

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2
- But
 - Unparticles couple to Standard Model
 - Higgs VEV breaks conformal invariance at low scales
 - Unparticle conformal invariance broken [Fox, Rajaraman, and Shirman]
- So, how to define unparticle?

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2
- But
 - Unparticles couple to Standard Model
 - Higgs VEV breaks conformal invariance at low scales
 - Unparticle conformal invariance broken [Fox, Rajaraman, and Shirman]
- So, how to define unparticle?

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2
- But
 - Unparticles couple to Standard Model
 - Higgs VEV breaks conformal invariance at low scales
 - Unparticle conformal invariance broken [Fox, Rajaraman, and Shirman]
- So, how to define unparticle?

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2
- But
 - Unparticles couple to Standard Model
 - Higgs VEV breaks conformal invariance at low scales
 - Unparticle conformal invariance broken [Fox, Rajaraman, and Shirman]
- So, how to define unparticle?

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2
- But
 - Unparticles couple to Standard Model
 - Higgs VEV breaks conformal invariance at low scales
 - Unparticle conformal invariance broken [Fox, Rajaraman, and Shirman]
- So, how to define unparticle?

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2
- But
 - Unparticles couple to Standard Model
 - Higgs VEV breaks conformal invariance at low scales
 - Unparticle conformal invariance broken [Fox, Rajaraman, and Shirman]
- So, how to define unparticle?

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2
- But
 - Unparticles couple to Standard Model
 - Higgs VEV breaks conformal invariance at low scales
 - Unparticle conformal invariance broken [Fox, Rajaraman, and Shirman]
- So, how to define unparticle?

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2
- But
 - Unparticles couple to Standard Model
 - Higgs VEV breaks conformal invariance at low scales
 - Unparticle conformal invariance broken [Fox, Rajaraman, and Shirman]
- So, how to define unparticle?

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2
- But
 - Unparticles couple to Standard Model
 - Higgs VEV breaks conformal invariance at low scales
 - Unparticle conformal invariance broken [Fox, Rajaraman, and Shirman]
- So, how to define unparticle?

- Original proposal by Georgi was that an unparticle is
 - An operator that is non-trivially scale invariant
 - Scale invariance fixes propagator
 - Resulting interpretation of unparticle as a fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
 - An operator that is conformally invariant
 - Restricts scaling dimension: 1 < d < 2
- But
 - Unparticles couple to Standard Model
 - Higgs VEV breaks conformal invariance at low scales
 - Unparticle conformal invariance broken [Fox, Rajaraman, and Shirman]
- So, how to define unparticle?

- Answer hinted at by Stephanov
 - Unparticle is an infinite tower of massive modes with small mass spacing
- Made precise by Falkowski and Pérez-Victoria
 - Conformal symmetry broken at low scales anyway
 - So use AdS/CFT to give 5D picture
 - Consider full 5D propagator
 - Result: no operator scaling dimension restriction
- An unparticle is a continuous spectrum of excitations

Pirsa: 10050014 Page 206/136

- Answer hinted at by Stephanov
 - Unparticle is an infinite tower of massive modes with small mass spacing
- Made precise by Falkowski and Pérez-Victoria
 - Conformal symmetry broken at low scales anyway
 - So use AdS/CFT to give 5D picture
 - Consider full 5D propagator
 - Result: no operator scaling dimension restriction
- An unparticle is a continuous spectrum of excitations

- Answer hinted at by Stephanov
 - Unparticle is an infinite tower of massive modes with small mass spacing
- Made precise by Falkowski and Pérez-Victoria
 - Conformal symmetry broken at low scales anyway
 - So use AdS/CFT to give 5D picture
 - Consider full 5D propagator
 - Result: no operator scaling dimension restriction
- An unparticle is a continuous spectrum of excitations

- Answer hinted at by Stephanov
 - Unparticle is an infinite tower of massive modes with small mass spacing
- Made precise by Falkowski and Pérez-Victoria
 - Conformal symmetry broken at low scales anyway
 - So use AdS/CFT to give 5D picture
 - Consider full 5D propagator
 - Result: no operator scaling dimension restriction
- An unparticle is a continuous spectrum of excitations

Pirsa: 10050014 Page 209/136

- Answer hinted at by Stephanov
 - Unparticle is an infinite tower of massive modes with small mass spacing
- Made precise by Falkowski and Pérez-Victoria
 - Conformal symmetry broken at low scales anyway
 - So use AdS/CFT to give 5D picture
 - Consider full 5D propagator
 - Result: no operator scaling dimension restriction
- An unparticle is a continuous spectrum of excitations

Pirsa: 10050014 Page 210/136

- Answer hinted at by Stephanov
 - Unparticle is an infinite tower of massive modes with small mass spacing
- Made precise by Falkowski and Pérez-Victoria
 - Conformal symmetry broken at low scales anyway
 - So use AdS/CFT to give 5D picture
 - Consider full 5D propagator
 - Result: no operator scaling dimension restriction
- An unparticle is a continuous spectrum of excitations

- Answer hinted at by Stephanov
 - Unparticle is an infinite tower of massive modes with small mass spacing
- Made precise by Falkowski and Pérez-Victoria
 - Conformal symmetry broken at low scales anyway
 - So use AdS/CFT to give 5D picture
 - Consider full 5D propagator
 - Result: no operator scaling dimension restriction
- An unparticle is a continuous spectrum of excitations

Pirsa: 10050014 Page 212/136

- Answer hinted at by Stephanov
 - Unparticle is an infinite tower of massive modes with small mass spacing
- Made precise by Falkowski and Pérez-Victoria
 - Conformal symmetry broken at low scales anyway
 - So use AdS/CFT to give 5D picture
 - Consider full 5D propagator
 - Result: no operator scaling dimension restriction
- An unparticle is a continuous spectrum of excitations

- Answer hinted at by Stephanov
 - Unparticle is an infinite tower of massive modes with small mass spacing
- Made precise by Falkowski and Pérez-Victoria
 - Conformal symmetry broken at low scales anyway
 - So use AdS/CFT to give 5D picture
 - Consider full 5D propagator
 - Result: no operator scaling dimension restriction
- An unparticle is a continuous spectrum of excitations

- Answer hinted at by Stephanov
 - Unparticle is an infinite tower of massive modes with small mass spacing
- Made precise by Falkowski and Pérez-Victoria
 - Conformal symmetry broken at low scales anyway
 - So use AdS/CFT to give 5D picture
 - Consider full 5D propagator
 - Result: no operator scaling dimension restriction
- An unparticle is a continuous spectrum of excitations

Pirsa: 10050014 Page 215/136

- Answer hinted at by Stephanov
 - Unparticle is an infinite tower of massive modes with small mass spacing
- Made precise by Falkowski and Pérez-Victoria
 - Conformal symmetry broken at low scales anyway
 - So use AdS/CFT to give 5D picture
 - Consider full 5D propagator
 - Result: no operator scaling dimension restriction
- An unparticle is a continuous spectrum of excitations

- Answer hinted at by Stephanov
 - Unparticle is an infinite tower of massive modes with small mass spacing
- Made precise by Falkowski and Pérez-Victoria
 - Conformal symmetry broken at low scales anyway
 - So use AdS/CFT to give 5D picture
 - Consider full 5D propagator
 - Result: no operator scaling dimension restriction
- An unparticle is a continuous spectrum of excitations

- Answer hinted at by Stephanov
 - Unparticle is an infinite tower of massive modes with small mass spacing
- Made precise by Falkowski and Pérez-Victoria
 - Conformal symmetry broken at low scales anyway
 - So use AdS/CFT to give 5D picture
 - Consider full 5D propagator
 - Result: no operator scaling dimension restriction
- An unparticle is a continuous spectrum of excitations

- Answer hinted at by Stephanov
 - Unparticle is an infinite tower of massive modes with small mass spacing
- Made precise by Falkowski and Pérez-Victoria
 - Conformal symmetry broken at low scales anyway
 - So use AdS/CFT to give 5D picture
 - Consider full 5D propagator
 - Result: no operator scaling dimension restriction
- An unparticle is a continuous spectrum of excitations

Pirsa: 10050014 Page 219/136

- Answer hinted at by Stephanov
 - Unparticle is an infinite tower of massive modes with small mass spacing
- Made precise by Falkowski and Pérez-Victoria
 - Conformal symmetry broken at low scales anyway
 - So use AdS/CFT to give 5D picture
 - Consider full 5D propagator
 - Result: no operator scaling dimension restriction
- An unparticle is a continuous spectrum of excitations

Pirsa: 10050014 Page 220/136

- Answer hinted at by Stephanov
 - Unparticle is an infinite tower of massive modes with small mass spacing
- Made precise by Falkowski and Pérez-Victoria
 - Conformal symmetry broken at low scales anyway
 - So use AdS/CFT to give 5D picture
 - Consider full 5D propagator
 - Result: no operator scaling dimension restriction
- An unparticle is a continuous spectrum of excitations

Pirsa: 10050014 Page 221/136

- Answer hinted at by Stephanov
 - Unparticle is an infinite tower of massive modes with small mass spacing
- Made precise by Falkowski and Pérez-Victoria
 - Conformal symmetry broken at low scales anyway
 - So use AdS/CFT to give 5D picture
 - Consider full 5D propagator
 - Result: no operator scaling dimension restriction
- An unparticle is a continuous spectrum of excitations

Pirsa: 10050014 Page 222/136

- Answer hinted at by Stephanov
 - Unparticle is an infinite tower of massive modes with small mass spacing
- Made precise by Falkowski and Pérez-Victoria
 - Conformal symmetry broken at low scales anyway
 - So use AdS/CFT to give 5D picture
 - Consider full 5D propagator
 - Result: no operator scaling dimension restriction
- An unparticle is a continuous spectrum of excitations

Pirsa: 10050014 Page 223/136

- Answer hinted at by Stephanov
 - Unparticle is an infinite tower of massive modes with small mass spacing
- Made precise by Falkowski and Pérez-Victoria
 - Conformal symmetry broken at low scales anyway
 - So use AdS/CFT to give 5D picture
 - Consider full 5D propagator
 - Result: no operator scaling dimension restriction
- An unparticle is a continuous spectrum of excitations

Pirsa: 10050014 Page 224/136

- Answer hinted at by Stephanov
 - Unparticle is an infinite tower of massive modes with small mass spacing
- Made precise by Falkowski and Pérez-Victoria
 - Conformal symmetry broken at low scales anyway
 - So use AdS/CFT to give 5D picture
 - Consider full 5D propagator
 - Result: no operator scaling dimension restriction
- An unparticle is a continuous spectrum of excitations

- Answer hinted at by Stephanov
 - Unparticle is an infinite tower of massive modes with small mass spacing
- Made precise by Falkowski and Pérez-Victoria
 - Conformal symmetry broken at low scales anyway
 - So use AdS/CFT to give 5D picture
 - Consider full 5D propagator
 - Result: no operator scaling dimension restriction
- An unparticle is a continuous spectrum of excitations

- Answer hinted at by Stephanov
 - Unparticle is an infinite tower of massive modes with small mass spacing
- Made precise by Falkowski and Pérez-Victoria
 - Conformal symmetry broken at low scales anyway
 - So use AdS/CFT to give 5D picture
 - Consider full 5D propagator
 - Result: no operator scaling dimension restriction
- An unparticle is a continuous spectrum of excitations

Pirsa: 10050014 Page 227/136

- Answer hinted at by Stephanov
 - Unparticle is an infinite tower of massive modes with small mass spacing
- Made precise by Falkowski and Pérez-Victoria
 - Conformal symmetry broken at low scales anyway
 - So use AdS/CFT to give 5D picture
 - Consider full 5D propagator
 - Result: no operator scaling dimension restriction
- An unparticle is a continuous spectrum of excitations

- Answer hinted at by Stephanov
 - Unparticle is an infinite tower of massive modes with small mass spacing
- Made precise by Falkowski and Pérez-Victoria
 - Conformal symmetry broken at low scales anyway
 - So use AdS/CFT to give 5D picture
 - Consider full 5D propagator
 - Result: no operator scaling dimension restriction
- An unparticle is a continuous spectrum of excitations

Pirsa: 10050014 Page 229/136

- Answer hinted at by Stephanov
 - Unparticle is an infinite tower of massive modes with small mass spacing
- Made precise by Falkowski and Pérez-Victoria
 - Conformal symmetry broken at low scales anyway
 - So use AdS/CFT to give 5D picture
 - Consider full 5D propagator
 - Result: no operator scaling dimension restriction
- An unparticle is a continuous spectrum of excitations

Pirsa: 10050014 Page 230/136

- Answer hinted at by Stephanov
 - Unparticle is an infinite tower of massive modes with small mass spacing
- Made precise by Falkowski and Pérez-Victoria
 - Conformal symmetry broken at low scales anyway
 - So use AdS/CFT to give 5D picture
 - Consider full 5D propagator
 - Result: no operator scaling dimension restriction
- An unparticle is a continuous spectrum of excitations

- Answer hinted at by Stephanov
 - Unparticle is an infinite tower of massive modes with small mass spacing
- Made precise by Falkowski and Pérez-Victoria
 - Conformal symmetry broken at low scales anyway
 - So use AdS/CFT to give 5D picture
 - Consider full 5D propagator
 - Result: no operator scaling dimension restriction
- An unparticle is a continuous spectrum of excitations

Pirsa: 10050014 Page 232/136

- Answer hinted at by Stephanov
 - Unparticle is an infinite tower of massive modes with small mass spacing
- Made precise by Falkowski and Pérez-Victoria
 - Conformal symmetry broken at low scales anyway
 - So use AdS/CFT to give 5D picture
 - Consider full 5D propagator
 - Result: no operator scaling dimension restriction
- An unparticle is a continuous spectrum of excitations

Pirsa: 10050014 Page 233/136

- Answer hinted at by Stephanov
 - Unparticle is an infinite tower of massive modes with small mass spacing
- Made precise by Falkowski and Pérez-Victoria
 - Conformal symmetry broken at low scales anyway
 - So use AdS/CFT to give 5D picture
 - Consider full 5D propagator
 - Result: no operator scaling dimension restriction
- An unparticle is a continuous spectrum of excitations

Pirsa: 10050014 Page 234/136

- Answer hinted at by Stephanov
 - Unparticle is an infinite tower of massive modes with small mass spacing
- Made precise by Falkowski and Pérez-Victoria
 - Conformal symmetry broken at low scales anyway
 - So use AdS/CFT to give 5D picture
 - Consider full 5D propagator
 - Result: no operator scaling dimension restriction
- An unparticle is a continuous spectrum of excitations

Pirsa: 10050014 Page 235/136

- Answer hinted at by Stephanov
 - Unparticle is an infinite tower of massive modes with small mass spacing
- Made precise by Falkowski and Pérez-Victoria
 - Conformal symmetry broken at low scales anyway
 - So use AdS/CFT to give 5D picture
 - Consider full 5D propagator
 - Result: no operator scaling dimension restriction
- An unparticle is a continuous spectrum of excitations

- Answer hinted at by Stephanov
 - Unparticle is an infinite tower of massive modes with small mass spacing
- Made precise by Falkowski and Pérez-Victoria
 - Conformal symmetry broken at low scales anyway
 - So use AdS/CFT to give 5D picture
 - Consider full 5D propagator
 - Result: no operator scaling dimension restriction
- An unparticle is a continuous spectrum of excitations

Pirsa: 10050014 Page 237/136

- Answer hinted at by Stephanov
 - Unparticle is an infinite tower of massive modes with small mass spacing
- Made precise by Falkowski and Pérez-Victoria
 - Conformal symmetry broken at low scales anyway
 - So use AdS/CFT to give 5D picture
 - Consider full 5D propagator
 - Result: no operator scaling dimension restriction
- An unparticle is a continuous spectrum of excitations

Pirsa: 10050014 Page 238/136

- Answer hinted at by Stephanov
 - Unparticle is an infinite tower of massive modes with small mass spacing
- Made precise by Falkowski and Pérez-Victoria
 - Conformal symmetry broken at low scales anyway
 - So use AdS/CFT to give 5D picture
 - Consider full 5D propagator
 - Result: no operator scaling dimension restriction
- An unparticle is a continuous spectrum of excitations

- Answer hinted at by Stephanov
 - Unparticle is an infinite tower of massive modes with small mass spacing
- Made precise by Falkowski and Pérez-Victoria
 - Conformal symmetry broken at low scales anyway
 - So use AdS/CFT to give 5D picture
 - Consider full 5D propagator
 - Result: no operator scaling dimension restriction
- An unparticle is a continuous spectrum of excitations

Pirsa: 10050014 Page 240/136

- Answer hinted at by Stephanov
 - Unparticle is an infinite tower of massive modes with small mass spacing
- Made precise by Falkowski and Pérez-Victoria
 - Conformal symmetry broken at low scales anyway
 - So use AdS/CFT to give 5D picture
 - Consider full 5D propagator
 - Result: no operator scaling dimension restriction
- An unparticle is a continuous spectrum of excitations

Pirsa: 10050014 Page 241/136

- Answer hinted at by Stephanov
 - Unparticle is an infinite tower of massive modes with small mass spacing
- Made precise by Falkowski and Pérez-Victoria
 - Conformal symmetry broken at low scales anyway
 - So use AdS/CFT to give 5D picture
 - Consider full 5D propagator
 - Result: no operator scaling dimension restriction
- An unparticle is a continuous spectrum of excitations

Pirsa: 10050014 Page 242/136

- Answer hinted at by Stephanov
 - Unparticle is an infinite tower of massive modes with small mass spacing
- Made precise by Falkowski and Pérez-Victoria
 - Conformal symmetry broken at low scales anyway
 - So use AdS/CFT to give 5D picture
 - Consider full 5D propagator
 - Result: no operator scaling dimension restriction
- An unparticle is a continuous spectrum of excitations

Pirsa: 10050014 Page 243/136

- Answer hinted at by Stephanov
 - Unparticle is an infinite tower of massive modes with small mass spacing
- Made precise by Falkowski and Pérez-Victoria
 - Conformal symmetry broken at low scales anyway
 - So use AdS/CFT to give 5D picture
 - Consider full 5D propagator
 - Result: no operator scaling dimension restriction
- An unparticle is a continuous spectrum of excitations

Pirsa: 10050014 Page 244/136

- Answer hinted at by Stephanov
 - Unparticle is an infinite tower of massive modes with small mass spacing
- Made precise by Falkowski and Pérez-Victoria
 - Conformal symmetry broken at low scales anyway
 - So use AdS/CFT to give 5D picture
 - Consider full 5D propagator
 - Result: no operator scaling dimension restriction
- An unparticle is a continuous spectrum of excitations

Pirsa: 10050014 Page 245/136

- Answer hinted at by Stephanov
 - Unparticle is an infinite tower of massive modes with small mass spacing
- Made precise by Falkowski and Pérez-Victoria
 - Conformal symmetry broken at low scales anyway
 - So use AdS/CFT to give 5D picture
 - Consider full 5D propagator
 - Result: no operator scaling dimension restriction
- An unparticle is a continuous spectrum of excitations

Pirsa: 10050014 Page 246/136

- Answer hinted at by Stephanov
 - Unparticle is an infinite tower of massive modes with small mass spacing
- Made precise by Falkowski and Pérez-Victoria
 - Conformal symmetry broken at low scales anyway
 - So use AdS/CFT to give 5D picture
 - Consider full 5D propagator
 - Result: no operator scaling dimension restriction
- An unparticle is a continuous spectrum of excitations

Pirsa: 10050014 Page 247/136

- Answer hinted at by Stephanov
 - Unparticle is an infinite tower of massive modes with small mass spacing
- Made precise by Falkowski and Pérez-Victoria
 - Conformal symmetry broken at low scales anyway
 - So use AdS/CFT to give 5D picture
 - Consider full 5D propagator
 - Result: no operator scaling dimension restriction
- An unparticle is a continuous spectrum of excitations

Pirsa: 10050014 Page 248/136

- Answer hinted at by Stephanov
 - Unparticle is an infinite tower of massive modes with small mass spacing
- Made precise by Falkowski and Pérez-Victoria
 - Conformal symmetry broken at low scales anyway
 - So use AdS/CFT to give 5D picture
 - Consider full 5D propagator
 - Result: no operator scaling dimension restriction
- An unparticle is a continuous spectrum of excitations

- Answer hinted at by Stephanov
 - Unparticle is an infinite tower of massive modes with small mass spacing
- Made precise by Falkowski and Pérez-Victoria
 - Conformal symmetry broken at low scales anyway
 - So use AdS/CFT to give 5D picture
 - Consider full 5D propagator
 - Result: no operator scaling dimension restriction
- An unparticle is a continuous spectrum of excitations

Pirsa: 10050014 Page 250/136

- Answer hinted at by Stephanov
 - Unparticle is an infinite tower of massive modes with small mass spacing
- Made precise by Falkowski and Pérez-Victoria
 - Conformal symmetry broken at low scales anyway
 - So use AdS/CFT to give 5D picture
 - Consider full 5D propagator
 - Result: no operator scaling dimension restriction
- An unparticle is a continuous spectrum of excitations

- Answer hinted at by Stephanov
 - Unparticle is an infinite tower of massive modes with small mass spacing
- Made precise by Falkowski and Pérez-Victoria
 - Conformal symmetry broken at low scales anyway
 - So use AdS/CFT to give 5D picture
 - Consider full 5D propagator
 - Result: no operator scaling dimension restriction
- An unparticle is a continuous spectrum of excitations

- Answer hinted at by Stephanov
 - Unparticle is an infinite tower of massive modes with small mass spacing
- Made precise by Falkowski and Pérez-Victoria
 - Conformal symmetry broken at low scales anyway
 - So use AdS/CFT to give 5D picture
 - Consider full 5D propagator
 - Result: no operator scaling dimension restriction
- An unparticle is a continuous spectrum of excitations

- Answer hinted at by Stephanov
 - Unparticle is an infinite tower of massive modes with small mass spacing
- Made precise by Falkowski and Pérez-Victoria
 - Conformal symmetry broken at low scales anyway
 - So use AdS/CFT to give 5D picture
 - Consider full 5D propagator
 - Result: no operator scaling dimension restriction
- An unparticle is a continuous spectrum of excitations

Pirsa: 10050014 Page 254/136

- Answer hinted at by Stephanov
 - Unparticle is an infinite tower of massive modes with small mass spacing
- Made precise by Falkowski and Pérez-Victoria
 - Conformal symmetry broken at low scales anyway
 - So use AdS/CFT to give 5D picture
 - Consider full 5D propagator
 - Result: no operator scaling dimension restriction
- An unparticle is a continuous spectrum of excitations

- Answer hinted at by Stephanov
 - Unparticle is an infinite tower of massive modes with small mass spacing
- Made precise by Falkowski and Pérez-Victoria
 - Conformal symmetry broken at low scales anyway
 - So use AdS/CFT to give 5D picture
 - Consider full 5D propagator
 - Result: no operator scaling dimension restriction
- An unparticle is a continuous spectrum of excitations

Pirsa: 10050014 Page 256/136

- Answer hinted at by Stephanov
 - Unparticle is an infinite tower of massive modes with small mass spacing
- Made precise by Falkowski and Pérez-Victoria
 - Conformal symmetry broken at low scales anyway
 - So use AdS/CFT to give 5D picture
 - Consider full 5D propagator
 - Result: no operator scaling dimension restriction
- An unparticle is a continuous spectrum of excitations

Pirsa: 10050014 Page 257/136

- Answer hinted at by Stephanov
 - Unparticle is an infinite tower of massive modes with small mass spacing
- Made precise by Falkowski and Pérez-Victoria
 - Conformal symmetry broken at low scales anyway
 - So use AdS/CFT to give 5D picture
 - Consider full 5D propagator
 - Result: no operator scaling dimension restriction
- An unparticle is a continuous spectrum of excitations

Pirsa: 10050014 Page 258/136

- Answer hinted at by Stephanov
 - Unparticle is an infinite tower of massive modes with small mass spacing
- Made precise by Falkowski and Pérez-Victoria
 - Conformal symmetry broken at low scales anyway
 - So use AdS/CFT to give 5D picture
 - Consider full 5D propagator
 - Result: no operator scaling dimension restriction
- An unparticle is a continuous spectrum of excitations

- Answer hinted at by Stephanov
 - Unparticle is an infinite tower of massive modes with small mass spacing
- Made precise by Falkowski and Pérez-Victoria
 - Conformal symmetry broken at low scales anyway
 - So use AdS/CFT to give 5D picture
 - Consider full 5D propagator
 - Result: no operator scaling dimension restriction
- An unparticle is a continuous spectrum of excitations

- Answer hinted at by Stephanov
 - Unparticle is an infinite tower of massive modes with small mass spacing
- Made precise by Falkowski and Pérez-Victoria
 - Conformal symmetry broken at low scales anyway
 - So use AdS/CFT to give 5D picture
 - Consider full 5D propagator
 - Result: no operator scaling dimension restriction
- An unparticle is a continuous spectrum of excitations

- Answer hinted at by Stephanov
 - Unparticle is an infinite tower of massive modes with small mass spacing
- Made precise by Falkowski and Pérez-Victoria
 - Conformal symmetry broken at low scales anyway
 - So use AdS/CFT to give 5D picture
 - Consider full 5D propagator
 - Result: no operator scaling dimension restriction
- An unparticle is a continuous spectrum of excitations

Pirsa: 10050014 Page 262/136

- Answer hinted at by Stephanov
 - Unparticle is an infinite tower of massive modes with small mass spacing
- Made precise by Falkowski and Pérez-Victoria
 - Conformal symmetry broken at low scales anyway
 - So use AdS/CFT to give 5D picture
 - Consider full 5D propagator
 - Result: no operator scaling dimension restriction
- An unparticle is a continuous spectrum of excitations

- Answer hinted at by Stephanov
 - Unparticle is an infinite tower of massive modes with small mass spacing
- Made precise by Falkowski and Pérez-Victoria
 - Conformal symmetry broken at low scales anyway
 - So use AdS/CFT to give 5D picture
 - Consider full 5D propagator
 - Result: no operator scaling dimension restriction
- An unparticle is a continuous spectrum of excitations

Pirsa: 10050014 Page 264/136

- Answer hinted at by Stephanov
 - Unparticle is an infinite tower of massive modes with small mass spacing
- Made precise by Falkowski and Pérez-Victoria
 - Conformal symmetry broken at low scales anyway
 - So use AdS/CFT to give 5D picture
 - Consider full 5D propagator
 - Result: no operator scaling dimension restriction
- An unparticle is a continuous spectrum of excitations

Pirsa: 10050014 Page 265/136

- Answer hinted at by Stephanov
 - Unparticle is an infinite tower of massive modes with small mass spacing
- Made precise by Falkowski and Pérez-Victoria
 - Conformal symmetry broken at low scales anyway
 - So use AdS/CFT to give 5D picture
 - Consider full 5D propagator
 - Result: no operator scaling dimension restriction
- An unparticle is a continuous spectrum of excitations

- Answer hinted at by Stephanov
 - Unparticle is an infinite tower of massive modes with small mass spacing
- Made precise by Falkowski and Pérez-Victoria
 - Conformal symmetry broken at low scales anyway
 - So use AdS/CFT to give 5D picture
 - Consider full 5D propagator
 - Result: no operator scaling dimension restriction
- An unparticle is a continuous spectrum of excitations

Pirsa: 10050014 Page 267/136

- Answer hinted at by Stephanov
 - Unparticle is an infinite tower of massive modes with small mass spacing
- Made precise by Falkowski and Pérez-Victoria
 - Conformal symmetry broken at low scales anyway
 - So use AdS/CFT to give 5D picture
 - Consider full 5D propagator
 - Result: no operator scaling dimension restriction
- An unparticle is a continuous spectrum of excitations

- Answer hinted at by Stephanov
 - Unparticle is an infinite tower of massive modes with small mass spacing
- Made precise by Falkowski and Pérez-Victoria
 - Conformal symmetry broken at low scales anyway
 - So use AdS/CFT to give 5D picture
 - Consider full 5D propagator
 - Result: no operator scaling dimension restriction
- An unparticle is a continuous spectrum of excitations

- Answer hinted at by Stephanov
 - Unparticle is an infinite tower of massive modes with small mass spacing
- Made precise by Falkowski and Pérez-Victoria
 - Conformal symmetry broken at low scales anyway
 - So use AdS/CFT to give 5D picture
 - Consider full 5D propagator
 - Result: no operator scaling dimension restriction
- An unparticle is a continuous spectrum of excitations

Pirsa: 10050014 Page 270/136

- Answer hinted at by Stephanov
 - Unparticle is an infinite tower of massive modes with small mass spacing
- Made precise by Falkowski and Pérez-Victoria
 - Conformal symmetry broken at low scales anyway
 - So use AdS/CFT to give 5D picture
 - Consider full 5D propagator
 - Result: no operator scaling dimension restriction
- An unparticle is a continuous spectrum of excitations

- Answer hinted at by Stephanov
 - Unparticle is an infinite tower of massive modes with small mass spacing
- Made precise by Falkowski and Pérez-Victoria
 - Conformal symmetry broken at low scales anyway
 - So use AdS/CFT to give 5D picture
 - Consider full 5D propagator
 - Result: no operator scaling dimension restriction
- An unparticle is a continuous spectrum of excitations

- Answer hinted at by Stephanov
 - Unparticle is an infinite tower of massive modes with small mass spacing
- Made precise by Falkowski and Pérez-Victoria
 - Conformal symmetry broken at low scales anyway
 - So use AdS/CFT to give 5D picture
 - Consider full 5D propagator
 - Result: no operator scaling dimension restriction
- An unparticle is a continuous spectrum of excitations

- Answer hinted at by Stephanov
 - Unparticle is an infinite tower of massive modes with small mass spacing
- Made precise by Falkowski and Pérez-Victoria
 - Conformal symmetry broken at low scales anyway
 - So use AdS/CFT to give 5D picture
 - Consider full 5D propagator
 - Result: no operator scaling dimension restriction
- An unparticle is a continuous spectrum of excitations

- Answer hinted at by Stephanov
 - Unparticle is an infinite tower of massive modes with small mass spacing
- Made precise by Falkowski and Pérez-Victoria
 - Conformal symmetry broken at low scales anyway
 - So use AdS/CFT to give 5D picture
 - Consider full 5D propagator
 - Result: no operator scaling dimension restriction
- An unparticle is a continuous spectrum of excitations

- Answer hinted at by Stephanov
 - Unparticle is an infinite tower of massive modes with small mass spacing
- Made precise by Falkowski and Pérez-Victoria
 - Conformal symmetry broken at low scales anyway
 - So use AdS/CFT to give 5D picture
 - Consider full 5D propagator
 - Result: no operator scaling dimension restriction
- An unparticle is a continuous spectrum of excitations

- Answer hinted at by Stephanov
 - Unparticle is an infinite tower of massive modes with small mass spacing
- Made precise by Falkowski and Pérez-Victoria
 - Conformal symmetry broken at low scales anyway
 - So use AdS/CFT to give 5D picture
 - Consider full 5D propagator
 - Result: no operator scaling dimension restriction
- An unparticle is a continuous spectrum of excitations

Pirsa: 10050014 Page 277/136

- Answer hinted at by Stephanov
 - Unparticle is an infinite tower of massive modes with small mass spacing
- Made precise by Falkowski and Pérez-Victoria
 - Conformal symmetry broken at low scales anyway
 - So use AdS/CFT to give 5D picture
 - Consider full 5D propagator
 - Result: no operator scaling dimension restriction
- An unparticle is a continuous spectrum of excitations

- Answer hinted at by Stephanov
 - Unparticle is an infinite tower of massive modes with small mass spacing
- Made precise by Falkowski and Pérez-Victoria
 - Conformal symmetry broken at low scales anyway
 - So use AdS/CFT to give 5D picture
 - Consider full 5D propagator
 - Result: no operator scaling dimension restriction
- An unparticle is a continuous spectrum of excitations

- Answer hinted at by Stephanov
 - Unparticle is an infinite tower of massive modes with small mass spacing
- Made precise by Falkowski and Pérez-Victoria
 - Conformal symmetry broken at low scales anyway
 - So use AdS/CFT to give 5D picture
 - Consider full 5D propagator
 - Result: no operator scaling dimension restriction
- An unparticle is a continuous spectrum of excitations

Pirsa: 10050014 Page 280/136

- Answer hinted at by Stephanov
 - Unparticle is an infinite tower of massive modes with small mass spacing
- Made precise by Falkowski and Pérez-Victoria
 - Conformal symmetry broken at low scales anyway
 - So use AdS/CFT to give 5D picture
 - Consider full 5D propagator
 - Result: no operator scaling dimension restriction
- An unparticle is a continuous spectrum of excitations

Pirsa: 10050014 Page 281/136

- Answer hinted at by Stephanov
 - Unparticle is an infinite tower of massive modes with small mass spacing
- Made precise by Falkowski and Pérez-Victoria
 - Conformal symmetry broken at low scales anyway
 - So use AdS/CFT to give 5D picture
 - Consider full 5D propagator
 - Result: no operator scaling dimension restriction
- An unparticle is a continuous spectrum of excitations

Pirsa: 10050014 Page 282/136

- Answer hinted at by Stephanov
 - Unparticle is an infinite tower of massive modes with small mass spacing
- Made precise by Falkowski and Pérez-Victoria
 - Conformal symmetry broken at low scales anyway
 - So use AdS/CFT to give 5D picture
 - Consider full 5D propagator
 - Result: no operator scaling dimension restriction
- An unparticle is a continuous spectrum of excitations

Pirsa: 10050014 Page 283/136

- Answer hinted at by Stephanov
 - Unparticle is an infinite tower of massive modes with small mass spacing
- Made precise by Falkowski and Pérez-Victoria
 - Conformal symmetry broken at low scales anyway
 - So use AdS/CFT to give 5D picture
 - Consider full 5D propagator
 - Result: no operator scaling dimension restriction
- An unparticle is a continuous spectrum of excitations

RS1 abruptly ends space at $y = \pi R$

RS1 abruptly ends space at $y = \pi R$

RS1 abruptly ends space at $y = \pi R$

RS1 abruptly ends space at $y = \pi R$

RS1 abruptly ends space at $y = \pi R$

RS1 abruptly ends space at $y = \pi R$

RS1 abruptly ends space at $y = \pi R$

RS1 abruptly ends space at $y = \pi R$

RS1 abruptly ends space at $y = \pi R$

Pirsa: 10050014 Page 293/1362

RS1 abruptly ends space at $y = \pi R$

RS1 abruptly ends space at $y = \pi R$

RS1 abruptly ends space at $y = \pi R$

RS1 abruptly ends space at $y = \pi R$

RS1 abruptly ends space at $y = \pi R$

RS1 abruptly ends space at $y = \pi R$

RS1 abruptly ends space at $y = \pi R$

he Walls

he Walls

he Walls

he Walls

utline

The BG Soft-Wall Model

Pirsa: 10050014 Page 318/1362

utline

The BG Soft-Wall Model

Pirsa: 10050014 Page 319/1362

utline

The BG Soft-Wall Model

Pirsa: 10050014 Page 320/1362

utline

The BG Soft-Wall Model

Pirsa: 10050014 Page 321/1362

utline

The BG Soft-Wall Model

Pirsa: 10050014 Page 322/1362

G Soft-Wall Model

tell-Gherghetta Soft-Wall

- Dynamical Solution to Einstein Equations
- A Real Scalar (the "Dilaton") with power-law VEV
- Conformally equivalent to pure AdS in "string" frame
- Requires at least two real scalars (φ, T)

Pirsa: 10050014 Page 323/136

G Soft-Wall Model

tell-Gherghetta Soft-Wall

- Dynamical Solution to Einstein Equations
- A Real Scalar (the "Dilaton") with power-law VEV
- Conformally equivalent to pure AdS in "string" frame
- Requires at least two real scalars (φ, T)

tell-Gherghetta Soft-Wall

- Dynamical Solution to Einstein Equations
- A Real Scalar (the "Dilaton") with power-law VEV
- Conformally equivalent to pure AdS in "string" frame
- Requires at least two real scalars (φ, T)

Pirsa: 10050014 Page 325/13

tell-Gherghetta Soft-Wall

- Dynamical Solution to Einstein Equations
- A Real Scalar (the "Dilaton") with power-law VEV
- Conformally equivalent to pure AdS in "string" frame
- Requires at least two real scalars (φ, T)

tell-Gherghetta Soft-Wall

- Dynamical Solution to Einstein Equations
- A Real Scalar (the "Dilaton") with power-law VEV
- Conformally equivalent to pure AdS in "string" frame
- Requires at least two real scalars (φ, T)

tell-Gherghetta Soft-Wall

- Dynamical Solution to Einstein Equations
- A Real Scalar (the "Dilaton") with power-law VEV
- Conformally equivalent to pure AdS in "string" frame
- Requires at least two real scalars (φ, T)

tell-Gherghetta Soft-Wall

- Dynamical Solution to Einstein Equations
- A Real Scalar (the "Dilaton") with power-law VEV
- Conformally equivalent to pure AdS in "string" frame
- Requires at least two real scalars (φ, T)

Pirsa: 10050014 Page 329/13

tell-Gherghetta Soft-Wall

- Dynamical Solution to Einstein Equations
- A Real Scalar (the "Dilaton") with power-law VEV
- Conformally equivalent to pure AdS in "string" frame
- Requires at least two real scalars (\$\phi\$, T)

Pirsa: 10050014 Page 330/136

tell-Gherghetta Soft-Wall

- Dynamical Solution to Einstein Equations
- A Real Scalar (the "Dilaton") with power-law VEV
- Conformally equivalent to pure AdS in "string" frame
- Requires at least two real scalars (φ, T)

tell-Gherghetta Soft-Wall

- Dynamical Solution to Einstein Equations
- A Real Scalar (the "Dilaton") with power-law VEV
- Conformally equivalent to pure AdS in "string" frame
- Requires at least two real scalars (φ, T)

tell-Gherghetta Soft-Wall

- Dynamical Solution to Einstein Equations
- A Real Scalar (the "Dilaton") with power-law VEV
- Conformally equivalent to pure AdS in "string" frame
- Requires at least two real scalars (φ, T)

tell-Gherghetta Soft-Wall

- Dynamical Solution to Einstein Equations
- A Real Scalar (the "Dilaton") with power-law VEV
- Conformally equivalent to pure AdS in "string" frame
- Requires at least two real scalars (φ, T)

tell-Gherghetta Soft-Wall

- Dynamical Solution to Einstein Equations
- A Real Scalar (the "Dilaton") with power-law VEV
- Conformally equivalent to pure AdS in "string" frame
- Requires at least two real scalars (φ, T)

tell-Gherghetta Soft-Wall

- Dynamical Solution to Einstein Equations
- A Real Scalar (the "Dilaton") with power-law VEV
- Conformally equivalent to pure AdS in "string" frame
- Requires at least two real scalars (φ, T)

tell-Gherghetta Soft-Wall

- Dynamical Solution to Einstein Equations
- A Real Scalar (the "Dilaton") with power-law VEV
- Conformally equivalent to pure AdS in "string" frame
- Requires at least two real scalars (φ, T)

tell-Gherghetta Soft-Wall

- Dynamical Solution to Einstein Equations
- A Real Scalar (the "Dilaton") with power-law VEV
- Conformally equivalent to pure AdS in "string" frame
- Requires at least two real scalars (φ, T)

tell-Gherghetta Soft-Wall

- Dynamical Solution to Einstein Equations
- A Real Scalar (the "Dilaton") with power-law VEV
- Conformally equivalent to pure AdS in "string" frame
- Requires at least two real scalars (φ, T)

Pirsa: 10050014 Page 339/1

tell-Gherghetta Soft-Wall

- Dynamical Solution to Einstein Equations
- A Real Scalar (the "Dilaton") with power-law VEV
- Conformally equivalent to pure AdS in "string" frame
- Requires at least two real scalars (φ, T)

tell-Gherghetta Soft-Wall

- Dynamical Solution to Einstein Equations
- A Real Scalar (the "Dilaton") with power-law VEV
- Conformally equivalent to pure AdS in "string" frame
- Requires at least two real scalars (φ, T)

tell-Gherghetta Soft-Wall

- Dynamical Solution to Einstein Equations
- A Real Scalar (the "Dilaton") with power-law VEV
- Conformally equivalent to pure AdS in "string" frame
- Requires at least two real scalars (φ, T)

Pirsa: 10050014 Page 342/13

tell-Gherghetta Soft-Wall

- Dynamical Solution to Einstein Equations
- A Real Scalar (the "Dilaton") with power-law VEV
- Conformally equivalent to pure AdS in "string" frame
- Requires at least two real scalars (φ, T)

tell-Gherghetta Soft-Wall

- Dynamical Solution to Einstein Equations
- A Real Scalar (the "Dilaton") with power-law VEV
- Conformally equivalent to pure AdS in "string" frame
- Requires at least two real scalars (φ, T)

tell-Gherghetta Soft-Wall

- Dynamical Solution to Einstein Equations
- A Real Scalar (the "Dilaton") with power-law VEV
- Conformally equivalent to pure AdS in "string" frame
- Requires at least two real scalars (φ, T)

tell-Gherghetta Soft-Wall

- Dynamical Solution to Einstein Equations
- A Real Scalar (the "Dilaton") with power-law VEV
- Conformally equivalent to pure AdS in "string" frame
- Requires at least two real scalars (φ, T)

tell-Gherghetta Soft-Wall

- Dynamical Solution to Einstein Equations
- A Real Scalar (the "Dilaton") with power-law VEV
- Conformally equivalent to pure AdS in "string" frame
- Requires at least two real scalars (φ, T)

Pirsa: 10050014 Page 347/136

tell-Gherghetta Soft-Wall

- Dynamical Solution to Einstein Equations
- A Real Scalar (the "Dilaton") with power-law VEV
- Conformally equivalent to pure AdS in "string" frame
- Requires at least two real scalars (φ, T)

tell-Gherghetta Soft-Wall

- Dynamical Solution to Einstein Equations
- A Real Scalar (the "Dilaton") with power-law VEV
- Conformally equivalent to pure AdS in "string" frame
- Requires at least two real scalars (φ, T)

tell-Gherghetta Soft-Wall

- Dynamical Solution to Einstein Equations
- A Real Scalar (the "Dilaton") with power-law VEV
- Conformally equivalent to pure AdS in "string" frame
- Requires at least two real scalars (φ, T)

Pirsa: 10050014 Page 350/136

tell-Gherghetta Soft-Wall

- Dynamical Solution to Einstein Equations
- A Real Scalar (the "Dilaton") with power-law VEV
- Conformally equivalent to pure AdS in "string" frame
- Requires at least two real scalars (φ, T)

Pirsa: 10050014 Page :

tell-Gherghetta Soft-Wall

- Dynamical Solution to Einstein Equations
- A Real Scalar (the "Dilaton") with power-law VEV
- Conformally equivalent to pure AdS in "string" frame
- Requires at least two real scalars (φ, T)

Pirsa: 10050014 Page 352/136

ackground Solutions (Einstein Frame)

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

ackground Solutions (Einstein Frame)

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

ckground Solutions (Einstein Frame)

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

ackground Solutions (Einstein Frame)

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

ckground Solutions (Einstein Frame)

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

tell-Gherghetta Soft-Wall

- Dynamical Solution to Einstein Equations
- A Real Scalar (the "Dilaton") with power-law VEV
- Conformally equivalent to pure AdS in "string" frame
- Requires at least two real scalars (φ, T)

tell-Gherghetta Soft-Wall

- Dynamical Solution to Einstein Equations
- A Real Scalar (the "Dilaton") with power-law VEV
- Conformally equivalent to pure AdS in "string" frame
- Requires at least two real scalars (φ, T)

tell-Gherghetta Soft-Wall

- Dynamical Solution to Einstein Equations
- A Real Scalar (the "Dilaton") with power-law VEV
- Conformally equivalent to pure AdS in "string" frame
- Requires at least two real scalars (φ, T)

tell-Gherghetta Soft-Wall

- Dynamical Solution to Einstein Equations
- A Real Scalar (the "Dilaton") with power-law VEV
- Conformally equivalent to pure AdS in "string" frame
- Requires at least two real scalars (φ, T)

tell-Gherghetta Soft-Wall

- Dynamical Solution to Einstein Equations
- A Real Scalar (the "Dilaton") with power-law VEV
- Conformally equivalent to pure AdS in "string" frame
- Requires at least two real scalars (φ, T)

Pirsa: 10050014 Page 362/136

tell-Gherghetta Soft-Wall

- Dynamical Solution to Einstein Equations
- A Real Scalar (the "Dilaton") with power-law VEV
- Conformally equivalent to pure AdS in "string" frame
- Requires at least two real scalars (φ, T)

tell-Gherghetta Soft-Wall

- Dynamical Solution to Einstein Equations
- A Real Scalar (the "Dilaton") with power-law VEV
- Conformally equivalent to pure AdS in "string" frame
- Requires at least two real scalars (φ, T)

Pirsa: 10050014 Page 364/136

tell-Gherghetta Soft-Wall

- Dynamical Solution to Einstein Equations
- A Real Scalar (the "Dilaton") with power-law VEV
- Conformally equivalent to pure AdS in "string" frame
- Requires at least two real scalars (φ, T)

tell-Gherghetta Soft-Wall

- Dynamical Solution to Einstein Equations
- A Real Scalar (the "Dilaton") with power-law VEV
- Conformally equivalent to pure AdS in "string" frame
- Requires at least two real scalars (φ, T)

tell-Gherghetta Soft-Wall

- Dynamical Solution to Einstein Equations
- A Real Scalar (the "Dilaton") with power-law VEV
- Conformally equivalent to pure AdS in "string" frame
- Requires at least two real scalars (φ, T)

Pirsa: 10050014 Page 367/136

tell-Gherghetta Soft-Wall

- Dynamical Solution to Einstein Equations
- A Real Scalar (the "Dilaton") with power-law VEV
- Conformally equivalent to pure AdS in "string" frame
- Requires at least two real scalars (φ, T)

tell-Gherghetta Soft-Wall

- Dynamical Solution to Einstein Equations
- A Real Scalar (the "Dilaton") with power-law VEV
- Conformally equivalent to pure AdS in "string" frame
- Requires at least two real scalars (φ, T)

tell-Gherghetta Soft-Wall

- Dynamical Solution to Einstein Equations
- A Real Scalar (the "Dilaton") with power-law VEV
- Conformally equivalent to pure AdS in "string" frame
- Requires at least two real scalars (φ, T)

Pirsa: 10050014 Page 370/136

tell-Gherghetta Soft-Wall

- Dynamical Solution to Einstein Equations
- A Real Scalar (the "Dilaton") with power-law VEV
- Conformally equivalent to pure AdS in "string" frame
- Requires at least two real scalars (φ, T)

Pirsa: 10050014 Page 371/

tell-Gherghetta Soft-Wall

- Dynamical Solution to Einstein Equations
- A Real Scalar (the "Dilaton") with power-law VEV
- Conformally equivalent to pure AdS in "string" frame
- Requires at least two real scalars (φ, T)

Pirsa: 10050014 Pag

tell-Gherghetta Soft-Wall

- Dynamical Solution to Einstein Equations
- A Real Scalar (the "Dilaton") with power-law VEV
- Conformally equivalent to pure AdS in "string" frame
- Requires at least two real scalars (φ, T)

tell-Gherghetta Soft-Wall

- Dynamical Solution to Einstein Equations
- A Real Scalar (the "Dilaton") with power-law VEV
- Conformally equivalent to pure AdS in "string" frame
- Requires at least two real scalars (φ, T)

Pirsa: 10050014 Page 374/136

tell-Gherghetta Soft-Wall

- Dynamical Solution to Einstein Equations
- A Real Scalar (the "Dilaton") with power-law VEV
- Conformally equivalent to pure AdS in "string" frame
- Requires at least two real scalars (φ, T)

tell-Gherghetta Soft-Wall

- Dynamical Solution to Einstein Equations
- A Real Scalar (the "Dilaton") with power-law VEV
- Conformally equivalent to pure AdS in "string" frame
- Requires at least two real scalars (φ, T)

Pirsa: 10050014 Page 376/1

tell-Gherghetta Soft-Wall

- Dynamical Solution to Einstein Equations
- A Real Scalar (the "Dilaton") with power-law VEV
- Conformally equivalent to pure AdS in "string" frame
- Requires at least two real scalars (φ, T)

tell-Gherghetta Soft-Wall

- Dynamical Solution to Einstein Equations
- A Real Scalar (the "Dilaton") with power-law VEV
- Conformally equivalent to pure AdS in "string" frame
- Requires at least two real scalars (φ, T)

tell-Gherghetta Soft-Wall

- Dynamical Solution to Einstein Equations
- A Real Scalar (the "Dilaton") with power-law VEV
- Conformally equivalent to pure AdS in "string" frame
- Requires at least two real scalars (φ, T)

ackground Solutions (Einstein Frame)

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}(\mu z)^{\nu}}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

ckground Solutions (Einstein Frame)

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}(\mu z)^{\nu}}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

ackground Solutions (Einstein Frame)

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

ckground Solutions (Einstein Frame)

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

ckground Solutions (Einstein Frame)

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

ackground Solutions (Einstein Frame)

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}\,dx^\mu\,dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

ackground Solutions (Einstein Frame)

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

ckground Solutions (Einstein Frame)

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}(\mu z)^{\nu}}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}(\mu z)^{\nu/2}}$$

ckground Solutions (Einstein Frame)

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

ackground Solutions (Einstein Frame)

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

ackground Solutions (Einstein Frame)

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

ackground Solutions (Einstein Frame)

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu Z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

ckground Solutions (Einstein Frame)

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

ckground Solutions (Einstein Frame)

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

ackground Solutions (Einstein Frame)

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

ckground Solutions (Einstein Frame)

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

ckground Solutions (Einstein Frame)

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}(\mu z)^{\nu}}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

ackground Solutions (Einstein Frame)

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

ackground Solutions (Einstein Frame)

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}(\mu z)^{\nu}}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

ackground Solutions (Einstein Frame)

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}(\mu z)^{\nu}}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

ckground Solutions (Einstein Frame)

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

ackground Solutions (Einstein Frame)

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

ackground Solutions (Einstein Frame)

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

ackground Solutions (Einstein Frame)

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}\,dx^\mu\,dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}\,dx^\mu\,dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

ckground Solutions (Einstein Frame)

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}(\mu z)^{\nu}}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

ackground Solutions (Einstein Frame)

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

ackground Solutions (Einstein Frame)

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

ackground Solutions (Einstein Frame)

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

ackground Solutions (Einstein Frame)

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}\,dx^\mu\,dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}(\mu z)^{\nu}}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

ackground Solutions (Einstein Frame)

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

ckground Solutions (Einstein Frame)

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

ackground Solutions (Einstein Frame)

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

ckground Solutions (Einstein Frame)

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

ackground Solutions (Einstein Frame)

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

ackground Solutions (Einstein Frame)

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

ackground Solutions (Einstein Frame)

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

ackground Solutions (Einstein Frame)

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

ckground Solutions (Einstein Frame)

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

ackground Solutions (Einstein Frame)

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}(\mu z)^{\nu}}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

ackground Solutions (Einstein Frame)

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

ckground Solutions (Einstein Frame)

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

ckground Solutions (Einstein Frame)

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}\,dx^\mu\,dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}\,dx^\mu\,dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}(\mu z)^{\nu}}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

ackground Solutions (Einstein Frame)

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}(\mu z)^{\nu}}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}\,dx^\mu\,dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}(\mu z)^{\nu}}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

ckground Solutions (Einstein Frame)

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

ackground Solutions (Einstein Frame)

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

ckground Solutions (Einstein Frame)

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}(\mu z)^{\nu}}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}\,dx^\mu\,dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}\,dx^\mu\,dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

ackground Solutions (Einstein Frame)

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

ackground Solutions (Einstein Frame)

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}(\mu z)^{\nu}}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

ackground Solutions (Einstein Frame)

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}(\mu z)^{\nu}}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

ackground Solutions (Einstein Frame)

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

ckground Solutions (Einstein Frame)

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}(\mu z)^{\nu}}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

ackground Solutions (Einstein Frame)

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}\,dx^\mu\,dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

ackground Solutions (Einstein Frame)

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}(\mu z)^{\nu}}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

ackground Solutions (Einstein Frame)

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

ackground Solutions (Einstein Frame)

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

ckground Solutions (Einstein Frame)

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

ackground Solutions (Einstein Frame)

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

ckground Solutions (Einstein Frame)

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

ackground Solutions (Einstein Frame)

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}\,dx^\mu\,dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

ackground Solutions (Einstein Frame)

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}(\mu z)^{\nu}}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

ackground Solutions (Einstein Frame)

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

ckground Solutions (Einstein Frame)

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

ackground Solutions (Einstein Frame)

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}\,dx^\mu\,dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

Pirsa: 10050014

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

ackground Solutions (Einstein Frame)

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}(\mu z)^{\nu}}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

Pirsa: 10050014

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

ackground Solutions (Einstein Frame)

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}(\mu z)^{\nu}}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

Pirsa: 10050014

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}(\mu z)^{\nu}}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

ackground Solutions (Einstein Frame)

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}\,dx^\mu\,dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

Pirsa: 10050014

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}\,dx^\mu\,dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}\,dx^\mu\,dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}(\mu z)^{\nu}}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}\,dx^\mu\,dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}\,dx^\mu\,dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

ackground Solutions (Einstein Frame)

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

Pirsa: 10050014

ackground Solutions (Einstein Frame)

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

Pirsa: 10050014

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}(\mu z)^{\nu}}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

ackground Solutions (Einstein Frame)

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}(\mu z)^{\nu}}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

Pirsa: 10050014

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

ackground Solutions (Einstein Frame)

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

Pirsa: 10050014

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}(\mu z)^{\nu}}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}(\mu z)^{\nu}}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

ckground Solutions (Einstein Frame)

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

Pirsa: 10050014

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}(\mu z)^{\nu}}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}\,dx^\mu\,dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

ackground Solutions (Einstein Frame)

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

Pirsa: 10050014

ackground Solutions (Einstein Frame)

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

Pirsa: 10050014

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

ackground Solutions (Einstein Frame)

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

Pirsa: 10050014

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}(\mu z)^{\nu}}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}\,dx^\mu\,dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

ackground Solutions (Einstein Frame)

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}(\mu z)^{\nu}}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

ackground Solutions (Einstein Frame)

line element:
$$ds^2=e^{-2A(z)}\Big(\eta_{\mu\nu}dx^\mu dx^\nu+dz^2\Big)$$

metric factor:
$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

dilaton:
$$\langle \phi \rangle = \sqrt{\frac{8}{3}} (\mu z)^{\nu}$$

tachyon:
$$\langle T \rangle = 4\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$$

$$A(z) = \ln kz + \frac{2}{3}(\mu z)^{\nu}$$

ν varies between RS1 and RS2

RS1
$$\lim_{\nu \to \infty} A(z) = \begin{cases} \ln kz & \mu z < 1 \\ \infty & \mu z > 1 \end{cases}$$

RS2
$$\lim_{\nu \to 0} A(z) = \ln kz$$

μ sets the IR scale

ν varies between RS1 and RS2

RS1
$$\lim_{\nu \to \infty} A(z) = \begin{cases} \ln kz & \mu z < 1 \\ \infty & \mu z > 1 \end{cases}$$

RS2
$$\lim_{\nu \to 0} A(z) = \ln kz$$

μ sets the IR scale

ν varies between RS1 and RS2

RS1
$$\lim_{\nu \to \infty} A(z) = \begin{cases} \ln kz & \mu z < 1 \\ \infty & \mu z > 1 \end{cases}$$

RS2
$$\lim_{\nu \to 0} A(z) = \ln kz$$

μ sets the IR scale

ν varies between RS1 and RS2

RS1
$$\lim_{\nu \to \infty} A(z) = \begin{cases} \ln kz & \mu z < 1 \\ \infty & \mu z > 1 \end{cases}$$

RS2
$$\lim_{\nu \to 0} A(z) = \ln kz$$

μ sets the IR scale

ν varies between RS1 and RS2

RS1
$$\lim_{\nu \to \infty} A(z) = \begin{cases} \ln kz & \mu z < 1 \\ \infty & \mu z > 1 \end{cases}$$

RS2
$$\lim_{\nu \to 0} A(z) = \ln kz$$

μ sets the IR scale

ν varies between RS1 and RS2

RS1
$$\lim_{\nu \to \infty} A(z) = \begin{cases} \ln kz & \mu z < 1 \\ \infty & \mu z > 1 \end{cases}$$

RS2
$$\lim_{\nu \to 0} A(z) = \ln kz$$

μ sets the IR scale

ν varies between RS1 and RS2

RS1
$$\lim_{\nu \to \infty} A(z) = \begin{cases} \ln kz & \mu z < 1 \\ \infty & \mu z > 1 \end{cases}$$

RS2
$$\lim_{\nu \to 0} A(z) = \ln kz$$

μ sets the IR scale

ν varies between RS1 and RS2

RS1
$$\lim_{\nu \to \infty} A(z) = \begin{cases} \ln kz & \mu z < 1 \\ \infty & \mu z > 1 \end{cases}$$

RS2
$$\lim_{\nu \to 0} A(z) = \ln kz$$

μ sets the IR scale

ν varies between RS1 and RS2

RS1
$$\lim_{\nu \to \infty} A(z) = \begin{cases} \ln kz & \mu z < 1 \\ \infty & \mu z > 1 \end{cases}$$

RS2
$$\lim_{\nu \to 0} A(z) = \ln kz$$

μ sets the IR scale

ν varies between RS1 and RS2

RS1
$$\lim_{\nu \to \infty} A(z) = \begin{cases} \ln kz & \mu z < 1 \\ \infty & \mu z > 1 \end{cases}$$

RS2
$$\lim_{\nu \to 0} A(z) = \ln kz$$

μ sets the IR scale

ν varies between RS1 and RS2

RS1
$$\lim_{\nu \to \infty} A(z) = \begin{cases} \ln kz & \mu z < 1 \\ \infty & \mu z > 1 \end{cases}$$

RS2
$$\lim_{\nu \to 0} A(z) = \ln kz$$

μ sets the IR scale

ν varies between RS1 and RS2

RS1
$$\lim_{\nu \to \infty} A(z) = \begin{cases} \ln kz & \mu z < 1 \\ \infty & \mu z > 1 \end{cases}$$

RS2
$$\lim_{\nu \to 0} A(z) = \ln kz$$

μ sets the IR scale

ν varies between RS1 and RS2

RS1
$$\lim_{\nu \to \infty} A(z) = \begin{cases} \ln kz & \mu z < 1 \\ \infty & \mu z > 1 \end{cases}$$

RS2
$$\lim_{\nu \to 0} A(z) = \ln kz$$

μ sets the IR scale

ν varies between RS1 and RS2

RS1
$$\lim_{\nu \to \infty} A(z) = \begin{cases} \ln kz & \mu z < 1 \\ \infty & \mu z > 1 \end{cases}$$

RS2
$$\lim_{\nu \to 0} A(z) = \ln kz$$

μ sets the IR scale

ν varies between RS1 and RS2

RS1
$$\lim_{\nu \to \infty} A(z) = \begin{cases} \ln kz & \mu z < 1 \\ \infty & \mu z > 1 \end{cases}$$

RS2
$$\lim_{\nu \to 0} A(z) = \ln kz$$

μ sets the IR scale

ν varies between RS1 and RS2

RS1
$$\lim_{\nu \to \infty} A(z) = \begin{cases} \ln kz & \mu z < 1 \\ \infty & \mu z > 1 \end{cases}$$

RS2
$$\lim_{\nu \to 0} A(z) = \ln kz$$

μ sets the IR scale

ν varies between RS1 and RS2

RS1
$$\lim_{\nu \to \infty} A(z) = \begin{cases} \ln kz & \mu z < 1 \\ \infty & \mu z > 1 \end{cases}$$

RS2
$$\lim_{\nu \to 0} A(z) = \ln kz$$

μ sets the IR scale

ν varies between RS1 and RS2

RS1
$$\lim_{\nu \to \infty} A(z) = \begin{cases} \ln kz & \mu z < 1 \\ \infty & \mu z > 1 \end{cases}$$

RS2
$$\lim_{\nu \to 0} A(z) = \ln kz$$

μ sets the IR scale

ν varies between RS1 and RS2

RS1
$$\lim_{\nu \to \infty} A(z) = \begin{cases} \ln kz & \mu z < 1 \\ \infty & \mu z > 1 \end{cases}$$

RS2
$$\lim_{\nu \to 0} A(z) = \ln kz$$

μ sets the IR scale

ν varies between RS1 and RS2

RS1
$$\lim_{\nu \to \infty} A(z) = \begin{cases} \ln kz & \mu z < 1 \\ \infty & \mu z > 1 \end{cases}$$

RS2
$$\lim_{\nu \to 0} A(z) = \ln kz$$

μ sets the IR scale

ν varies between RS1 and RS2

RS1
$$\lim_{\nu \to \infty} A(z) = \begin{cases} \ln kz & \mu z < 1 \\ \infty & \mu z > 1 \end{cases}$$

RS2
$$\lim_{\nu \to 0} A(z) = \ln kz$$

μ sets the IR scale

ν varies between RS1 and RS2

RS1
$$\lim_{\nu \to \infty} A(z) = \begin{cases} \ln kz & \mu z < 1 \\ \infty & \mu z > 1 \end{cases}$$

RS2
$$\lim_{\nu \to 0} A(z) = \ln kz$$

μ sets the IR scale

ν varies between RS1 and RS2

RS1
$$\lim_{\nu \to \infty} A(z) = \begin{cases} \ln kz & \mu z < 1 \\ \infty & \mu z > 1 \end{cases}$$

RS2
$$\lim_{\nu \to 0} A(z) = \ln kz$$

μ sets the IR scale

ν varies between RS1 and RS2

RS1
$$\lim_{\nu \to \infty} A(z) = \begin{cases} \ln kz & \mu z < 1 \\ \infty & \mu z > 1 \end{cases}$$

RS2
$$\lim_{\nu \to 0} A(z) = \ln kz$$

μ sets the IR scale

ν varies between RS1 and RS2

RS1
$$\lim_{\nu \to \infty} A(z) = \begin{cases} \ln kz & \mu z < 1 \\ \infty & \mu z > 1 \end{cases}$$

RS2
$$\lim_{\nu \to 0} A(z) = \ln kz$$

μ sets the IR scale

ν varies between RS1 and RS2

RS1
$$\lim_{\nu \to \infty} A(z) = \begin{cases} \ln kz & \mu z < 1 \\ \infty & \mu z > 1 \end{cases}$$

RS2
$$\lim_{\nu \to 0} A(z) = \ln kz$$

μ sets the IR scale

ν varies between RS1 and RS2

RS1
$$\lim_{\nu \to \infty} A(z) = \begin{cases} \ln kz & \mu z < 1 \\ \infty & \mu z > 1 \end{cases}$$

RS2
$$\lim_{\nu \to 0} A(z) = \ln kz$$

μ sets the IR scale

ν varies between RS1 and RS2

RS1
$$\lim_{\nu \to \infty} A(z) = \begin{cases} \ln kz & \mu z < 1 \\ \infty & \mu z > 1 \end{cases}$$

RS2
$$\lim_{\nu \to 0} A(z) = \ln kz$$

μ sets the IR scale

ν varies between RS1 and RS2

RS1
$$\lim_{\nu \to \infty} A(z) = \begin{cases} \ln kz & \mu z < 1 \\ \infty & \mu z > 1 \end{cases}$$

RS2
$$\lim_{\nu \to 0} A(z) = \ln kz$$

μ sets the IR scale

ν varies between RS1 and RS2

RS1
$$\lim_{\nu \to \infty} A(z) = \begin{cases} \ln kz & \mu z < 1 \\ \infty & \mu z > 1 \end{cases}$$

RS2
$$\lim_{\nu \to 0} A(z) = \ln kz$$

μ sets the IR scale

ν varies between RS1 and RS2

RS1
$$\lim_{\nu \to \infty} A(z) = \begin{cases} \ln kz & \mu z < 1 \\ \infty & \mu z > 1 \end{cases}$$

RS2
$$\lim_{\nu \to 0} A(z) = \ln kz$$

μ sets the IR scale

ν varies between RS1 and RS2

RS1
$$\lim_{\nu \to \infty} A(z) = \begin{cases} \ln kz & \mu z < 1 \\ \infty & \mu z > 1 \end{cases}$$

RS2
$$\lim_{\nu \to 0} A(z) = \ln kz$$

μ sets the IR scale

ν varies between RS1 and RS2

RS1
$$\lim_{\nu \to \infty} A(z) = \begin{cases} \ln kz & \mu z < 1 \\ \infty & \mu z > 1 \end{cases}$$

RS2
$$\lim_{\nu \to 0} A(z) = \ln kz$$

μ sets the IR scale

ν varies between RS1 and RS2

RS1
$$\lim_{\nu \to \infty} A(z) = \begin{cases} \ln kz & \mu z < 1 \\ \infty & \mu z > 1 \end{cases}$$

RS2
$$\lim_{\nu \to 0} A(z) = \ln kz$$

μ sets the IR scale

ν varies between RS1 and RS2

RS1
$$\lim_{\nu \to \infty} A(z) = \begin{cases} \ln kz & \mu z < 1 \\ \infty & \mu z > 1 \end{cases}$$

RS2
$$\lim_{\nu \to 0} A(z) = \ln kz$$

μ sets the IR scale

ν varies between RS1 and RS2

RS1
$$\lim_{\nu \to \infty} A(z) = \begin{cases} \ln kz & \mu z < 1 \\ \infty & \mu z > 1 \end{cases}$$

RS2
$$\lim_{\nu \to 0} A(z) = \ln kz$$

μ sets the IR scale

ν varies between RS1 and RS2

RS1
$$\lim_{\nu \to \infty} A(z) = \begin{cases} \ln kz & \mu z < 1 \\ \infty & \mu z > 1 \end{cases}$$

RS2
$$\lim_{\nu \to 0} A(z) = \ln kz$$

μ sets the IR scale

ν varies between RS1 and RS2

RS1
$$\lim_{\nu \to \infty} A(z) = \begin{cases} \ln kz & \mu z < 1 \\ \infty & \mu z > 1 \end{cases}$$

RS2
$$\lim_{\nu \to 0} A(z) = \ln kz$$

μ sets the IR scale

ν varies between RS1 and RS2

RS1
$$\lim_{\nu \to \infty} A(z) = \begin{cases} \ln kz & \mu z < 1 \\ \infty & \mu z > 1 \end{cases}$$

RS2
$$\lim_{\nu \to 0} A(z) = \ln kz$$

μ sets the IR scale

ν varies between RS1 and RS2

RS1
$$\lim_{\nu \to \infty} A(z) = \begin{cases} \ln kz & \mu z < 1 \\ \infty & \mu z > 1 \end{cases}$$

RS2
$$\lim_{\nu \to 0} A(z) = \ln kz$$

μ sets the IR scale

ν varies between RS1 and RS2

RS1
$$\lim_{\nu \to \infty} A(z) = \begin{cases} \ln kz & \mu z < 1 \\ \infty & \mu z > 1 \end{cases}$$

RS2
$$\lim_{\nu \to 0} A(z) = \ln kz$$

μ sets the IR scale

ν varies between RS1 and RS2

RS1
$$\lim_{\nu \to \infty} A(z) = \begin{cases} \ln kz & \mu z < 1 \\ \infty & \mu z > 1 \end{cases}$$

RS2
$$\lim_{\nu \to 0} A(z) = \ln kz$$

μ sets the IR scale

ν varies between RS1 and RS2

RS1
$$\lim_{\nu \to \infty} A(z) = \begin{cases} \ln kz & \mu z < 1 \\ \infty & \mu z > 1 \end{cases}$$

RS2
$$\lim_{\nu \to 0} A(z) = \ln kz$$

μ sets the IR scale

ν varies between RS1 and RS2

RS1
$$\lim_{\nu \to \infty} A(z) = \begin{cases} \ln kz & \mu z < 1 \\ \infty & \mu z > 1 \end{cases}$$

RS2
$$\lim_{\nu \to 0} A(z) = \ln kz$$

μ sets the IR scale

ν varies between RS1 and RS2

RS1
$$\lim_{\nu \to \infty} A(z) = \begin{cases} \ln kz & \mu z < 1 \\ \infty & \mu z > 1 \end{cases}$$

RS2
$$\lim_{\nu \to 0} A(z) = \ln kz$$

μ sets the IR scale

ν varies between RS1 and RS2

RS1
$$\lim_{\nu \to \infty} A(z) = \begin{cases} \ln kz & \mu z < 1 \\ \infty & \mu z > 1 \end{cases}$$

RS2
$$\lim_{\nu \to 0} A(z) = \ln kz$$

μ sets the IR scale

ν varies between RS1 and RS2

RS1
$$\lim_{\nu \to \infty} A(z) = \begin{cases} \ln kz & \mu z < 1 \\ \infty & \mu z > 1 \end{cases}$$

RS2
$$\lim_{\nu \to 0} A(z) = \ln kz$$

μ sets the IR scale

ν varies between RS1 and RS2

RS1
$$\lim_{\nu \to \infty} A(z) = \begin{cases} \ln kz & \mu z < 1 \\ \infty & \mu z > 1 \end{cases}$$

RS2
$$\lim_{\nu \to 0} A(z) = \ln kz$$

μ sets the IR scale

ν varies between RS1 and RS2

RS1
$$\lim_{\nu \to \infty} A(z) = \begin{cases} \ln kz & \mu z < 1 \\ \infty & \mu z > 1 \end{cases}$$

RS2
$$\lim_{\nu \to 0} A(z) = \ln kz$$

μ sets the IR scale

ν varies between RS1 and RS2

RS1
$$\lim_{\nu \to \infty} A(z) = \begin{cases} \ln kz & \mu z < 1 \\ \infty & \mu z > 1 \end{cases}$$

RS2
$$\lim_{\nu \to 0} A(z) = \ln kz$$

μ sets the IR scale

ν varies between RS1 and RS2

RS1
$$\lim_{\nu \to \infty} A(z) = \begin{cases} \ln kz & \mu z < 1 \\ \infty & \mu z > 1 \end{cases}$$

RS2
$$\lim_{\nu \to 0} A(z) = \ln kz$$

μ sets the IR scale

ν varies between RS1 and RS2

RS1
$$\lim_{\nu \to \infty} A(z) = \begin{cases} \ln kz & \mu z < 1 \\ \infty & \mu z > 1 \end{cases}$$

RS2
$$\lim_{\nu \to 0} A(z) = \ln kz$$

μ sets the IR scale

- Planck Weak Hierarchy Solution
 - Implies $\mu/k \sim 10^{-16}$
 - Must achieve naturally
- Note
 - Solution depends on μ in geometry
 - Solution not dependent on particular dilaton profile
 - Can thus use only one field

- Planck Weak Hierarchy Solution
 - Implies $\mu/k \sim 10^{-16}$
 - Must achieve naturally
- Note
 - Solution depends on μ in geometry
 - Solution not dependent on particular dilaton profile
 - Can thus use only one field

Pirsa: 10050014 Page 692/1362

- Planck Weak Hierarchy Solution
 - Implies $\mu/k \sim 10^{-16}$
 - Must achieve naturally
- Note
 - Solution depends on μ in geometry
 - Solution not dependent on particular dilaton profile
 - Can thus use only one field

- Planck Weak Hierarchy Solution
 - Implies $\mu/k \sim 10^{-16}$
 - Must achieve naturally
- Note
 - Solution depends on μ in geometry
 - Solution not dependent on particular dilaton profile
 - Can thus use only one field

Pirsa: 10050014 Page 69

- Planck Weak Hierarchy Solution
 - Implies $\mu/k \sim 10^{-16}$
 - Must achieve naturally
- Note
 - Solution depends on μ in geometry
 - Solution not dependent on particular dilaton profile
 - Can thus use only one field

- Planck Weak Hierarchy Solution
 - Implies $\mu/k \sim 10^{-16}$
 - Must achieve naturally
- Note
 - Solution depends on μ in geometry
 - Solution not dependent on particular dilaton profile
 - Can thus use only one field

- Planck Weak Hierarchy Solution
 - Implies $\mu/k \sim 10^{-16}$
 - Must achieve naturally
- Note
 - Solution depends on μ in geometry
 - Solution not dependent on particular dilaton profile
 - Can thus use only one field

Pirsa: 10050014 Page 697/136

- Planck Weak Hierarchy Solution
 - Implies $\mu/k \sim 10^{-16}$
 - Must achieve naturally
- Note
 - Solution depends on μ in geometry
 - Solution not dependent on particular dilaton profile
 - Can thus use only one field

- Planck Weak Hierarchy Solution
 - Implies $\mu/k \sim 10^{-16}$
 - Must achieve naturally
- Note
 - Solution depends on μ in geometry
 - Solution not dependent on particular dilaton profile
 - Can thus use only one field

- Planck Weak Hierarchy Solution
 - Implies $\mu/k \sim 10^{-16}$
 - Must achieve naturally
- Note
 - Solution depends on μ in geometry
 - Solution not dependent on particular dilaton profile
 - Can thus use only one field

- Planck Weak Hierarchy Solution
 - Implies $\mu/k \sim 10^{-16}$
 - Must achieve naturally
- Note
 - Solution depends on μ in geometry
 - Solution not dependent on particular dilaton profile
 - Can thus use only one field

- Planck Weak Hierarchy Solution
 - Implies $\mu/k \sim 10^{-16}$
 - Must achieve naturally
- Note
 - Solution depends on μ in geometry
 - Solution not dependent on particular dilaton profile
 - Can thus use only one field

- Planck Weak Hierarchy Solution
 - Implies $\mu/k \sim 10^{-16}$
 - Must achieve naturally
- Note
 - Solution depends on μ in geometry
 - Solution not dependent on particular dilaton profile
 - Can thus use only one field

- Planck Weak Hierarchy Solution
 - Implies $\mu/k \sim 10^{-16}$
 - Must achieve naturally
- Note
 - Solution depends on μ in geometry
 - Solution not dependent on particular dilaton profile
 - Can thus use only one field

- Planck Weak Hierarchy Solution
 - Implies $\mu/k \sim 10^{-16}$
 - Must achieve naturally
- Note
 - Solution depends on μ in geometry
 - Solution not dependent on particular dilaton profile
 - Can thus use only one field

- Planck Weak Hierarchy Solution
 - Implies $\mu/k \sim 10^{-16}$
 - Must achieve naturally
- Note
 - Solution depends on μ in geometry
 - Solution not dependent on particular dilaton profile
 - Can thus use only one field

- Planck Weak Hierarchy Solution
 - Implies $\mu/k \sim 10^{-16}$
 - Must achieve naturally
- Note
 - Solution depends on μ in geometry
 - Solution not dependent on particular dilaton profile
 - Can thus use only one field

- Planck Weak Hierarchy Solution
 - Implies $\mu/k \sim 10^{-16}$
 - Must achieve naturally
- Note
 - Solution depends on μ in geometry
 - Solution not dependent on particular dilaton profile
 - Can thus use only one field

- Planck Weak Hierarchy Solution
 - Implies $\mu/k \sim 10^{-16}$
 - Must achieve naturally
- Note
 - Solution depends on μ in geometry
 - Solution not dependent on particular dilaton profile
 - Can thus use only one field

- Planck Weak Hierarchy Solution
 - Implies $\mu/k \sim 10^{-16}$
 - Must achieve naturally
- Note
 - Solution depends on μ in geometry
 - Solution not dependent on particular dilaton profile
 - Can thus use only one field

- Planck Weak Hierarchy Solution
 - Implies $\mu/k \sim 10^{-16}$
 - Must achieve naturally
- Note
 - Solution depends on μ in geometry
 - Solution not dependent on particular dilaton profile
 - Can thus use only one field

- Planck Weak Hierarchy Solution
 - Implies $\mu/k \sim 10^{-16}$
 - Must achieve naturally
- Note
 - Solution depends on μ in geometry
 - Solution not dependent on particular dilaton profile
 - Can thus use only one field

- Planck Weak Hierarchy Solution
 - Implies $\mu/k \sim 10^{-16}$
 - Must achieve naturally
- Note
 - Solution depends on μ in geometry
 - Solution not dependent on particular dilaton profile
 - Can thus use only one field

- Planck Weak Hierarchy Solution
 - Implies $\mu/k \sim 10^{-16}$
 - Must achieve naturally
- Note
 - Solution depends on μ in geometry
 - Solution not dependent on particular dilaton profile
 - Can thus use only one field

- Planck Weak Hierarchy Solution
 - Implies $\mu/k \sim 10^{-16}$
 - Must achieve naturally
- Note
 - Solution depends on μ in geometry
 - Solution not dependent on particular dilaton profile
 - Can thus use only one field

- Planck Weak Hierarchy Solution
 - Implies $\mu/k \sim 10^{-16}$
 - Must achieve naturally
- Note
 - Solution depends on μ in geometry
 - Solution not dependent on particular dilaton profile
 - Can thus use only one field

- Planck Weak Hierarchy Solution
 - Implies $\mu/k \sim 10^{-16}$
 - Must achieve naturally
- Note
 - Solution depends on μ in geometry
 - Solution not dependent on particular dilaton profile
 - Can thus use only one field

- Planck Weak Hierarchy Solution
 - Implies $\mu/k \sim 10^{-16}$
 - Must achieve naturally
- Note
 - Solution depends on μ in geometry
 - Solution not dependent on particular dilaton profile
 - Can thus use only one field

- Planck Weak Hierarchy Solution
 - Implies $\mu/k \sim 10^{-16}$
 - Must achieve naturally
- Note
 - Solution depends on μ in geometry
 - Solution not dependent on particular dilaton profile
 - Can thus use only one field

- Planck Weak Hierarchy Solution
 - Implies $\mu/k \sim 10^{-16}$
 - Must achieve naturally
- Note
 - Solution depends on μ in geometry
 - Solution not dependent on particular dilaton profile
 - Can thus use only one field

- Planck Weak Hierarchy Solution
 - Implies $\mu/k \sim 10^{-16}$
 - Must achieve naturally
- Note
 - Solution depends on μ in geometry
 - Solution not dependent on particular dilaton profile
 - Can thus use only one field

- Planck Weak Hierarchy Solution
 - Implies $\mu/k \sim 10^{-16}$
 - Must achieve naturally
- Note
 - Solution depends on μ in geometry
 - Solution not dependent on particular dilaton profile
 - Can thus use only one field

- Planck Weak Hierarchy Solution
 - Implies $\mu/k \sim 10^{-16}$
 - Must achieve naturally
- Note
 - Solution depends on μ in geometry
 - Solution not dependent on particular dilaton profile
 - Can thus use only one field

- Planck Weak Hierarchy Solution
 - Implies $\mu/k \sim 10^{-16}$
 - Must achieve naturally
- Note
 - Solution depends on μ in geometry
 - Solution not dependent on particular dilaton profile
 - Can thus use only one field

- Planck Weak Hierarchy Solution
 - Implies $\mu/k \sim 10^{-16}$
 - Must achieve naturally
- Note
 - Solution depends on μ in geometry
 - Solution not dependent on particular dilaton profile
 - Can thus use only one field

- Planck Weak Hierarchy Solution
 - Implies $\mu/k \sim 10^{-16}$
 - Must achieve naturally
- Note
 - Solution depends on μ in geometry
 - Solution not dependent on particular dilaton profile
 - Can thus use only one field

- Planck Weak Hierarchy Solution
 - Implies $\mu/k \sim 10^{-16}$
 - Must achieve naturally
- Note
 - Solution depends on μ in geometry
 - Solution not dependent on particular dilaton profile
 - Can thus use only one field

- Planck Weak Hierarchy Solution
 - Implies $\mu/k \sim 10^{-16}$
 - Must achieve naturally
- Note
 - Solution depends on μ in geometry
 - Solution not dependent on particular dilaton profile
 - Can thus use only one field

- Planck Weak Hierarchy Solution
 - Implies $\mu/k \sim 10^{-16}$
 - Must achieve naturally
- Note
 - Solution depends on μ in geometry
 - Solution not dependent on particular dilaton profile
 - Can thus use only one field

- Planck Weak Hierarchy Solution
 - Implies $\mu/k \sim 10^{-16}$
 - Must achieve naturally
- Note
 - Solution depends on μ in geometry
 - Solution not dependent on particular dilaton profile
 - Can thus use only one field

- Planck Weak Hierarchy Solution
 - Implies $\mu/k \sim 10^{-16}$
 - Must achieve naturally
- Note
 - Solution depends on μ in geometry
 - Solution not dependent on particular dilaton profile
 - Can thus use only one field

- Planck Weak Hierarchy Solution
 - Implies $\mu/k \sim 10^{-16}$
 - Must achieve naturally
- Note
 - Solution depends on μ in geometry
 - Solution not dependent on particular dilaton profile
 - Can thus use only one field

- Planck Weak Hierarchy Solution
 - Implies $\mu/k \sim 10^{-16}$
 - Must achieve naturally
- Note
 - Solution depends on μ in geometry
 - Solution not dependent on particular dilaton profile
 - Can thus use only one field

- Planck Weak Hierarchy Solution
 - Implies $\mu/k \sim 10^{-16}$
 - Must achieve naturally
- Note
 - Solution depends on μ in geometry
 - Solution not dependent on particular dilaton profile
 - Can thus use only one field

- Planck Weak Hierarchy Solution
 - Implies $\mu/k \sim 10^{-16}$
 - Must achieve naturally
- Note
 - Solution depends on μ in geometry
 - Solution not dependent on particular dilaton profile
 - Can thus use only one field

- Planck Weak Hierarchy Solution
 - Implies $\mu/k \sim 10^{-16}$
 - Must achieve naturally
- Note
 - Solution depends on μ in geometry
 - Solution not dependent on particular dilaton profile
 - Can thus use only one field

- Planck Weak Hierarchy Solution
 - Implies $\mu/k \sim 10^{-16}$
 - Must achieve naturally
- Note
 - Solution depends on μ in geometry
 - Solution not dependent on particular dilaton profile
 - Can thus use only one field

- Planck Weak Hierarchy Solution
 - Implies $\mu/k \sim 10^{-16}$
 - Must achieve naturally
- Note
 - Solution depends on μ in geometry
 - Solution not dependent on particular dilaton profile
 - Can thus use only one field

- Planck Weak Hierarchy Solution
 - Implies $\mu/k \sim 10^{-16}$
 - Must achieve naturally
- Note
 - Solution depends on μ in geometry
 - Solution not dependent on particular dilaton profile
 - Can thus use only one field

- Planck Weak Hierarchy Solution
 - Implies $\mu/k \sim 10^{-16}$
 - Must achieve naturally
- Note
 - Solution depends on μ in geometry
 - Solution not dependent on particular dilaton profile
 - Can thus use only one field

- Planck Weak Hierarchy Solution
 - Implies $\mu/k \sim 10^{-16}$
 - Must achieve naturally
- Note
 - Solution depends on μ in geometry
 - Solution not dependent on particular dilaton profile
 - Can thus use only one field

- Planck Weak Hierarchy Solution
 - Implies $\mu/k \sim 10^{-16}$
 - Must achieve naturally
- Note
 - Solution depends on μ in geometry
 - Solution not dependent on particular dilaton profile
 - Can thus use only one field

Pirsa: 10050014 Page 742/136

- Planck Weak Hierarchy Solution
 - Implies $\mu/k \sim 10^{-16}$
 - Must achieve naturally
- Note
 - Solution depends on μ in geometry
 - Solution not dependent on particular dilaton profile
 - Can thus use only one field

- Planck Weak Hierarchy Solution
 - Implies $\mu/k \sim 10^{-16}$
 - Must achieve naturally
- Note
 - Solution depends on μ in geometry
 - Solution not dependent on particular dilaton profile
 - Can thus use only one field

- Planck Weak Hierarchy Solution
 - Implies $\mu/k \sim 10^{-16}$
 - Must achieve naturally
- Note
 - Solution depends on μ in geometry
 - Solution not dependent on particular dilaton profile
 - Can thus use only one field

- Planck Weak Hierarchy Solution
 - Implies $\mu/k \sim 10^{-16}$
 - Must achieve naturally
- Note
 - Solution depends on μ in geometry
 - Solution not dependent on particular dilaton profile
 - Can thus use only one field

- Planck Weak Hierarchy Solution
 - Implies $\mu/k \sim 10^{-16}$
 - Must achieve naturally
- Note
 - Solution depends on μ in geometry
 - Solution not dependent on particular dilaton profile
 - Can thus use only one field

Pirsa: 10050014 Page

$$S_{\rm BULK} = M_5^3 \int d^5 x \, \sqrt{-g} \left[R - g^{MN} (\partial_M \eta) (\partial_N \eta) - V(\eta) \right]$$

$$S_{\rm BRANE} = -M_5^3 \int d^4 x \, \sqrt{-g_{\rm UV}} \, \lambda_{\rm UV}(\eta)$$

ackground solution much more complicated

$$\begin{split} \langle \eta \rangle = \pm \sqrt{3} \bigg(\frac{\nu + 1}{\nu} \bigg) \, \left[\sqrt{\frac{2}{3}} \frac{\nu}{\nu + 1} (\mu \mathbf{Z})^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu + 1} (\mu \mathbf{Z})^{\nu} \right)^2 \right. \\ \left. + \sinh^{-1} \left(\sqrt{\frac{2}{3}} \frac{\nu}{\nu + 1} (\mu \mathbf{Z})^{\nu} \right) \right] \end{split}$$

$$S_{\rm BULK} = M_5^3 \int d^5 x \, \sqrt{-g} \left[R - g^{MN} (\partial_M \eta) (\partial_N \eta) - V(\eta) \right]$$

$$S_{\rm BRANE} = -M_5^3 \int d^4 x \, \sqrt{-g_{\rm UV}} \, \lambda_{\rm UV}(\eta)$$

ackground solution much more complicated

$$\begin{split} \langle \eta \rangle = \pm \sqrt{3} \bigg(\frac{\nu + 1}{\nu} \bigg) \, \left[\sqrt{\frac{2}{3}} \frac{\nu}{\nu + 1} (\mu \mathbf{Z})^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu + 1} (\mu \mathbf{Z})^{\nu} \right)^2 \right. \\ \left. + \sinh^{-1} \left(\sqrt{\frac{2}{3}} \frac{\nu}{\nu + 1} (\mu \mathbf{Z})^{\nu} \right) \right] \end{split}$$

$$S_{\rm BULK} = M_5^3 \int d^5 x \, \sqrt{-g} \left[R - g^{MN} (\partial_M \eta) (\partial_N \eta) - V(\eta) \right]$$

$$S_{\rm BRANE} = -M_5^3 \int d^4 x \, \sqrt{-g_{\rm UV}} \, \lambda_{\rm UV}(\eta)$$

ackground solution much more complicated

$$\begin{split} \langle \eta \rangle = \pm \sqrt{3} \bigg(\frac{\nu + 1}{\nu} \bigg) \, \left[\sqrt{\frac{2}{3}} \frac{\nu}{\nu + 1} (\mu \mathbf{Z})^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu + 1} (\mu \mathbf{Z})^{\nu} \right)^2 \right. \\ \left. + \sinh^{-1} \left(\sqrt{\frac{2}{3}} \frac{\nu}{\nu + 1} (\mu \mathbf{Z})^{\nu} \right) \right] \end{split}$$

$$S_{\rm BULK} = M_5^3 \int d^5 x \, \sqrt{-g} \left[R - g^{MN} (\partial_M \eta) (\partial_N \eta) - V(\eta) \right]$$

$$S_{\rm BRANE} = -M_5^3 \int d^4 x \, \sqrt{-g_{\rm UV}} \, \lambda_{\rm UV}(\eta)$$

ckground solution much more complicated

$$\begin{split} \langle \eta \rangle = \pm \sqrt{3} \bigg(\frac{\nu + 1}{\nu} \bigg) \, \left[\sqrt{\frac{2}{3}} \frac{\nu}{\nu + 1} (\mu \mathbf{Z})^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu + 1} (\mu \mathbf{Z})^{\nu} \right)^2 \right. \\ \left. + \sinh^{-1} \left(\sqrt{\frac{2}{3}} \frac{\nu}{\nu + 1} (\mu \mathbf{Z})^{\nu} \right) \right] \end{split}$$

$$S_{\rm BULK} = M_5^3 \int d^5 x \, \sqrt{-g} \left[R - g^{MN} (\partial_M \eta) (\partial_N \eta) - V(\eta) \right]$$

$$S_{\rm BRANE} = -M_5^3 \int d^4 x \, \sqrt{-g_{\rm UV}} \, \lambda_{\rm UV}(\eta)$$

ackground solution much more complicated

$$\begin{split} \langle \eta \rangle = \pm \sqrt{3} \bigg(\frac{\nu + 1}{\nu} \bigg) \, \left[\sqrt{\frac{2}{3}} \frac{\nu}{\nu + 1} (\mu \mathbf{Z})^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu + 1} (\mu \mathbf{Z})^{\nu} \right)^2 \right. \\ \left. + \sinh^{-1} \left(\sqrt{\frac{2}{3}} \frac{\nu}{\nu + 1} (\mu \mathbf{Z})^{\nu} \right) \right] \end{split}$$

$$S_{\rm BULK} = M_5^3 \int d^5 x \, \sqrt{-g} \left[R - g^{MN} (\partial_M \eta) (\partial_N \eta) - V(\eta) \right]$$

$$S_{\rm BRANE} = -M_5^3 \int d^4 x \, \sqrt{-g_{\rm UV}} \, \lambda_{\rm UV}(\eta)$$

ckground solution much more complicated

$$\begin{split} \langle \eta \rangle = \pm \sqrt{3} \bigg(\frac{\nu + 1}{\nu} \bigg) \, \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} (\mu \mathbf{Z})^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu + 1} (\mu \mathbf{Z})^{\nu} \right)^2 \right. \\ \left. + \sinh^{-1} \left(\sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} (\mu \mathbf{Z})^{\nu} \right) \right] \end{split}$$

$$S_{\rm BULK} = M_5^3 \int d^5 x \, \sqrt{-g} \left[R - g^{MN} (\partial_M \eta) (\partial_N \eta) - V(\eta) \right]$$

$$S_{\rm BRANE} = -M_5^3 \int d^4 x \, \sqrt{-g_{\rm UV}} \, \lambda_{\rm UV}(\eta)$$

ackground solution much more complicated

$$\begin{split} \langle \eta \rangle = \pm \sqrt{3} \bigg(\frac{\nu + 1}{\nu} \bigg) \, \bigg[\sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} (\mu \mathbf{Z})^{\nu} + \bigg(\frac{2}{3} \frac{\nu}{\nu + 1} (\mu \mathbf{Z})^{\nu} \bigg)^2 \\ + \sinh^{-1} \bigg(\sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} (\mu \mathbf{Z})^{\nu} \bigg) \bigg] \end{split}$$

$$S_{\rm BULK} = M_5^3 \int d^5 x \, \sqrt{-g} \left[R - g^{MN} (\partial_M \eta) (\partial_N \eta) - V(\eta) \right]$$

$$S_{\rm BRANE} = -M_5^3 \int d^4 x \, \sqrt{-g_{\rm UV}} \, \lambda_{\rm UV}(\eta)$$

ackground solution much more complicated

$$\begin{split} \langle \eta \rangle = \pm \sqrt{3} \bigg(\frac{\nu + 1}{\nu} \bigg) \, \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} (\mu \mathbf{Z})^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu + 1} (\mu \mathbf{Z})^{\nu} \right)^2 \right. \\ \left. + \sinh^{-1} \left(\sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} (\mu \mathbf{Z})^{\nu} \right) \right] \end{split}$$

$$S_{\rm BULK} = M_5^3 \int d^5 x \, \sqrt{-g} \left[R - g^{MN} (\partial_M \eta) (\partial_N \eta) - V(\eta) \right]$$

$$S_{\rm BRANE} = -M_5^3 \int d^4 x \, \sqrt{-g_{\rm UV}} \, \lambda_{\rm UV}(\eta)$$

ackground solution much more complicated

$$\begin{split} \langle \eta \rangle = \pm \sqrt{3} \bigg(\frac{\nu + 1}{\nu} \bigg) \, \left[\sqrt{\frac{2}{3}} \frac{\nu}{\nu + 1} (\mu \mathbf{Z})^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu + 1} (\mu \mathbf{Z})^{\nu} \right)^2 \right. \\ \left. + \sinh^{-1} \left(\sqrt{\frac{2}{3}} \frac{\nu}{\nu + 1} (\mu \mathbf{Z})^{\nu} \right) \right] \end{split}$$

$$S_{\rm BULK} = M_5^3 \int d^5 x \, \sqrt{-g} \left[R - g^{MN} (\partial_M \eta) (\partial_N \eta) - V(\eta) \right]$$

$$S_{\rm BRANE} = -M_5^3 \int d^4 x \, \sqrt{-g_{\rm UV}} \, \lambda_{\rm UV}(\eta)$$

ackground solution much more complicated

$$\begin{split} \langle \eta \rangle = \pm \sqrt{3} \bigg(\frac{\nu + 1}{\nu} \bigg) \, \left[\sqrt{\frac{2}{3}} \frac{\nu}{\nu + 1} (\mu \mathbf{Z})^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu + 1} (\mu \mathbf{Z})^{\nu} \right)^2 \right. \\ \left. + \sinh^{-1} \left(\sqrt{\frac{2}{3}} \frac{\nu}{\nu + 1} (\mu \mathbf{Z})^{\nu} \right) \right] \end{split}$$

$$S_{\rm BULK} = M_5^3 \int d^5 x \, \sqrt{-g} \left[R - g^{MN} (\partial_M \eta) (\partial_N \eta) - V(\eta) \right]$$

$$S_{\rm BRANE} = -M_5^3 \int d^4 x \, \sqrt{-g_{\rm UV}} \, \lambda_{\rm UV}(\eta)$$

ackground solution much more complicated

$$\begin{split} \langle \eta \rangle = \pm \sqrt{3} \bigg(\frac{\nu + 1}{\nu} \bigg) \, \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} (\mu \mathbf{Z})^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu + 1} (\mu \mathbf{Z})^{\nu} \right)^2 \right. \\ \left. + \sinh^{-1} \left(\sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} (\mu \mathbf{Z})^{\nu} \right) \right] \end{split}$$

$$S_{\rm BULK} = M_5^3 \int d^5 x \, \sqrt{-g} \left[R - g^{MN} (\partial_M \eta) (\partial_N \eta) - V(\eta) \right]$$

$$S_{\rm BRANE} = -M_5^3 \int d^4 x \, \sqrt{-g_{\rm UV}} \, \lambda_{\rm UV}(\eta)$$

ackground solution much more complicated

$$\begin{split} \langle \eta \rangle = \pm \sqrt{3} \bigg(\frac{\nu + 1}{\nu} \bigg) \, \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} (\mu \mathbf{Z})^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu + 1} (\mu \mathbf{Z})^{\nu} \right)^2 \right. \\ \left. + \sinh^{-1} \left(\sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} (\mu \mathbf{Z})^{\nu} \right) \right] \end{split}$$

$$S_{\rm BULK} = M_5^3 \int d^5 x \, \sqrt{-g} \left[R - g^{MN} (\partial_M \eta) (\partial_N \eta) - V(\eta) \right]$$

$$S_{\rm BRANE} = -M_5^3 \int d^4 x \, \sqrt{-g_{\rm UV}} \, \lambda_{\rm UV}(\eta)$$

ackground solution much more complicated

$$\begin{split} \langle \eta \rangle = \pm \sqrt{3} \bigg(\frac{\nu + 1}{\nu} \bigg) \, \left[\sqrt{\frac{2}{3}} \frac{\nu}{\nu + 1} (\mu \mathbf{Z})^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu + 1} (\mu \mathbf{Z})^{\nu} \right)^2 \right. \\ \left. + \sinh^{-1} \left(\sqrt{\frac{2}{3}} \frac{\nu}{\nu + 1} (\mu \mathbf{Z})^{\nu} \right) \right] \end{split}$$

$$S_{\rm BULK} = M_5^3 \int d^5 x \, \sqrt{-g} \left[R - g^{MN} (\partial_M \eta) (\partial_N \eta) - V(\eta) \right]$$

$$S_{\rm BRANE} = -M_5^3 \int d^4 x \, \sqrt{-g_{\rm UV}} \, \lambda_{\rm UV}(\eta)$$

ackground solution much more complicated

$$\begin{split} \langle \eta \rangle = \pm \sqrt{3} \bigg(\frac{\nu + 1}{\nu} \bigg) \, \left[\sqrt{\frac{2}{3}} \frac{\nu}{\nu + 1} (\mu \mathbf{Z})^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu + 1} (\mu \mathbf{Z})^{\nu} \right)^2 \right. \\ \left. + \sinh^{-1} \left(\sqrt{\frac{2}{3}} \frac{\nu}{\nu + 1} (\mu \mathbf{Z})^{\nu} \right) \right] \end{split}$$

$$S_{\rm BULK} = M_5^3 \int d^5 x \, \sqrt{-g} \left[R - g^{MN} (\partial_M \eta) (\partial_N \eta) - V(\eta) \right]$$

$$S_{\rm BRANE} = -M_5^3 \int d^4 x \, \sqrt{-g_{\rm UV}} \, \lambda_{\rm UV}(\eta)$$

ackground solution much more complicated

$$\begin{split} \langle \eta \rangle = \pm \sqrt{3} \bigg(\frac{\nu + 1}{\nu} \bigg) \, \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} (\mu \mathbf{Z})^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu + 1} (\mu \mathbf{Z})^{\nu} \right)^2 \right. \\ \left. + \sinh^{-1} \left(\sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} (\mu \mathbf{Z})^{\nu} \right) \right] \end{split}$$

$$S_{\rm BULK} = M_5^3 \int d^5 x \, \sqrt{-g} \left[R - g^{MN} (\partial_M \eta) (\partial_N \eta) - V(\eta) \right]$$

$$S_{\rm BRANE} = -M_5^3 \int d^4 x \, \sqrt{-g_{\rm UV}} \, \lambda_{\rm UV}(\eta)$$

ackground solution much more complicated

$$\begin{split} \langle \eta \rangle = \pm \sqrt{3} \bigg(\frac{\nu + 1}{\nu} \bigg) \, \left[\sqrt{\frac{2}{3}} \frac{\nu}{\nu + 1} (\mu \mathbf{Z})^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu + 1} (\mu \mathbf{Z})^{\nu} \right)^2 \right. \\ \left. + \sinh^{-1} \left(\sqrt{\frac{2}{3}} \frac{\nu}{\nu + 1} (\mu \mathbf{Z})^{\nu} \right) \right] \end{split}$$

$$S_{\rm BULK} = M_5^3 \int d^5 x \, \sqrt{-g} \left[R - g^{MN} (\partial_M \eta) (\partial_N \eta) - V(\eta) \right]$$

$$S_{\rm BRANE} = -M_5^3 \int d^4 x \, \sqrt{-g_{\rm UV}} \, \lambda_{\rm UV}(\eta)$$

ackground solution much more complicated

$$\begin{split} \langle \eta \rangle = \pm \sqrt{3} \bigg(\frac{\nu + 1}{\nu} \bigg) \, \left[\sqrt{\frac{2}{3}} \frac{\nu}{\nu + 1} (\mu \mathbf{Z})^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu + 1} (\mu \mathbf{Z})^{\nu} \right)^2 \right. \\ \left. + \sinh^{-1} \left(\sqrt{\frac{2}{3}} \frac{\nu}{\nu + 1} (\mu \mathbf{Z})^{\nu} \right) \right] \end{split}$$

$$S_{\rm BULK} = M_5^3 \int d^5 x \, \sqrt{-g} \left[R - g^{MN} (\partial_M \eta) (\partial_N \eta) - V(\eta) \right]$$

$$S_{\rm BRANE} = -M_5^3 \int d^4 x \, \sqrt{-g_{\rm UV}} \, \lambda_{\rm UV}(\eta)$$

ackground solution much more complicated

$$\begin{split} \langle \eta \rangle = \pm \sqrt{3} \bigg(\frac{\nu + 1}{\nu} \bigg) \, \left[\sqrt{\frac{2}{3}} \frac{\nu}{\nu + 1} (\mu \mathbf{Z})^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu + 1} (\mu \mathbf{Z})^{\nu} \right)^2 \right. \\ \left. + \sinh^{-1} \left(\sqrt{\frac{2}{3}} \frac{\nu}{\nu + 1} (\mu \mathbf{Z})^{\nu} \right) \right] \end{split}$$

$$S_{\rm BULK} = M_5^3 \int d^5 x \, \sqrt{-g} \left[R - g^{MN} (\partial_M \eta) (\partial_N \eta) - V(\eta) \right]$$

$$S_{\rm BRANE} = -M_5^3 \int d^4 x \, \sqrt{-g_{\rm UV}} \, \lambda_{\rm UV}(\eta)$$

ackground solution much more complicated

$$\begin{split} \langle \eta \rangle = \pm \sqrt{3} \bigg(\frac{\nu + 1}{\nu} \bigg) \, \bigg[\sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} (\mu \mathbf{Z})^{\nu} + \bigg(\frac{2}{3} \frac{\nu}{\nu + 1} (\mu \mathbf{Z})^{\nu} \bigg)^2 \\ + \sinh^{-1} \bigg(\sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} (\mu \mathbf{Z})^{\nu} \bigg) \bigg] \end{split}$$

$$S_{\rm BULK} = M_5^3 \int d^5 x \, \sqrt{-g} \left[R - g^{MN} (\partial_M \eta) (\partial_N \eta) - V(\eta) \right]$$

$$S_{\rm BRANE} = -M_5^3 \int d^4 x \, \sqrt{-g_{\rm UV}} \, \lambda_{\rm UV}(\eta)$$

ackground solution much more complicated

$$\begin{split} \langle \eta \rangle = \pm \sqrt{3} \bigg(\frac{\nu + 1}{\nu} \bigg) \, \left[\sqrt{\frac{2}{3}} \frac{\nu}{\nu + 1} (\mu \mathbf{Z})^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu + 1} (\mu \mathbf{Z})^{\nu} \right)^2 \right. \\ \left. + \sinh^{-1} \left(\sqrt{\frac{2}{3}} \frac{\nu}{\nu + 1} (\mu \mathbf{Z})^{\nu} \right) \right] \end{split}$$

$$S_{\rm BULK} = M_5^3 \int d^5 x \, \sqrt{-g} \left[R - g^{MN} (\partial_M \eta) (\partial_N \eta) - V(\eta) \right]$$

$$S_{\rm BRANE} = -M_5^3 \int d^4 x \, \sqrt{-g_{\rm UV}} \, \lambda_{\rm UV}(\eta)$$

ackground solution much more complicated

$$\begin{split} \langle \eta \rangle = \pm \sqrt{3} \bigg(\frac{\nu + 1}{\nu} \bigg) \, \left[\sqrt{\frac{2}{3}} \frac{\nu}{\nu + 1} (\mu \mathbf{Z})^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu + 1} (\mu \mathbf{Z})^{\nu} \right)^2 \right. \\ \left. + \sinh^{-1} \left(\sqrt{\frac{2}{3}} \frac{\nu}{\nu + 1} (\mu \mathbf{Z})^{\nu} \right) \right] \end{split}$$

$$S_{\rm BULK} = M_5^3 \int d^5 x \, \sqrt{-g} \left[R - g^{MN} (\partial_M \eta) (\partial_N \eta) - V(\eta) \right]$$

$$S_{\rm BRANE} = -M_5^3 \int d^4 x \, \sqrt{-g_{\rm UV}} \, \lambda_{\rm UV}(\eta)$$

ackground solution much more complicated

$$\begin{split} \langle \eta \rangle = \pm \sqrt{3} \bigg(\frac{\nu + 1}{\nu} \bigg) \, \left[\sqrt{\frac{2}{3}} \frac{\nu}{\nu + 1} (\mu \mathbf{Z})^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu + 1} (\mu \mathbf{Z})^{\nu} \right)^2 \right. \\ \left. + \sinh^{-1} \left(\sqrt{\frac{2}{3}} \frac{\nu}{\nu + 1} (\mu \mathbf{Z})^{\nu} \right) \right] \end{split}$$

$$S_{\rm BULK} = M_5^3 \int d^5 x \, \sqrt{-g} \left[R - g^{MN} (\partial_M \eta) (\partial_N \eta) - V(\eta) \right]$$

$$S_{\rm BRANE} = -M_5^3 \int d^4 x \, \sqrt{-g_{\rm UV}} \, \lambda_{\rm UV}(\eta)$$

ackground solution much more complicated

$$\begin{split} \langle \eta \rangle &= \pm \sqrt{3} \bigg(\frac{\nu+1}{\nu} \bigg) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu+1}} (\mu \mathbf{Z})^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu+1} (\mu \mathbf{Z})^{\nu} \right)^2 \right. \\ &\left. + \sinh^{-1} \left(\sqrt{\frac{2}{3} \frac{\nu}{\nu+1}} (\mu \mathbf{Z})^{\nu} \right) \right] \end{split}$$

$$S_{\rm BULK} = M_5^3 \int d^5 x \, \sqrt{-g} \left[R - g^{MN} (\partial_M \eta) (\partial_N \eta) - V(\eta) \right]$$

$$S_{\rm BRANE} = -M_5^3 \int d^4 x \, \sqrt{-g_{\rm UV}} \, \lambda_{\rm UV}(\eta)$$

ackground solution much more complicated

$$\begin{split} \langle \eta \rangle = \pm \sqrt{3} \bigg(\frac{\nu + 1}{\nu} \bigg) \, \left[\sqrt{\frac{2}{3}} \frac{\nu}{\nu + 1} (\mu \mathbf{Z})^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu + 1} (\mu \mathbf{Z})^{\nu} \right)^2 \right. \\ \left. + \sinh^{-1} \left(\sqrt{\frac{2}{3}} \frac{\nu}{\nu + 1} (\mu \mathbf{Z})^{\nu} \right) \right] \end{split}$$

$$S_{\rm BULK} = M_5^3 \int d^5 x \, \sqrt{-g} \left[R - g^{MN} (\partial_M \eta) (\partial_N \eta) - V(\eta) \right]$$

$$S_{\rm BRANE} = -M_5^3 \int d^4 x \, \sqrt{-g_{\rm UV}} \, \lambda_{\rm UV}(\eta)$$

ackground solution much more complicated

$$\begin{split} \langle \eta \rangle = \pm \sqrt{3} \bigg(\frac{\nu + 1}{\nu} \bigg) \, \left[\sqrt{\frac{2}{3}} \frac{\nu}{\nu + 1} (\mu \mathbf{Z})^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu + 1} (\mu \mathbf{Z})^{\nu} \right)^2 \right. \\ \left. + \sinh^{-1} \left(\sqrt{\frac{2}{3}} \frac{\nu}{\nu + 1} (\mu \mathbf{Z})^{\nu} \right) \right] \end{split}$$

it it captures the BG behavior:

$$Z \ll \frac{1}{\mu}$$
 $\langle \eta \rangle \approx 2\sqrt{2}\sqrt{\frac{1+\nu}{\nu}}(\mu Z)^{\nu/2} \leftrightarrow \langle T \rangle$

$$Z \gg \frac{1}{\mu} \qquad \langle \eta \rangle \approx \frac{2}{\sqrt{3}} (\mu Z)^{\nu} \qquad \leftrightarrow \qquad \langle \phi \rangle$$

It it captures the BG behavior:

$$Z \ll \frac{1}{\mu}$$
 $\langle \eta \rangle \approx 2\sqrt{2}\sqrt{\frac{1+\nu}{\nu}}(\mu Z)^{\nu/2} \leftrightarrow \langle T \rangle$

$$z \gg \frac{1}{\mu} \qquad \langle \eta \rangle \approx \frac{2}{\sqrt{3}} (\mu z)^{\nu} \qquad \leftrightarrow \qquad \langle \phi \rangle$$

it it captures the BG behavior:

$$Z \ll \frac{1}{\mu}$$
 $\langle \eta \rangle \approx 2\sqrt{2}\sqrt{\frac{1+\nu}{\nu}}(\mu Z)^{\nu/2}$ \leftrightarrow $\langle T \rangle$

$$z \gg \frac{1}{\mu} \qquad \langle \eta \rangle \approx \frac{2}{\sqrt{3}} (\mu z)^{\nu} \qquad \leftrightarrow \qquad \langle \phi \rangle$$

It it captures the BG behavior:

$$z \ll \frac{1}{\mu}$$
 $\langle \eta \rangle \approx 2\sqrt{2}\sqrt{\frac{1+\nu}{\nu}}(\mu z)^{\nu/2}$ \leftrightarrow $\langle T \rangle$

$$z \gg \frac{1}{\mu} \qquad \langle \eta \rangle \approx \frac{2}{\sqrt{3}} (\mu z)^{\nu} \qquad \leftrightarrow \qquad \langle \phi \rangle$$

it it captures the BG behavior:

$$Z \ll \frac{1}{\mu}$$
 $\langle \eta \rangle \approx 2\sqrt{2}\sqrt{\frac{1+\nu}{\nu}}(\mu Z)^{\nu/2}$ \leftrightarrow $\langle T \rangle$

$$z \gg \frac{1}{\mu} \qquad \langle \eta \rangle \approx \frac{2}{\sqrt{3}} (\mu z)^{\nu} \qquad \leftrightarrow \qquad \langle \phi \rangle$$

it it captures the BG behavior:

$$Z \ll \frac{1}{\mu} \qquad \langle \eta \rangle \approx 2\sqrt{2}\sqrt{\frac{1+\nu}{\nu}}(\mu Z)^{\nu/2} \qquad \leftrightarrow \qquad \langle T \rangle$$

$$z \gg \frac{1}{\mu} \qquad \langle \eta \rangle \approx \frac{2}{\sqrt{3}} (\mu z)^{\nu} \qquad \leftrightarrow \qquad \langle \phi \rangle$$

it it captures the BG behavior:

$$Z \ll \frac{1}{\mu}$$
 $\langle \eta \rangle \approx 2\sqrt{2}\sqrt{\frac{1+\nu}{\nu}}(\mu Z)^{\nu/2} \leftrightarrow \langle T \rangle$

$$z \gg \frac{1}{\mu} \qquad \langle \eta \rangle \approx \frac{2}{\sqrt{3}} (\mu z)^{\nu} \qquad \leftrightarrow \qquad \langle \phi \rangle$$

it it captures the BG behavior:

$$Z \ll \frac{1}{\mu}$$
 $\langle \eta \rangle \approx 2\sqrt{2}\sqrt{\frac{1+\nu}{\nu}}(\mu Z)^{\nu/2} \leftrightarrow \langle T \rangle$

$$z \gg \frac{1}{\mu} \qquad \langle \eta \rangle \approx \frac{2}{\sqrt{3}} (\mu z)^{\nu} \qquad \leftrightarrow \qquad \langle \phi \rangle$$

It it captures the BG behavior:

$$Z \ll \frac{1}{\mu}$$
 $\langle \eta \rangle \approx 2\sqrt{2}\sqrt{\frac{1+\nu}{\nu}}(\mu Z)^{\nu/2}$ \leftrightarrow $\langle T \rangle$

$$z \gg \frac{1}{\mu} \qquad \langle \eta \rangle \approx \frac{2}{\sqrt{3}} (\mu z)^{\nu} \qquad \leftrightarrow \qquad \langle \phi \rangle$$

it it captures the BG behavior:

$$Z \ll \frac{1}{\mu} \qquad \langle \eta \rangle \approx 2\sqrt{2}\sqrt{\frac{1+\nu}{\nu}}(\mu Z)^{\nu/2} \qquad \leftrightarrow \qquad \langle T \rangle$$

$$z \gg \frac{1}{\mu} \qquad \langle \eta \rangle \approx \frac{2}{\sqrt{3}} (\mu z)^{\nu} \qquad \leftrightarrow \qquad \langle \phi \rangle$$

it it captures the BG behavior:

$$Z \ll \frac{1}{\mu}$$
 $\langle \eta \rangle \approx 2\sqrt{2}\sqrt{\frac{1+\nu}{\nu}}(\mu Z)^{\nu/2} \leftrightarrow \langle T \rangle$

$$z \gg \frac{1}{\mu} \qquad \langle \eta \rangle \approx \frac{2}{\sqrt{3}} (\mu z)^{\nu} \qquad \leftrightarrow \qquad \langle \phi \rangle$$

it it captures the BG behavior:

$$Z \ll \frac{1}{\mu}$$
 $\langle \eta \rangle \approx 2\sqrt{2}\sqrt{\frac{1+\nu}{\nu}}(\mu Z)^{\nu/2} \leftrightarrow \langle T \rangle$

$$z \gg \frac{1}{\mu} \qquad \langle \eta \rangle \approx \frac{2}{\sqrt{3}} (\mu z)^{\nu} \qquad \leftrightarrow \qquad \langle \phi \rangle$$

it it captures the BG behavior:

$$Z \ll \frac{1}{\mu}$$
 $\langle \eta \rangle \approx 2\sqrt{2}\sqrt{\frac{1+\nu}{\nu}}(\mu Z)^{\nu/2} \leftrightarrow \langle T \rangle$

$$z \gg \frac{1}{\mu} \qquad \langle \eta \rangle \approx \frac{2}{\sqrt{3}} (\mu z)^{\nu} \qquad \leftrightarrow \qquad \langle \phi \rangle$$

it it captures the BG behavior:

$$Z \ll \frac{1}{\mu}$$
 $\langle \eta \rangle \approx 2\sqrt{2}\sqrt{\frac{1+\nu}{\nu}}(\mu Z)^{\nu/2}$ \leftrightarrow $\langle T \rangle$

$$z \gg \frac{1}{\mu} \qquad \langle \eta \rangle \approx \frac{2}{\sqrt{3}} (\mu z)^{\nu} \qquad \leftrightarrow \qquad \langle \phi \rangle$$

it it captures the BG behavior:

$$Z \ll \frac{1}{\mu}$$
 $\langle \eta \rangle \approx 2\sqrt{2}\sqrt{\frac{1+\nu}{\nu}}(\mu Z)^{\nu/2} \leftrightarrow \langle T \rangle$

$$z \gg \frac{1}{\mu} \qquad \langle \eta \rangle \approx \frac{2}{\sqrt{3}} (\mu z)^{\nu} \qquad \leftrightarrow \qquad \langle \phi \rangle$$

It it captures the BG behavior:

$$Z \ll \frac{1}{\mu}$$
 $\langle \eta \rangle \approx 2\sqrt{2}\sqrt{\frac{1+\nu}{\nu}}(\mu Z)^{\nu/2} \leftrightarrow \langle T \rangle$

$$z \gg \frac{1}{\mu} \qquad \langle \eta \rangle \approx \frac{2}{\sqrt{3}} (\mu z)^{\nu} \qquad \leftrightarrow \qquad \langle \phi \rangle$$

It it captures the BG behavior:

$$Z \ll \frac{1}{\mu}$$
 $\langle \eta \rangle \approx 2\sqrt{2}\sqrt{\frac{1+\nu}{\nu}}(\mu Z)^{\nu/2} \leftrightarrow \langle T \rangle$

$$z \gg \frac{1}{\mu} \qquad \langle \eta \rangle \approx \frac{2}{\sqrt{3}} (\mu z)^{\nu} \qquad \leftrightarrow \qquad \langle \phi \rangle$$

it it captures the BG behavior:

$$Z \ll \frac{1}{\mu}$$
 $\langle \eta \rangle \approx 2\sqrt{2}\sqrt{\frac{1+\nu}{\nu}}(\mu Z)^{\nu/2} \leftrightarrow \langle T \rangle$

$$z \gg \frac{1}{\mu} \qquad \langle \eta \rangle \approx \frac{2}{\sqrt{3}} (\mu z)^{\nu} \qquad \leftrightarrow \qquad \langle \phi \rangle$$

It it captures the BG behavior:

$$Z \ll \frac{1}{\mu}$$
 $\langle \eta \rangle \approx 2\sqrt{2}\sqrt{\frac{1+\nu}{\nu}}(\mu Z)^{\nu/2} \leftrightarrow \langle T \rangle$

$$z \gg \frac{1}{\mu} \qquad \langle \eta \rangle \approx \frac{2}{\sqrt{3}} (\mu z)^{\nu} \qquad \leftrightarrow \qquad \langle \phi \rangle$$

It it captures the BG behavior:

$$Z \ll \frac{1}{\mu}$$
 $\langle \eta \rangle \approx 2\sqrt{2}\sqrt{\frac{1+\nu}{\nu}}(\mu Z)^{\nu/2} \leftrightarrow \langle T \rangle$

$$z \gg \frac{1}{\mu} \qquad \langle \eta \rangle \approx \frac{2}{\sqrt{3}} (\mu z)^{\nu} \qquad \leftrightarrow \qquad \langle \phi \rangle$$

it it captures the BG behavior:

$$Z \ll \frac{1}{\mu}$$
 $\langle \eta \rangle \approx 2\sqrt{2}\sqrt{\frac{1+\nu}{\nu}}(\mu Z)^{\nu/2} \leftrightarrow \langle T \rangle$

$$z \gg \frac{1}{\mu} \qquad \langle \eta \rangle \approx \frac{2}{\sqrt{3}} (\mu z)^{\nu} \qquad \leftrightarrow \qquad \langle \phi \rangle$$

it it captures the BG behavior:

$$Z \ll \frac{1}{\mu} \qquad \langle \eta \rangle \approx 2\sqrt{2}\sqrt{\frac{1+\nu}{\nu}}(\mu Z)^{\nu/2} \qquad \leftrightarrow \qquad \langle T \rangle$$

$$z \gg \frac{1}{\mu} \qquad \langle \eta \rangle \approx \frac{2}{\sqrt{3}} (\mu z)^{\nu} \qquad \leftrightarrow \qquad \langle \phi \rangle$$

It it captures the BG behavior:

$$Z \ll \frac{1}{\mu} \qquad \langle \eta \rangle \approx 2\sqrt{2}\sqrt{\frac{1+\nu}{\nu}}(\mu Z)^{\nu/2} \qquad \leftrightarrow \qquad \langle T \rangle$$

$$z \gg \frac{1}{\mu} \qquad \langle \eta \rangle \approx \frac{2}{\sqrt{3}} (\mu z)^{\nu} \qquad \leftrightarrow \qquad \langle \phi \rangle$$

it it captures the BG behavior:

$$Z \ll \frac{1}{\mu}$$
 $\langle \eta \rangle \approx 2\sqrt{2}\sqrt{\frac{1+\nu}{\nu}}(\mu Z)^{\nu/2}$ \leftrightarrow $\langle T \rangle$

$$z \gg \frac{1}{\mu} \qquad \langle \eta \rangle \approx \frac{2}{\sqrt{3}} (\mu z)^{\nu} \qquad \leftrightarrow \qquad \langle \phi \rangle$$

it it captures the BG behavior:

$$Z \ll \frac{1}{\mu}$$
 $\langle \eta \rangle \approx 2\sqrt{2}\sqrt{\frac{1+\nu}{\nu}}(\mu Z)^{\nu/2}$ \leftrightarrow $\langle T \rangle$

$$z \gg \frac{1}{\mu} \qquad \langle \eta \rangle \approx \frac{2}{\sqrt{3}} (\mu z)^{\nu} \qquad \leftrightarrow \qquad \langle \phi \rangle$$

it it captures the BG behavior:

$$Z \ll \frac{1}{\mu}$$
 $\langle \eta \rangle \approx 2\sqrt{2}\sqrt{\frac{1+\nu}{\nu}}(\mu Z)^{\nu/2} \leftrightarrow \langle T \rangle$

$$z \gg \frac{1}{\mu} \qquad \langle \eta \rangle \approx \frac{2}{\sqrt{3}} (\mu z)^{\nu} \qquad \leftrightarrow \qquad \langle \phi \rangle$$

It it captures the BG behavior:

$$Z \ll \frac{1}{\mu}$$
 $\langle \eta \rangle \approx 2\sqrt{2}\sqrt{\frac{1+\nu}{\nu}}(\mu Z)^{\nu/2} \leftrightarrow \langle T \rangle$

$$z \gg \frac{1}{\mu} \qquad \langle \eta \rangle \approx \frac{2}{\sqrt{3}} (\mu z)^{\nu} \qquad \leftrightarrow \qquad \langle \phi \rangle$$

It it captures the BG behavior:

$$Z \ll \frac{1}{\mu}$$
 $\langle \eta \rangle \approx 2\sqrt{2}\sqrt{\frac{1+\nu}{\nu}}(\mu Z)^{\nu/2} \leftrightarrow \langle T \rangle$

$$z \gg \frac{1}{\mu} \qquad \langle \eta \rangle \approx \frac{2}{\sqrt{3}} (\mu z)^{\nu} \qquad \leftrightarrow \qquad \langle \phi \rangle$$

$$S_{\rm BULK} = M_5^3 \int d^5 x \, \sqrt{-g} \left[R - g^{MN} (\partial_M \eta) (\partial_N \eta) - V(\eta) \right]$$

$$S_{\rm BRANE} = -M_5^3 \int d^4 x \, \sqrt{-g_{\rm UV}} \, \lambda_{\rm UV}(\eta)$$

ackground solution much more complicated

$$\begin{split} \langle \eta \rangle = \pm \sqrt{3} \bigg(\frac{\nu + 1}{\nu} \bigg) \, \left[\sqrt{\frac{2}{3}} \frac{\nu}{\nu + 1} (\mu \mathbf{Z})^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu + 1} (\mu \mathbf{Z})^{\nu} \right)^2 \right. \\ \left. + \sinh^{-1} \left(\sqrt{\frac{2}{3}} \frac{\nu}{\nu + 1} (\mu \mathbf{Z})^{\nu} \right) \right] \end{split}$$

$$S_{\rm BULK} = M_5^3 \int d^5 x \, \sqrt{-g} \left[R - g^{MN} (\partial_M \eta) (\partial_N \eta) - V(\eta) \right]$$

$$S_{\rm BRANE} = -M_5^3 \int d^4 x \, \sqrt{-g_{\rm UV}} \, \lambda_{\rm UV}(\eta)$$

ckground solution much more complicated

$$\begin{split} \langle \eta \rangle = \pm \sqrt{3} \bigg(\frac{\nu + 1}{\nu} \bigg) \, \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} (\mu \mathbf{Z})^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu + 1} (\mu \mathbf{Z})^{\nu} \right)^2 \right. \\ \left. + \sinh^{-1} \left(\sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} (\mu \mathbf{Z})^{\nu} \right) \right] \end{split}$$

$$S_{\rm BULK} = M_5^3 \int d^5 x \, \sqrt{-g} \left[R - g^{MN} (\partial_M \eta) (\partial_N \eta) - V(\eta) \right]$$

$$S_{\rm BRANE} = -M_5^3 \int d^4 x \, \sqrt{-g_{\rm UV}} \, \lambda_{\rm UV}(\eta)$$

ackground solution much more complicated

$$\begin{split} \langle \eta \rangle = \pm \sqrt{3} \bigg(\frac{\nu + 1}{\nu} \bigg) \, \left[\sqrt{\frac{2}{3}} \frac{\nu}{\nu + 1} (\mu \mathbf{Z})^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu + 1} (\mu \mathbf{Z})^{\nu} \right)^2 \right. \\ \left. + \sinh^{-1} \left(\sqrt{\frac{2}{3}} \frac{\nu}{\nu + 1} (\mu \mathbf{Z})^{\nu} \right) \right] \end{split}$$

$$S_{\rm BULK} = M_5^3 \int d^5 x \, \sqrt{-g} \left[R - g^{MN} (\partial_M \eta) (\partial_N \eta) - V(\eta) \right]$$

$$S_{\rm BRANE} = -M_5^3 \int d^4 x \, \sqrt{-g_{\rm UV}} \, \lambda_{\rm UV}(\eta)$$

ackground solution much more complicated

$$\begin{split} \langle \eta \rangle = \pm \sqrt{3} \bigg(\frac{\nu + 1}{\nu} \bigg) \, \left[\sqrt{\frac{2}{3}} \frac{\nu}{\nu + 1} (\mu \mathbf{Z})^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu + 1} (\mu \mathbf{Z})^{\nu} \right)^2 \right. \\ \left. + \sinh^{-1} \left(\sqrt{\frac{2}{3}} \frac{\nu}{\nu + 1} (\mu \mathbf{Z})^{\nu} \right) \right] \end{split}$$

$$S_{\rm BULK} = M_5^3 \int d^5 x \, \sqrt{-g} \left[R - g^{MN} (\partial_M \eta) (\partial_N \eta) - V(\eta) \right]$$

$$S_{\rm BRANE} = -M_5^3 \int d^4 x \, \sqrt{-g_{\rm UV}} \, \lambda_{\rm UV}(\eta)$$

ackground solution much more complicated

$$\begin{split} \langle \eta \rangle = \pm \sqrt{3} \bigg(\frac{\nu + 1}{\nu} \bigg) \, \left[\sqrt{\frac{2}{3}} \frac{\nu}{\nu + 1} (\mu \mathbf{Z})^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu + 1} (\mu \mathbf{Z})^{\nu} \right)^2 \right. \\ \left. + \sinh^{-1} \left(\sqrt{\frac{2}{3}} \frac{\nu}{\nu + 1} (\mu \mathbf{Z})^{\nu} \right) \right] \end{split}$$

$$S_{\rm BULK} = M_5^3 \int d^5 x \, \sqrt{-g} \left[R - g^{MN} (\partial_M \eta) (\partial_N \eta) - V(\eta) \right]$$

$$S_{\rm BRANE} = -M_5^3 \int d^4 x \, \sqrt{-g_{\rm UV}} \, \lambda_{\rm UV}(\eta)$$

ackground solution much more complicated

$$\begin{split} \langle \eta \rangle = \pm \sqrt{3} \bigg(\frac{\nu + 1}{\nu} \bigg) \, \left[\sqrt{\frac{2}{3}} \frac{\nu}{\nu + 1} (\mu \mathbf{Z})^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu + 1} (\mu \mathbf{Z})^{\nu} \right)^2 \right. \\ \left. + \sinh^{-1} \left(\sqrt{\frac{2}{3}} \frac{\nu}{\nu + 1} (\mu \mathbf{Z})^{\nu} \right) \right] \end{split}$$

it it captures the BG behavior:

$$Z \ll \frac{1}{\mu} \qquad \langle \eta \rangle \approx 2\sqrt{2}\sqrt{\frac{1+\nu}{\nu}}(\mu Z)^{\nu/2} \qquad \leftrightarrow \qquad \langle T \rangle$$

$$z \gg \frac{1}{\mu} \qquad \langle \eta \rangle \approx \frac{2}{\sqrt{3}} (\mu z)^{\nu} \qquad \leftrightarrow \qquad \langle \phi \rangle$$

It it captures the BG behavior:

$$Z \ll \frac{1}{\mu}$$
 $\langle \eta \rangle \approx 2\sqrt{2}\sqrt{\frac{1+\nu}{\nu}}(\mu Z)^{\nu/2} \leftrightarrow \langle T \rangle$

$$z \gg \frac{1}{\mu} \qquad \langle \eta \rangle \approx \frac{2}{\sqrt{3}} (\mu z)^{\nu} \qquad \leftrightarrow \qquad \langle \phi \rangle$$

it it captures the BG behavior:

$$Z \ll \frac{1}{\mu}$$
 $\langle \eta \rangle \approx 2\sqrt{2}\sqrt{\frac{1+\nu}{\nu}}(\mu Z)^{\nu/2}$ \leftrightarrow $\langle T \rangle$

$$z \gg \frac{1}{\mu} \qquad \langle \eta \rangle \approx \frac{2}{\sqrt{3}} (\mu z)^{\nu} \qquad \leftrightarrow \qquad \langle \phi \rangle$$

it it captures the BG behavior:

$$Z \ll \frac{1}{\mu} \qquad \langle \eta \rangle \approx 2\sqrt{2}\sqrt{\frac{1+\nu}{\nu}}(\mu Z)^{\nu/2} \qquad \leftrightarrow \qquad \langle T \rangle$$

$$z \gg \frac{1}{\mu} \qquad \langle \eta \rangle \approx \frac{2}{\sqrt{3}} (\mu z)^{\nu} \qquad \leftrightarrow \qquad \langle \phi \rangle$$

it it captures the BG behavior:

$$Z \ll \frac{1}{\mu}$$
 $\langle \eta \rangle \approx 2\sqrt{2}\sqrt{\frac{1+\nu}{\nu}}(\mu Z)^{\nu/2}$ \leftrightarrow $\langle T \rangle$

$$z \gg \frac{1}{\mu} \qquad \langle \eta \rangle \approx \frac{2}{\sqrt{3}} (\mu z)^{\nu} \qquad \leftrightarrow \qquad \langle \phi \rangle$$

It it captures the BG behavior:

$$Z \ll \frac{1}{\mu}$$
 $\langle \eta \rangle \approx 2\sqrt{2}\sqrt{\frac{1+\nu}{\nu}}(\mu Z)^{\nu/2} \leftrightarrow \langle T \rangle$

$$z \gg \frac{1}{\mu} \qquad \langle \eta \rangle \approx \frac{2}{\sqrt{3}} (\mu z)^{\nu} \qquad \leftrightarrow \qquad \langle \phi \rangle$$

it it captures the BG behavior:

$$Z \ll \frac{1}{\mu}$$
 $\langle \eta \rangle \approx 2\sqrt{2}\sqrt{\frac{1+\nu}{\nu}}(\mu Z)^{\nu/2}$ \leftrightarrow $\langle T \rangle$

$$z \gg \frac{1}{\mu} \qquad \langle \eta \rangle \approx \frac{2}{\sqrt{3}} (\mu z)^{\nu} \qquad \leftrightarrow \qquad \langle \phi \rangle$$

- Potentials also complicated
- Use superpotential technique [DeWolfe et al.]
 - Relates bulk potential to function W
 - Relates boundary potential to W and $\partial_{\eta} W$ at boundary
 - Converts Einstein equations to first-order

$$e^{A(z)}\partial_z A(z) = 2W$$

 $e^{A(z)}\partial_z \langle \eta \rangle = 6\frac{\partial W}{\partial \eta}$

Pirsa: 10050014 Page 814/136

- Potentials also complicated
- Use superpotential technique [DeWolfe et al.]
 - Relates bulk potential to function W
 - Relates boundary potential to W and $\partial_{\eta}W$ at boundary
 - Converts Einstein equations to first-order

$$e^{A(z)}\partial_z A(z) = 2W$$

 $e^{A(z)}\partial_z \langle \eta \rangle = 6\frac{\partial W}{\partial \eta}$

Pirsa: 10050014 Page 815/136

- Potentials also complicated
- Use superpotential technique [DeWolfe et al.]
 - Relates bulk potential to function W
 - Relates boundary potential to W and $\partial_{\eta} W$ at boundary
 - Converts Einstein equations to first-order

$$e^{A(z)}\partial_z A(z) = 2W$$

 $e^{A(z)}\partial_z \langle \eta \rangle = 6\frac{\partial W}{\partial \eta}$

Pirsa: 10050014 Page 816/1362

- Potentials also complicated
- Use superpotential technique [DeWolfe et al.]
 - Relates bulk potential to function W
 - Relates boundary potential to W and $\partial_{\eta}W$ at boundary
 - Converts Einstein equations to first-order

$$e^{A(z)}\partial_z A(z) = 2W$$

 $e^{A(z)}\partial_z \langle \eta \rangle = 6\frac{\partial W}{\partial \eta}$

Pirsa: 10050014 Page 817/1362

- Potentials also complicated
- Use superpotential technique [DeWolfe et al.]
 - Relates bulk potential to function W
 - Relates boundary potential to W and $\partial_{\eta} W$ at boundary
 - Converts Einstein equations to first-order

$$e^{A(z)}\partial_z A(z) = 2W$$

$$e^{A(z)}\partial_z \langle \eta \rangle = 6\frac{\partial W}{\partial \eta}$$

Pirsa: 10050014 Page 818/1362

- Potentials also complicated
- Use superpotential technique [DeWolfe et al.]
 - Relates bulk potential to function W
 - Relates boundary potential to W and $\partial_{\eta} W$ at boundary
 - Converts Einstein equations to first-order

$$e^{A(z)}\partial_z A(z) = 2W$$

 $e^{A(z)}\partial_z \langle \eta \rangle = 6\frac{\partial W}{\partial \eta}$

Pirsa: 10050014 Page 819/1362

- Potentials also complicated
- Use superpotential technique [DeWolfe et al.]
 - Relates bulk potential to function W
 - Relates boundary potential to W and $\partial_{\eta}W$ at boundary
 - Converts Einstein equations to first-order

$$e^{A(z)}\partial_z A(z) = 2W$$

$$e^{A(z)}\partial_z \langle \eta \rangle = 6\frac{\partial W}{\partial \eta}$$

Pirsa: 10050014 Page 820/1362

- Potentials also complicated
- Use superpotential technique [DeWolfe et al.]
 - Relates bulk potential to function W
 - Relates boundary potential to W and $\partial_{\eta}W$ at boundary
 - Converts Einstein equations to first-order

$$e^{A(z)}\partial_z A(z) = 2W$$

 $e^{A(z)}\partial_z \langle \eta \rangle = 6\frac{\partial W}{\partial \eta}$

Pirsa: 10050014 Page 821/1362

- Potentials also complicated
- Use superpotential technique [DeWolfe et al.]
 - Relates bulk potential to function W
 - Relates boundary potential to W and $\partial_{\eta} W$ at boundary
 - Converts Einstein equations to first-order

$$e^{A(z)}\partial_z A(z) = 2W$$

 $e^{A(z)}\partial_z \langle \eta \rangle = 6\frac{\partial W}{\partial \eta}$

Pirsa: 10050014 Page 822/136

- Potentials also complicated
- Use superpotential technique [DeWolfe et al.]
 - Relates bulk potential to function W
 - Relates boundary potential to W and $\partial_{\eta}W$ at boundary
 - Converts Einstein equations to first-order

$$e^{A(z)}\partial_z A(z) = 2W$$

 $e^{A(z)}\partial_z \langle \eta \rangle = 6\frac{\partial W}{\partial \eta}$

Pirsa: 10050014 Page 823/136

- Potentials also complicated
- Use superpotential technique [DeWolfe et al.]
 - Relates bulk potential to function W
 - Relates boundary potential to W and $\partial_{\eta} W$ at boundary
 - Converts Einstein equations to first-order

$$e^{A(z)}\partial_z A(z) = 2W$$

 $e^{A(z)}\partial_z \langle \eta \rangle = 6\frac{\partial W}{\partial \eta}$

Pirsa: 10050014 Page 824/136

- Potentials also complicated
- Use superpotential technique [DeWolfe et al.]
 - Relates bulk potential to function W
 - Relates boundary potential to W and $\partial_{\eta}W$ at boundary
 - Converts Einstein equations to first-order

$$e^{A(z)}\partial_z A(z) = 2W$$

 $e^{A(z)}\partial_z \langle \eta \rangle = 6\frac{\partial W}{\partial \eta}$

Pirsa: 10050014 Page 825/1362

- Potentials also complicated
- Use superpotential technique [DeWolfe et al.]
 - Relates bulk potential to function W
 - Relates boundary potential to W and $\partial_{\eta} W$ at boundary
 - Converts Einstein equations to first-order

$$e^{A(z)}\partial_z A(z) = 2W$$

 $e^{A(z)}\partial_z \langle \eta \rangle = 6\frac{\partial W}{\partial \eta}$

Pirsa: 10050014 Page 826/1362

- Potentials also complicated
- Use superpotential technique [DeWolfe et al.]
 - Relates bulk potential to function W
 - Relates boundary potential to W and $\partial_{\eta}W$ at boundary
 - Converts Einstein equations to first-order

$$e^{A(z)}\partial_z A(z) = 2W$$

 $e^{A(z)}\partial_z \langle \eta \rangle = 6\frac{\partial W}{\partial \eta}$

Pirsa: 10050014 Page 827/136

- Potentials also complicated
- Use superpotential technique [DeWolfe et al.]
 - Relates bulk potential to function W
 - Relates boundary potential to W and $\partial_{\eta}W$ at boundary
 - Converts Einstein equations to first-order

$$e^{A(z)}\partial_z A(z) = 2W$$

 $e^{A(z)}\partial_z \langle \eta \rangle = 6\frac{\partial W}{\partial \eta}$

Pirsa: 10050014 Page 828/136

- Potentials also complicated
- Use superpotential technique [DeWolfe et al.]
 - Relates bulk potential to function W
 - Relates boundary potential to W and $\partial_{\eta} W$ at boundary
 - Converts Einstein equations to first-order

$$e^{A(z)}\partial_z A(z) = 2W$$

 $e^{A(z)}\partial_z \langle \eta \rangle = 6\frac{\partial W}{\partial \eta}$

Pirsa: 10050014 Page 829/1362

- Potentials also complicated
- Use superpotential technique [DeWolfe et al.]
 - Relates bulk potential to function W
 - Relates boundary potential to W and $\partial_{\eta} W$ at boundary
 - Converts Einstein equations to first-order

$$e^{A(z)}\partial_z A(z) = 2W$$

 $e^{A(z)}\partial_z \langle \eta \rangle = 6\frac{\partial W}{\partial \eta}$

- Potentials also complicated
- Use superpotential technique [DeWolfe et al.]
 - Relates bulk potential to function W
 - Relates boundary potential to W and $\partial_{\eta} W$ at boundary
 - Converts Einstein equations to first-order

$$e^{A(z)}\partial_z A(z) = 2W$$

 $e^{A(z)}\partial_z \langle \eta \rangle = 6\frac{\partial W}{\partial \eta}$

Pirsa: 10050014 Page 831/136

- Potentials also complicated
- Use superpotential technique [DeWolfe et al.]
 - Relates bulk potential to function W
 - Relates boundary potential to W and $\partial_{\eta}W$ at boundary
 - Converts Einstein equations to first-order

$$e^{A(z)}\partial_z A(z) = 2W$$

 $e^{A(z)}\partial_z \langle \eta \rangle = 6\frac{\partial W}{\partial \eta}$

- Potentials also complicated
- Use superpotential technique [DeWolfe et al.]
 - Relates bulk potential to function W
 - Relates boundary potential to W and $\partial_{\eta} W$ at boundary
 - Converts Einstein equations to first-order

$$e^{A(z)}\partial_z A(z) = 2W$$

 $e^{A(z)}\partial_z \langle \eta \rangle = 6\frac{\partial W}{\partial \eta}$

Pirsa: 10050014 Page 833/1362

- Potentials also complicated
- Use superpotential technique [DeWolfe et al.]
 - Relates bulk potential to function W
 - Relates boundary potential to W and $\partial_{\eta}W$ at boundary
 - Converts Einstein equations to first-order

$$e^{A(z)}\partial_z A(z) = 2W$$

 $e^{A(z)}\partial_z \langle \eta \rangle = 6\frac{\partial W}{\partial \eta}$

Pirsa: 10050014 Page 834/1362

- Potentials also complicated
- Use superpotential technique [DeWolfe et al.]
 - Relates bulk potential to function W
 - Relates boundary potential to W and $\partial_{\eta} W$ at boundary
 - Converts Einstein equations to first-order

$$e^{A(z)}\partial_z A(z) = 2W$$

 $e^{A(z)}\partial_z \langle \eta \rangle = 6\frac{\partial W}{\partial \eta}$

Pirsa: 10050014 Page 835/136

- Potentials also complicated
- Use superpotential technique [DeWolfe et al.]
 - Relates bulk potential to function W
 - Relates boundary potential to W and $\partial_{\eta}W$ at boundary
 - Converts Einstein equations to first-order

$$e^{A(z)}\partial_z A(z) = 2W$$

 $e^{A(z)}\partial_z \langle \eta \rangle = 6\frac{\partial W}{\partial \eta}$

Pirsa: 10050014 Page 836/136:

- Potentials also complicated
- Use superpotential technique [DeWolfe et al.]
 - Relates bulk potential to function W
 - Relates boundary potential to W and $\partial_{\eta}W$ at boundary
 - Converts Einstein equations to first-order

$$e^{A(z)}\partial_z A(z) = 2W$$

 $e^{A(z)}\partial_z \langle \eta \rangle = 6\frac{\partial W}{\partial \eta}$

Pirsa: 10050014 Page 837/136

- Potentials also complicated
- Use superpotential technique [DeWolfe et al.]
 - Relates bulk potential to function W
 - Relates boundary potential to W and $\partial_{\eta}W$ at boundary
 - Converts Einstein equations to first-order

$$e^{A(z)}\partial_z A(z) = 2W$$

 $e^{A(z)}\partial_z \langle \eta \rangle = 6\frac{\partial W}{\partial \eta}$

Pirsa: 10050014 Page 838/1362

- Potentials also complicated
- Use superpotential technique [DeWolfe et al.]
 - Relates bulk potential to function W
 - Relates boundary potential to W and $\partial_{\eta} W$ at boundary
 - Converts Einstein equations to first-order

$$e^{A(z)}\partial_z A(z) = 2W$$

 $e^{A(z)}\partial_z \langle \eta \rangle = 6\frac{\partial W}{\partial \eta}$

Pirsa: 10050014 Page 839/1362

- Potentials also complicated
- Use superpotential technique [DeWolfe et al.]
 - Relates bulk potential to function W
 - Relates boundary potential to W and $\partial_{\eta}W$ at boundary
 - Converts Einstein equations to first-order

$$e^{A(z)}\partial_z A(z) = 2W$$

 $e^{A(z)}\partial_z \langle \eta \rangle = 6\frac{\partial W}{\partial \eta}$

Pirsa: 10050014 Page 840/136

- Potentials also complicated
- Use superpotential technique [DeWolfe et al.]
 - Relates bulk potential to function W
 - Relates boundary potential to W and $\partial_{\eta}W$ at boundary
 - Converts Einstein equations to first-order

$$e^{A(z)}\partial_z A(z) = 2W$$

$$e^{A(z)}\partial_z \langle \eta \rangle = 6\frac{\partial W}{\partial \eta}$$

Pirsa: 10050014 Page 841/1362

- Potentials also complicated
- Use superpotential technique [DeWolfe et al.]
 - Relates bulk potential to function W
 - Relates boundary potential to W and $\partial_{\eta}W$ at boundary
 - Converts Einstein equations to first-order

$$e^{A(z)}\partial_z A(z) = 2W$$

 $e^{A(z)}\partial_z \langle \eta \rangle = 6\frac{\partial W}{\partial \eta}$

- Potentials also complicated
- Use superpotential technique [DeWolfe et al.]
 - Relates bulk potential to function W
 - Relates boundary potential to W and $\partial_{\eta}W$ at boundary
 - Converts Einstein equations to first-order

$$e^{A(z)}\partial_z A(z) = 2W$$

 $e^{A(z)}\partial_z \langle \eta \rangle = 6\frac{\partial W}{\partial \eta}$

Pirsa: 10050014 Page 843/1362

- Potentials also complicated
- Use superpotential technique [DeWolfe et al.]
 - Relates bulk potential to function W
 - Relates boundary potential to W and $\partial_{\eta} W$ at boundary
 - Converts Einstein equations to first-order

$$e^{A(z)}\partial_z A(z) = 2W$$

$$e^{A(z)}\partial_z \langle \eta \rangle = 6\frac{\partial W}{\partial \eta}$$

Pirsa: 10050014 Page 844/1362

- Potentials also complicated
- Use superpotential technique [DeWolfe et al.]
 - Relates bulk potential to function W
 - Relates boundary potential to W and $\partial_{\eta}W$ at boundary
 - Converts Einstein equations to first-order

$$e^{A(z)}\partial_z A(z) = 2W$$

 $e^{A(z)}\partial_z \langle \eta \rangle = 6\frac{\partial W}{\partial \eta}$

Pirsa: 10050014 Page 845/1362

perpotential is

$$W = \frac{1}{2}k\nu \left[\frac{\nu + 1}{2\nu} (1 + \cosh 2\beta) - 1\right] e^{(\nu + 1)(\cosh 2\beta - 1)/2\nu}$$

$$\eta = \pm \sqrt{3} \, \frac{\nu + 1}{\nu} \left(\frac{1}{2} \sinh 2\beta + \beta \right)$$

perpotential is

$$W = \frac{1}{2}k\nu \left[\frac{\nu + 1}{2\nu} (1 + \cosh 2\beta) - 1\right] e^{(\nu + 1)(\cosh 2\beta - 1)/2\nu}$$

$$\eta = \pm \sqrt{3} \, \frac{\nu + 1}{\nu} \left(\frac{1}{2} \sinh 2\beta + \beta \right)$$

perpotential is

$$W = \frac{1}{2}k\nu \left[\frac{\nu + 1}{2\nu} (1 + \cosh 2\beta) - 1\right] e^{(\nu + 1)(\cosh 2\beta - 1)/2\nu}$$

$$\eta = \pm \sqrt{3} \, \frac{\nu + 1}{\nu} \left(\frac{1}{2} \sinh 2\beta + \beta \right)$$

perpotential is

$$W = \frac{1}{2}k\nu \left[\frac{\nu + 1}{2\nu} (1 + \cosh 2\beta) - 1\right] e^{(\nu + 1)(\cosh 2\beta - 1)/2\nu}$$

$$\eta = \pm \sqrt{3} \, \frac{\nu + 1}{\nu} \left(\frac{1}{2} \sinh 2\beta + \beta \right)$$

perpotential is

$$W = \frac{1}{2} k \nu \left[\frac{\nu + 1}{2\nu} (1 + \cosh 2\beta) - 1 \right] e^{(\nu + 1)(\cosh 2\beta - 1)/2\nu}$$

$$\eta = \pm \sqrt{3} \, \frac{\nu + 1}{\nu} \left(\frac{1}{2} \sinh 2\beta + \beta \right)$$

Implicit function of η

perpotential is

$$W = \frac{1}{2}k\nu \left[\frac{\nu + 1}{2\nu} (1 + \cosh 2\beta) - 1\right] e^{(\nu + 1)(\cosh 2\beta - 1)/2\nu}$$

$$\eta = \pm \sqrt{3} \, \frac{\nu + 1}{\nu} \left(\frac{1}{2} \sinh 2\beta + \beta \right)$$

Implicit function of η

Defines $\beta(\eta)$

perpotential is

$$W = \frac{1}{2}k\nu \left[\frac{\nu + 1}{2\nu} (1 + \cosh 2\beta) - 1\right] e^{(\nu + 1)(\cosh 2\beta - 1)/2\nu}$$

$$\eta = \pm \sqrt{3} \, \frac{\nu + 1}{\nu} \left(\frac{1}{2} \sinh 2\beta + \beta \right)$$

Implicit function of η

Defines $\beta(\eta)$

perpotential is

$$W = \frac{1}{2}k\nu \left[\frac{\nu + 1}{2\nu} (1 + \cosh 2\beta) - 1\right] e^{(\nu + 1)(\cosh 2\beta - 1)/2\nu}$$

$$\eta = \pm \sqrt{3} \, \frac{\nu + 1}{\nu} \left(\frac{1}{2} \sinh 2\beta + \beta \right)$$

Implicit function of η

Defines $\beta(\eta)$

perpotential is

$$W = \frac{1}{2}k\nu \left[\frac{\nu + 1}{2\nu} (1 + \cosh 2\beta) - 1\right] e^{(\nu + 1)(\cosh 2\beta - 1)/2\nu}$$

$$\eta = \pm \sqrt{3} \, \frac{\nu + 1}{\nu} \left(\frac{1}{2} \sinh 2\beta + \beta \right)$$

Implicit function of η

Defines $\beta(\eta)$

perpotential is

$$W = \frac{1}{2}k\nu \left[\frac{\nu + 1}{2\nu} (1 + \cosh 2\beta) - 1\right] e^{(\nu + 1)(\cosh 2\beta - 1)/2\nu}$$

$$\eta = \pm \sqrt{3} \, \frac{\nu + 1}{\nu} \left(\frac{1}{2} \sinh 2\beta + \beta \right)$$

Implicit function of η

Defines $\beta(\eta)$

perpotential is

$$W = \frac{1}{2}k\nu \left[\frac{\nu + 1}{2\nu} (1 + \cosh 2\beta) - 1\right] e^{(\nu + 1)(\cosh 2\beta - 1)/2\nu}$$

$$\eta = \pm \sqrt{3} \, \frac{\nu + 1}{\nu} \left(\frac{1}{2} \sinh 2\beta + \beta \right)$$

Implicit function of η

Defines $\beta(\eta)$

perpotential is

$$W = \frac{1}{2}k\nu \left[\frac{\nu + 1}{2\nu} (1 + \cosh 2\beta) - 1\right] e^{(\nu + 1)(\cosh 2\beta - 1)/2\nu}$$

$$\eta = \pm \sqrt{3} \, \frac{\nu + 1}{\nu} \left(\frac{1}{2} \sinh 2\beta + \beta \right)$$

Implicit function of η

Defines $\beta(\eta)$

perpotential is

$$W = \frac{1}{2}k\nu \left[\frac{\nu + 1}{2\nu} (1 + \cosh 2\beta) - 1\right] e^{(\nu + 1)(\cosh 2\beta - 1)/2\nu}$$

$$\eta = \pm \sqrt{3} \, \frac{\nu + 1}{\nu} \left(\frac{1}{2} \sinh 2\beta + \beta \right)$$

Implicit function of η

Defines $\beta(\eta)$

perpotential is

$$W = \frac{1}{2}k\nu \left[\frac{\nu + 1}{2\nu} (1 + \cosh 2\beta) - 1\right] e^{(\nu + 1)(\cosh 2\beta - 1)/2\nu}$$

$$\eta = \pm \sqrt{3} \, \frac{\nu + 1}{\nu} \left(\frac{1}{2} \sinh 2\beta + \beta \right)$$

Implicit function of η

Defines $\beta(\eta)$

perpotential is

$$W = \frac{1}{2}k\nu \left[\frac{\nu + 1}{2\nu} (1 + \cosh 2\beta) - 1\right] e^{(\nu + 1)(\cosh 2\beta - 1)/2\nu}$$

$$\eta = \pm \sqrt{3} \, \frac{\nu + 1}{\nu} \left(\frac{1}{2} \sinh 2\beta + \beta \right)$$

Implicit function of η

Defines $\beta(\eta)$

perpotential is

$$W = \frac{1}{2}k\nu \left[\frac{\nu + 1}{2\nu} (1 + \cosh 2\beta) - 1\right] e^{(\nu + 1)(\cosh 2\beta - 1)/2\nu}$$

$$\eta = \pm \sqrt{3} \, \frac{\nu + 1}{\nu} \left(\frac{1}{2} \sinh 2\beta + \beta \right)$$

Implicit function of η

Defines $\beta(\eta)$

te that

$$\frac{d\eta}{d\beta} = \sqrt{3} \, \frac{\nu+1}{\nu} (\cosh 2\beta + 1) > 0$$

large $\beta \Leftrightarrow$ large η . Good since equations simplify for large β

$$\eta \sim rac{\sqrt{3}}{2} rac{
u+1}{
u} \sinh 2eta \sim rac{\sqrt{3}}{2} rac{
u+1}{
u} \cosh 2eta$$

te that

$$\frac{d\eta}{d\beta} = \sqrt{3} \, \frac{\nu+1}{\nu} (\cosh 2\beta + 1) > 0$$

large $\beta \Leftrightarrow$ large η . Good since equations simplify for large β

$$\eta \sim rac{\sqrt{3}}{2} rac{
u+1}{
u} \sinh 2eta \sim rac{\sqrt{3}}{2} rac{
u+1}{
u} \cosh 2eta$$

te that

$$\frac{d\eta}{d\beta} = \sqrt{3} \, \frac{\nu+1}{\nu} (\cosh 2\beta + 1) > 0$$

large $\beta \Leftrightarrow$ large η . Good since equations simplify for large β

$$\eta \sim rac{\sqrt{3}}{2} rac{
u+1}{
u} \sinh 2eta \sim rac{\sqrt{3}}{2} rac{
u+1}{
u} \cosh 2eta$$

te that

$$\frac{d\eta}{d\beta} = \sqrt{3} \, \frac{\nu+1}{\nu} (\cosh 2\beta + 1) > 0$$

large $\beta \Leftrightarrow$ large η . Good since equations simplify for large β

$$\eta \sim rac{\sqrt{3}}{2} rac{
u+1}{
u} \sinh 2eta \sim rac{\sqrt{3}}{2} rac{
u+1}{
u} \cosh 2eta$$

te that

$$\frac{d\eta}{d\beta} = \sqrt{3} \, \frac{\nu+1}{\nu} (\cosh 2\beta + 1) > 0$$

large $\beta \Leftrightarrow$ large η . Good since equations simplify for large β

$$\eta \sim rac{\sqrt{3}}{2} rac{
u+1}{
u} \sinh 2eta \sim rac{\sqrt{3}}{2} rac{
u+1}{
u} \cosh 2eta$$

te that

$$\frac{d\eta}{d\beta} = \sqrt{3} \, \frac{\nu+1}{\nu} (\cosh 2\beta + 1) > 0$$

large $\beta \Leftrightarrow$ large η . Good since equations simplify for large β

$$\eta \sim rac{\sqrt{3}}{2} rac{
u+1}{
u} \sinh 2eta \sim rac{\sqrt{3}}{2} rac{
u+1}{
u} \cosh 2eta$$

te that

$$\frac{d\eta}{d\beta} = \sqrt{3} \, \frac{\nu+1}{\nu} (\cosh 2\beta + 1) > 0$$

large $\beta \Leftrightarrow$ large η . Good since equations simplify for large β

$$\eta \sim rac{\sqrt{3}}{2} rac{
u+1}{
u} \sinh 2eta \sim rac{\sqrt{3}}{2} rac{
u+1}{
u} \cosh 2eta$$

te that

$$\frac{d\eta}{d\beta} = \sqrt{3} \, \frac{\nu+1}{\nu} (\cosh 2\beta + 1) > 0$$

large $\beta \Leftrightarrow$ large η . Good since equations simplify for large β

$$\eta \sim rac{\sqrt{3}}{2} rac{
u+1}{
u} \sinh 2eta \sim rac{\sqrt{3}}{2} rac{
u+1}{
u} \cosh 2eta$$

te that

$$\frac{d\eta}{d\beta} = \sqrt{3} \, \frac{\nu+1}{\nu} (\cosh 2\beta + 1) > 0$$

large $\beta \Leftrightarrow$ large η . Good since equations simplify for large β

$$\eta \sim rac{\sqrt{3}}{2} rac{
u+1}{
u} \sinh 2eta \sim rac{\sqrt{3}}{2} rac{
u+1}{
u} \cosh 2eta$$

ote that

$$\frac{d\eta}{d\beta} = \sqrt{3} \, \frac{\nu+1}{\nu} (\cosh 2\beta + 1) > 0$$

large $\beta \Leftrightarrow$ large η . Good since equations simplify for large β

$$\eta \sim rac{\sqrt{3}}{2} rac{
u+1}{
u} \sinh 2eta \sim rac{\sqrt{3}}{2} rac{
u+1}{
u} \cosh 2eta$$

te that

$$\frac{d\eta}{d\beta} = \sqrt{3} \, \frac{\nu+1}{\nu} (\cosh 2\beta + 1) > 0$$

large $\beta \Leftrightarrow$ large η . Good since equations simplify for large β

$$\eta \sim rac{\sqrt{3}}{2} rac{
u+1}{
u} \sinh 2eta \sim rac{\sqrt{3}}{2} rac{
u+1}{
u} \cosh 2eta$$

te that

$$\frac{d\eta}{d\beta} = \sqrt{3} \, \frac{\nu+1}{\nu} (\cosh 2\beta + 1) > 0$$

large $\beta \Leftrightarrow$ large η . Good since equations simplify for large β

$$\eta \sim rac{\sqrt{3}}{2} rac{
u+1}{
u} \sinh 2eta \sim rac{\sqrt{3}}{2} rac{
u+1}{
u} \cosh 2eta$$

te that

$$\frac{d\eta}{d\beta} = \sqrt{3} \, \frac{\nu+1}{\nu} (\cosh 2\beta + 1) > 0$$

large $\beta \Leftrightarrow$ large η . Good since equations simplify for large β

$$\eta \sim rac{\sqrt{3}}{2} rac{
u+1}{
u} \sinh 2eta \sim rac{\sqrt{3}}{2} rac{
u+1}{
u} \cosh 2eta$$

te that

$$\frac{d\eta}{d\beta} = \sqrt{3} \, \frac{\nu+1}{\nu} (\cosh 2\beta + 1) > 0$$

large $\beta \Leftrightarrow$ large η . Good since equations simplify for large β

$$\eta \sim rac{\sqrt{3}}{2} rac{
u+1}{
u} \sinh 2eta \sim rac{\sqrt{3}}{2} rac{
u+1}{
u} \cosh 2eta$$

te that

$$\frac{d\eta}{d\beta} = \sqrt{3} \, \frac{\nu+1}{\nu} (\cosh 2\beta + 1) > 0$$

large $\beta \Leftrightarrow$ large η . Good since equations simplify for large β

$$\eta \sim rac{\sqrt{3}}{2} rac{
u+1}{
u} \sinh 2eta \sim rac{\sqrt{3}}{2} rac{
u+1}{
u} \cosh 2eta$$

perpotential is

$$W = \frac{1}{2}k\nu \left[\frac{\nu+1}{2\nu}(1+\cosh 2\beta) - 1\right]e^{(\nu+1)(\cosh 2\beta-1)/2\nu}$$

$$\eta = \pm \sqrt{3} \, \frac{\nu + 1}{\nu} \left(\frac{1}{2} \sinh 2\beta + \beta \right)$$

Implicit function of η

Defines $\beta(\eta)$

symptotic form for superpotential is simple

$$W \sim \frac{1}{2\sqrt{3}} k \nu \eta e^{\eta/\sqrt{3}}$$

elevant because soft-wall has curvature singularity

Pirsa: 10050014 Page 878/136

symptotic form for superpotential is simple

$$W \sim \frac{1}{2\sqrt{3}} k \nu \eta e^{\eta/\sqrt{3}}$$

elevant because soft-wall has curvature singularity

symptotic form for superpotential is simple

$$W \sim \frac{1}{2\sqrt{3}} k \nu \eta e^{\eta/\sqrt{3}}$$

elevant because soft-wall has curvature singularity

Pirsa: 10050014 Page 880/136

symptotic form for superpotential is simple

$$W \sim \frac{1}{2\sqrt{3}} k \nu \eta e^{\eta/\sqrt{3}}$$

elevant because soft-wall has curvature singularity

Pirsa: 10050014 Page 881/136

symptotic form for superpotential is simple

$$W \sim \frac{1}{2\sqrt{3}} k \nu \eta e^{\eta/\sqrt{3}}$$

elevant because soft-wall has curvature singularity

Pirsa: 10050014 Page 882/136

symptotic form for superpotential is simple

$$W \sim \frac{1}{2\sqrt{3}} k \nu \eta e^{\eta/\sqrt{3}}$$

elevant because soft-wall has curvature singularity

Pirsa: 10050014 Page 883/136

symptotic form for superpotential is simple

$$W \sim \frac{1}{2\sqrt{3}} k \nu \eta e^{\eta/\sqrt{3}}$$

elevant because soft-wall has curvature singularity

Pirsa: 10050014 Page 884/136

ard to see in z-coord:

$$R(z) = -\frac{4}{3}k^2e^{\frac{4}{3}(\mu z)^{\nu}}\left(4\nu^2(\mu z)^{2\nu} + 4\nu(4-\nu)(\mu z)^{\nu} + 15\right)$$

$$R \to \infty$$
 as $z \to \infty$

ngularity at infinity.

ard to see in z-coord:

$$R(z) = -\frac{4}{3}k^2e^{\frac{4}{3}(\mu z)^{\nu}}\left(4\nu^2(\mu z)^{2\nu} + 4\nu(4-\nu)(\mu z)^{\nu} + 15\right)$$

$$R \to \infty$$
 as $z \to \infty$

ngularity at infinity.

ard to see in z-coord:

$$R(z) = -\frac{4}{3}k^2e^{\frac{4}{3}(\mu z)^{\nu}}\left(4\nu^2(\mu z)^{2\nu} + 4\nu(4-\nu)(\mu z)^{\nu} + 15\right)$$

$$R \to \infty$$
 as $z \to \infty$

ngularity at infinity.

ard to see in z-coord:

$$R(z) = -\frac{4}{3}k^2e^{\frac{4}{3}(\mu z)^{\nu}}\left(4\nu^2(\mu z)^{2\nu} + 4\nu(4-\nu)(\mu z)^{\nu} + 15\right)$$

$$R \to \infty$$
 as $z \to \infty$

ngularity at infinity.

ard to see in z-coord:

$$R(z) = -\frac{4}{3}k^2e^{\frac{4}{3}(\mu z)^{\nu}}\left(4\nu^2(\mu z)^{2\nu} + 4\nu(4-\nu)(\mu z)^{\nu} + 15\right)$$

$$R \to \infty$$
 as $z \to \infty$

igularity at infinity.

ard to see in z-coord:

$$R(z) = -\frac{4}{3}k^2e^{\frac{4}{3}(\mu z)^{\nu}}\left(4\nu^2(\mu z)^{2\nu} + 4\nu(4-\nu)(\mu z)^{\nu} + 15\right)$$

$$R \to \infty$$
 as $z \to \infty$

igularity at infinity.

ard to see in z-coord:

$$R(z) = -\frac{4}{3}k^2e^{\frac{4}{3}(\mu z)^{\nu}}\left(4\nu^2(\mu z)^{2\nu} + 4\nu(4-\nu)(\mu z)^{\nu} + 15\right)$$

$$R \to \infty$$
 as $z \to \infty$

ngularity at infinity.

ard to see in z-coord:

$$R(z) = -\frac{4}{3}k^2e^{\frac{4}{3}(\mu z)^{\nu}}\left(4\nu^2(\mu z)^{2\nu} + 4\nu(4-\nu)(\mu z)^{\nu} + 15\right)$$

$$R \to \infty$$
 as $z \to \infty$

ngularity at infinity.

ard to see in z-coord:

$$R(z) = -\frac{4}{3}k^2e^{\frac{4}{3}(\mu z)^{\nu}}\left(4\nu^2(\mu z)^{2\nu} + 4\nu(4-\nu)(\mu z)^{\nu} + 15\right)$$

$$R \to \infty$$
 as $z \to \infty$

ngularity at infinity.

ard to see in z-coord:

$$R(z) = -\frac{4}{3}k^2e^{\frac{4}{3}(\mu z)^{\nu}}\left(4\nu^2(\mu z)^{2\nu} + 4\nu(4-\nu)(\mu z)^{\nu} + 15\right)$$

$$R \to \infty$$
 as $z \to \infty$

igularity at infinity.

ard to see in z-coord:

$$R(z) = -\frac{4}{3}k^2e^{\frac{4}{3}(\mu z)^{\nu}}\left(4\nu^2(\mu z)^{2\nu} + 4\nu(4-\nu)(\mu z)^{\nu} + 15\right)$$

$$R \to \infty$$
 as $z \to \infty$

ngularity at infinity.

ard to see in z-coord:

$$R(z) = -\frac{4}{3}k^2e^{\frac{4}{3}(\mu z)^{\nu}}\left(4\nu^2(\mu z)^{2\nu} + 4\nu(4-\nu)(\mu z)^{\nu} + 15\right)$$

$$R \to \infty$$
 as $z \to \infty$

ngularity at infinity.

ard to see in z-coord:

$$R(z) = -\frac{4}{3}k^2e^{\frac{4}{3}(\mu z)^{\nu}}\left(4\nu^2(\mu z)^{2\nu} + 4\nu(4-\nu)(\mu z)^{\nu} + 15\right)$$

$$R \to \infty$$
 as $z \to \infty$

ngularity at infinity.

vitch to y

$$y(z) = \frac{1}{k\nu} \left[\Gamma(0, \frac{2}{3}(\mu z_0)^{\nu}) - \Gamma(0, \frac{2}{3}(\mu z)^{\nu}) \right]$$

w line element

$$ds^2 = e^{-2A(y)}\eta_{\mu\nu}dx^\mu dx^
u + dy^2$$

$$\lim_{z\to\infty}y(z)\equiv y_s=\frac{1}{k\nu}\Gamma(0,\tfrac{2}{3}(\mu z_0)^{\nu})$$

Pirsa: 10050014 Page 898/136

vitch to y

$$y(z) = \frac{1}{k\nu} \left[\Gamma(0, \frac{2}{3}(\mu z_0)^{\nu}) - \Gamma(0, \frac{2}{3}(\mu z)^{\nu}) \right]$$

w line element

$$ds^2 = e^{-2A(y)}\eta_{\mu\nu}dx^\mu dx^
u + dy^2$$

$$\lim_{z\to\infty}y(z)\equiv y_s=\frac{1}{k\nu}\Gamma(0,\tfrac{2}{3}(\mu z_0)^{\nu})$$

Pirsa: 10050014 Page 899/136

vitch to y

$$y(z) = \frac{1}{k\nu} \left[\Gamma(0, \frac{2}{3}(\mu z_0)^{\nu}) - \Gamma(0, \frac{2}{3}(\mu z)^{\nu}) \right]$$

w line element

$$ds^2 = e^{-2A(y)}\eta_{\mu\nu}dx^\mu dx^
u + dy^2$$

$$\lim_{z\to\infty}y(z)\equiv y_s=\frac{1}{k\nu}\Gamma(0,\tfrac{2}{3}(\mu z_0)^{\nu})$$

Pirsa: 10050014 Page 900/136

vitch to y

$$y(z) = \frac{1}{k\nu} \left[\Gamma(0, \frac{2}{3}(\mu z_0)^{\nu}) - \Gamma(0, \frac{2}{3}(\mu z)^{\nu}) \right]$$

w line element

$$ds^2 = e^{-2A(y)}\eta_{\mu\nu}dx^\mu dx^
u + dy^2$$

$$\lim_{z\to\infty}y(z)\equiv y_s=\frac{1}{k\nu}\Gamma(0,\tfrac{2}{3}(\mu z_0)^{\nu})$$

Pirsa: 10050014 Page 901/136

vitch to y

$$y(z) = \frac{1}{k\nu} \left[\Gamma(0, \frac{2}{3}(\mu z_0)^{\nu}) - \Gamma(0, \frac{2}{3}(\mu z)^{\nu}) \right]$$

w line element

$$ds^2 = e^{-2A(y)}\eta_{\mu\nu}dx^\mu dx^
u + dy^2$$

$$\lim_{Z\to\infty}y(Z)\equiv y_s=\frac{1}{k\nu}\Gamma(0,\tfrac{2}{3}(\mu Z_0)^{\nu})$$

Pirsa: 10050014 Page 902/136

vitch to y

$$y(z) = \frac{1}{k\nu} \Big[\Gamma(0, \frac{2}{3}(\mu z_0)^{\nu}) - \Gamma(0, \frac{2}{3}(\mu z)^{\nu}) \Big]$$

w line element

$$ds^2 = e^{-2A(y)}\eta_{\mu\nu}dx^\mu dx^
u + dy^2$$

$$\lim_{Z\to\infty}y(z)\equiv y_s=\frac{1}{k\nu}\Gamma(0,\tfrac{2}{3}(\mu z_0)^{\nu})$$

Pirsa: 10050014 Page 903/136

vitch to y

$$y(z) = \frac{1}{k\nu} \left[\Gamma(0, \frac{2}{3}(\mu z_0)^{\nu}) - \Gamma(0, \frac{2}{3}(\mu z)^{\nu}) \right]$$

w line element

$$ds^2 = e^{-2A(y)}\eta_{\mu\nu}dx^\mu dx^
u + dy^2$$

$$\lim_{z\to\infty}y(z)\equiv y_s=\frac{1}{k\nu}\Gamma(0,\tfrac{2}{3}(\mu z_0)^{\nu})$$

Pirsa: 10050014 Page 904/136

vitch to y

$$y(z) = \frac{1}{k\nu} \Big[\Gamma(0, \frac{2}{3}(\mu z_0)^{\nu}) - \Gamma(0, \frac{2}{3}(\mu z)^{\nu}) \Big]$$

w line element

$$ds^2 = e^{-2A(y)}\eta_{\mu\nu}dx^\mu dx^
u + dy^2$$

$$\lim_{Z\to\infty}y(z)\equiv y_s=\frac{1}{k\nu}\Gamma(0,\tfrac{2}{3}(\mu z_0)^{\nu})$$

Pirsa: 10050014 Page 905/13

vitch to y

$$y(z) = \frac{1}{k\nu} \left[\Gamma(0, \frac{2}{3}(\mu z_0)^{\nu}) - \Gamma(0, \frac{2}{3}(\mu z)^{\nu}) \right]$$

w line element

$$ds^2 = e^{-2A(y)}\eta_{\mu\nu}dx^\mu dx^
u + dy^2$$

$$\lim_{z\to\infty}y(z)\equiv y_s=\frac{1}{k\nu}\Gamma(0,\tfrac{2}{3}(\mu z_0)^{\nu})$$

Pirsa: 10050014 Page 906/136

vitch to y

$$y(z) = \frac{1}{k\nu} \Big[\Gamma(0, \frac{2}{3}(\mu z_0)^{\nu}) - \Gamma(0, \frac{2}{3}(\mu z)^{\nu}) \Big]$$

w line element

$$ds^2 = e^{-2A(y)}\eta_{\mu\nu}dx^\mu dx^
u + dy^2$$

$$\lim_{Z\to\infty}y(Z)\equiv y_s=\frac{1}{k\nu}\Gamma(0,\tfrac{2}{3}(\mu Z_0)^{\nu})$$

Pirsa: 10050014 Page 907/136

vitch to y

$$y(z) = \frac{1}{k\nu} \Big[\Gamma(0, \frac{2}{3}(\mu z_0)^{\nu}) - \Gamma(0, \frac{2}{3}(\mu z)^{\nu}) \Big]$$

w line element

$$ds^2 = e^{-2A(y)}\eta_{\mu\nu}dx^\mu dx^
u + dy^2$$

$$\lim_{z\to\infty}y(z)\equiv y_s=\frac{1}{k\nu}\Gamma(0,\tfrac{2}{3}(\mu z_0)^{\nu})$$

Pirsa: 10050014 Page 908/136

vitch to y

$$y(z) = \frac{1}{k\nu} \Big[\Gamma(0, \frac{2}{3}(\mu z_0)^{\nu}) - \Gamma(0, \frac{2}{3}(\mu z)^{\nu}) \Big]$$

w line element

$$ds^2 = e^{-2A(y)}\eta_{\mu\nu}dx^\mu dx^
u + dy^2$$

$$\lim_{z\to\infty}y(z)\equiv y_s=\frac{1}{k\nu}\Gamma(0,\tfrac{2}{3}(\mu z_0)^{\nu})$$

Pirsa: 10050014 Page 909/136

vitch to y

$$y(z) = \frac{1}{k\nu} \Big[\Gamma(0, \frac{2}{3}(\mu z_0)^{\nu}) - \Gamma(0, \frac{2}{3}(\mu z)^{\nu}) \Big]$$

w line element

$$ds^2 = e^{-2A(y)}\eta_{\mu\nu}dx^\mu dx^
u + dy^2$$

$$\lim_{Z\to\infty}y(z)\equiv y_s=\frac{1}{k\nu}\Gamma(0,\tfrac{2}{3}(\mu z_0)^{\nu})$$

Pirsa: 10050014 Page 910/136

vitch to y

$$y(z) = \frac{1}{k\nu} \Big[\Gamma(0, \frac{2}{3}(\mu z_0)^{\nu}) - \Gamma(0, \frac{2}{3}(\mu z)^{\nu}) \Big]$$

w line element

$$ds^2 = e^{-2A(y)}\eta_{\mu\nu}dx^\mu dx^\nu + dy^2$$

$$\lim_{z \to \infty} y(z) \equiv y_s = \frac{1}{k\nu} \Gamma(0, \frac{2}{3}(\mu z_0)^{\nu})$$
 Finite

Pirsa: 10050014 Page 911/136

vitch to y

$$y(z) = \frac{1}{k\nu} \Big[\Gamma(0, \frac{2}{3}(\mu z_0)^{\nu}) - \Gamma(0, \frac{2}{3}(\mu z)^{\nu}) \Big]$$

w line element

$$ds^2 = e^{-2A(y)}\eta_{\mu\nu}dx^\mu dx^
u + dy^2$$

$$\lim_{z \to \infty} y(z) \equiv y_s + \frac{1}{k\nu} \Gamma(0, \frac{2}{3}(\mu z_0)^{\nu})$$
 Finite

Pirsa: 10050014 Page 912/1362

vitch to y

$$y(z) = \frac{1}{k\nu} \left[\Gamma(0, \frac{2}{3}(\mu z_0)^{\nu}) - \Gamma(0, \frac{2}{3}(\mu z)^{\nu}) \right]$$

w line element

$$ds^2 = e^{-2A(y)}\eta_{\mu\nu}dx^\mu dx^
u + dy^2$$

$$\lim_{z\to\infty}y(z)\equiv y_s = \frac{1}{k\nu}\Gamma(0,\frac{2}{3}(\mu z_0)^{\nu})$$
 Finite

Pirsa: 10050014 Page 913/136

vitch to y

$$y(z) = \frac{1}{k\nu} \left[\Gamma(0, \frac{2}{3}(\mu z_0)^{\nu}) - \Gamma(0, \frac{2}{3}(\mu z)^{\nu}) \right]$$

w line element

$$ds^2 = e^{-2A(y)} \eta_{\mu\nu} dx^{\mu} dx^{\nu} + dy^2$$

$$\lim_{z\to\infty}y(z)\equiv y_s \pm \frac{1}{k\nu}\Gamma\big(0,\tfrac{2}{3}(\mu z_0)^\nu\big)$$
 Finite

Pirsa: 10050014

vitch to y

$$y(z) = \frac{1}{k\nu} \Big[\Gamma(0, \frac{2}{3}(\mu z_0)^{\nu}) - \Gamma(0, \frac{2}{3}(\mu z)^{\nu}) \Big]$$

w line element

$$ds^2 = e^{-2A(y)} \eta_{\mu\nu} dx^{\mu} dx^{\nu} + dy^2$$

$$\lim_{z \to \infty} y(z) \equiv y_s + \frac{1}{k\nu} \Gamma(0, \frac{2}{3} (\mu z_0)^{\nu})$$
 Finite

Pirsa: 10050014

vitch to y

$$y(z) = \frac{1}{k\nu} \Big[\Gamma(0, \frac{2}{3}(\mu z_0)^{\nu}) - \Gamma(0, \frac{2}{3}(\mu z)^{\nu}) \Big]$$

w line element

$$ds^2 = e^{-2A(y)}\eta_{\mu\nu}dx^{\mu}dx^{\nu} + dy^2$$

$$\lim_{z \to \infty} y(z) \equiv y_s + \frac{1}{k\nu} \Gamma(0, \frac{2}{3}(\mu z_0)^{\nu})$$
 Finite

Pirsa: 10050014

vitch to y

$$y(z) = \frac{1}{k\nu} \Big[\Gamma(0, \frac{2}{3}(\mu z_0)^{\nu}) - \Gamma(0, \frac{2}{3}(\mu z)^{\nu}) \Big]$$

w line element

$$ds^2 = e^{-2A(y)} \eta_{\mu\nu} dx^{\mu} dx^{\nu} + dy^2$$

$$\lim_{z\to\infty}y(z)\equiv y_s \mp \frac{1}{k\nu}\Gamma(0,\tfrac{2}{3}(\mu z_0)^{\nu})$$
 Finite

Pirsa: 10050014 Page 917/136

vitch to y

$$y(z) = \frac{1}{k\nu} \left[\Gamma(0, \frac{2}{3}(\mu z_0)^{\nu}) - \Gamma(0, \frac{2}{3}(\mu z)^{\nu}) \right]$$

w line element

$$ds^2 = e^{-2A(y)}\eta_{\mu\nu}dx^\mu dx^
u + dy^2$$

$$\lim_{z\to\infty}y(z)\equiv y_s = \frac{1}{k\nu}\Gamma(0,\frac{2}{3}(\mu z_0)^{\nu})$$

Pirsa: 10050014

Finite

vitch to y

$$y(z) = \frac{1}{k\nu} \Big[\Gamma(0, \frac{2}{3}(\mu z_0)^{\nu}) - \Gamma(0, \frac{2}{3}(\mu z)^{\nu}) \Big]$$

w line element

$$ds^2 = e^{-2A(y)}\eta_{\mu\nu}dx^\mu dx^
u + dy^2$$

$$\lim_{z\to\infty}y(z)\equiv y_s \mp \frac{1}{k\nu}\Gamma\big(0,\tfrac{2}{3}(\mu z_0)^\nu\big)$$
 Finite

Pirsa: 10050014 Page 919/13

Singularity implies boundary

Pirsa: 10050014 Page 920/1362

Singularity implies boundary

Pirsa: 10050014 Page 921/1362

- Singularity implies boundary
- Boundary implies boundary terms

Pirsa: 10050014 Page 922/1362

- Singularity implies boundary
- Boundary implies boundary terms

Pirsa: 10050014 Page 923/1362

- Singularity implies boundary
- Boundary implies boundary terms
- Boundary terms mean equations of motion may change

Pirsa: 10050014 Page 924/1362

- Singularity implies boundary
- Boundary implies boundary terms
- Boundary terms mean equations of motion may change

Pirsa: 10050014 Page 925/1362

- Singularity implies boundary
- Boundary implies boundary terms
- Boundary terms mean equations of motion may change

Pirsa: 10050014 Page 926/136

- Singularity implies boundary
- Boundary implies boundary terms
- Boundary terms mean equations of motion may change

Pirsa: 10050014 Page 927/1362

- Singularity implies boundary
- Boundary implies boundary terms
- Boundary terms mean equations of motion may change
- Need to ensure boundary terms vanish
 - Non-vanishing implies non-zero 4D cosmological constant
 - 4D cosmological constant means no flat spacetime

Pirsa: 10050014 Page 928/136

- Singularity implies boundary
- Boundary implies boundary terms
- Boundary terms mean equations of motion may change
- Need to ensure boundary terms vanish
 - Non-vanishing implies non-zero 4D cosmological constant
 - 4D cosmological constant means no flat spacetime

Pirsa: 10050014 Page 929/13

- Singularity implies boundary
- Boundary implies boundary terms
- Boundary terms mean equations of motion may change
- Need to ensure boundary terms vanish
 - Non-vanishing implies non-zero 4D cosmological constant
 - 4D cosmological constant means no flat spacetime

Pirsa: 10050014 Page 930/13

- Singularity implies boundary
- Boundary implies boundary terms
- Boundary terms mean equations of motion may change
- Need to ensure boundary terms vanish
 - Non-vanishing implies non-zero 4D cosmological constant
 - 4D cosmological constant means no flat spacetime

Pirsa: 10050014 Page 931/13

- Singularity implies boundary
- Boundary implies boundary terms
- Boundary terms mean equations of motion may change
- Need to ensure boundary terms vanish
 - Non-vanishing implies non-zero 4D cosmological constant
 - 4D cosmological constant means no flat spacetime

Pirsa: 10050014 Page 932/136

- Singularity implies boundary
- Boundary implies boundary terms
- Boundary terms mean equations of motion may change
- Need to ensure boundary terms vanish
 - Non-vanishing implies non-zero 4D cosmological constant
 - 4D cosmological constant means no flat spacetime

Pirsa: 10050014 Page 933/13

- Singularity implies boundary
- Boundary implies boundary terms
- Boundary terms mean equations of motion may change
- Need to ensure boundary terms vanish
 - Non-vanishing implies non-zero 4D cosmological constant
 - 4D cosmological constant means no flat spacetime

Pirsa: 10050014 Page 934/136

- Singularity implies boundary
- Boundary implies boundary terms
- Boundary terms mean equations of motion may change
- Need to ensure boundary terms vanish
 - Non-vanishing implies non-zero 4D cosmological constant
 - 4D cosmological constant means no flat spacetime

Pirsa: 10050014 Page 935/13

- Singularity implies boundary
- Boundary implies boundary terms
- Boundary terms mean equations of motion may change
- Need to ensure boundary terms vanish
 - Non-vanishing implies non-zero 4D cosmological constant
 - 4D cosmological constant means no flat spacetime

Pirsa: 10050014 Page 936/136

- Singularity implies boundary
- Boundary implies boundary terms
- Boundary terms mean equations of motion may change
- Need to ensure boundary terms vanish
 - Non-vanishing implies non-zero 4D cosmological constant
 - 4D cosmological constant means no flat spacetime

Pirsa: 10050014 Page 937/1362

- Singularity implies boundary
- Boundary implies boundary terms
- Boundary terms mean equations of motion may change
- Need to ensure boundary terms vanish
 - Non-vanishing implies non-zero 4D cosmological constant
 - 4D cosmological constant means no flat spacetime

Pirsa: 10050014 Page 938/13

- Singularity implies boundary
- Boundary implies boundary terms
- Boundary terms mean equations of motion may change
- Need to ensure boundary terms vanish
 - Non-vanishing implies non-zero 4D cosmological constant
 - 4D cosmological constant means no flat spacetime

Pirsa: 10050014 Page 939/13

- Singularity implies boundary
- Boundary implies boundary terms
- Boundary terms mean equations of motion may change
- Need to ensure boundary terms vanish
 - Non-vanishing implies non-zero 4D cosmological constant
 - 4D cosmological constant means no flat spacetime

Pirsa: 10050014 Page 940/13

If-consistency condition [Cabrer et al.]

superpotential grows asymptotically slower than $e^{2\eta/\sqrt{3}}$

symptotic form for superpotential:

$$W \sim \frac{1}{2\sqrt{3}} k \nu \eta e^{\eta/\sqrt{3}}$$

If-consistency condition [Cabrer et al.]

superpotential grows asymptotically slower than $e^{2\eta/\sqrt{3}}$

symptotic form for superpotential:

$$W \sim \frac{1}{2\sqrt{3}} k \nu \eta e^{\eta/\sqrt{3}}$$

If-consistency condition [Cabrer et al.]

superpotential grows asymptotically slower than $e^{2\eta/\sqrt{3}}$

symptotic form for superpotential:

$$W \sim \frac{1}{2\sqrt{3}} k \nu \eta e^{\eta/\sqrt{3}}$$

If-consistency condition [Cabrer et al.]

superpotential grows asymptotically slower than $e^{2\eta/\sqrt{3}}$

symptotic form for superpotential:

$$W \sim \frac{1}{2\sqrt{3}} k \nu \eta e^{\eta/\sqrt{3}}$$

If-consistency condition [Cabrer et al.]

superpotential grows asymptotically slower than $e^{2\eta/\sqrt{3}}$

symptotic form for superpotential:

$$W \sim \frac{1}{2\sqrt{3}} k \nu \eta e^{\eta/\sqrt{3}}$$

If-consistency condition [Cabrer et al.]

superpotential grows asymptotically slower than $e^{2\eta/\sqrt{3}}$

symptotic form for superpotential:

$$W \sim \frac{1}{2\sqrt{3}} k \nu \eta e^{\eta/\sqrt{3}}$$

If-consistency condition [Cabrer et al.]

superpotential grows asymptotically slower than $e^{2\eta/\sqrt{3}}$

symptotic form for superpotential:

$$W \sim \frac{1}{2\sqrt{3}} k \nu \eta e^{\eta/\sqrt{3}}$$

If-consistency condition [Cabrer et al.]

superpotential grows asymptotically slower than $e^{2\eta/\sqrt{3}}$

symptotic form for superpotential:

$$W \sim \frac{1}{2\sqrt{3}} k \nu \eta e^{\eta/\sqrt{3}}$$

If-consistency condition [Cabrer et al.]

superpotential grows asymptotically slower than $e^{2\eta/\sqrt{3}}$

symptotic form for superpotential:

$$W \sim \frac{1}{2\sqrt{3}} k \nu \eta e^{\eta/\sqrt{3}}$$

elf-consistency condition [Cabrer et al.]

superpotential grows asymptotically slower than $e^{2\eta/\sqrt{3}}$

symptotic form for superpotential:

$$W \sim \frac{1}{2\sqrt{3}} k \nu \eta e^{\eta/\sqrt{3}}$$

If-consistency condition [Cabrer et al.]

superpotential grows asymptotically slower than $e^{2\eta/\sqrt{3}}$

symptotic form for superpotential:

$$W \sim \frac{1}{2\sqrt{3}} k \nu \eta e^{\eta/\sqrt{3}}$$

If-consistency condition [Cabrer et al.]

superpotential grows asymptotically slower than $e^{2\eta/\sqrt{3}}$

symptotic form for superpotential:

$$W \sim \frac{1}{2\sqrt{3}} k \nu \eta e^{\eta/\sqrt{3}}$$

If-consistency condition [Cabrer et al.]

superpotential grows asymptotically slower than $e^{2\eta/\sqrt{3}}$

symptotic form for superpotential:

$$W \sim \frac{1}{2\sqrt{3}} k \nu \eta e^{\eta/\sqrt{3}}$$

If-consistency condition [Cabrer et al.]

superpotential grows asymptotically slower than $e^{2\eta/\sqrt{3}}$

symptotic form for superpotential:

$$W \sim \frac{1}{2\sqrt{3}} k \nu \eta e^{\eta/\sqrt{3}}$$

If-consistency condition [Cabrer et al.]

superpotential grows asymptotically slower than $e^{2\eta/\sqrt{3}}$

symptotic form for superpotential:

$$W \sim \frac{1}{2\sqrt{3}} k \nu \eta e^{\eta/\sqrt{3}}$$

If-consistency condition [Cabrer et al.]

superpotential grows asymptotically slower than $e^{2\eta/\sqrt{3}}$

symptotic form for superpotential:

$$W \sim \frac{1}{2\sqrt{3}} k \nu \eta e^{\eta/\sqrt{3}}$$

If-consistency condition [Cabrer et al.]

superpotential grows asymptotically slower than $e^{2\eta/\sqrt{3}}$

symptotic form for superpotential:

$$W \sim \frac{1}{2\sqrt{3}} k \nu \eta e^{\eta/\sqrt{3}}$$

Pirsa: 10050014 Page 957/13

If-consistency condition [Cabrer et al.]

superpotential grows asymptotically slower than $e^{2\eta/\sqrt{3}}$

symptotic form for superpotential:

$$W \sim \frac{1}{2\sqrt{3}} k \nu \eta e^{\eta/\sqrt{3}}$$

If-consistency condition [Cabrer et al.]

superpotential grows asymptotically slower than $e^{2\eta/\sqrt{3}}$

symptotic form for superpotential:

$$W \sim \frac{1}{2\sqrt{3}} k \nu \eta e^{\eta/\sqrt{3}}$$

If-consistency condition [Cabrer et al.]

superpotential grows asymptotically slower than $e^{2\eta/\sqrt{3}}$

symptotic form for superpotential:

$$W \sim \frac{1}{2\sqrt{3}} k \nu \eta e^{\eta/\sqrt{3}}$$

If-consistency condition [Cabrer et al.]

superpotential grows asymptotically slow $1 e^{2\eta/\sqrt{3}}$

symptotic for for superpotential:

$$w_{2\sqrt{3}}k\nu\eta e^{\eta/\sqrt{3}}$$

If-consistency condition [Cabrer et al.]

superpotential grows asymptotically slow $11 e^{2\eta/\sqrt{3}}$

symptotic for for superpotential:

$$w = \frac{1}{2\sqrt{3}} k \nu \eta e^{\eta/\sqrt{3}}$$

If-consistency condition [Cabrer et al.]

superpotential grows asymptotically slow $1 e^{2\eta/\sqrt{3}}$

symptotic for for superpotential:

$$w_{2\sqrt{3}}k\nu\eta e^{\eta/\sqrt{3}}$$

utline

Achieving the Hierarchy

utline

Achieving the Hierarchy

utline

Achieving the Hierarchy

utline

Achieving the Hierarchy

utline

Achieving the Hierarchy

utline

Achieving the Hierarchy

utline

Achieving the Hierarchy

utline

Achieving the Hierarchy

utline

Achieving the Hierarchy

utline

Achieving the Hierarchy

utline

Achieving the Hierarchy

utline

Achieving the Hierarchy

utline

Achieving the Hierarchy

utline

Achieving the Hierarchy

utline

Achieving the Hierarchy

utline

Achieving the Hierarchy

• Need to achieve $\mu/k \sim 10^{-16}$

- Need to achieve $\mu/k \sim 10^{-16}$
- What sets μ/k ?
- Consider:
 - \bullet μ sets scale where scalar back-reaction strong
 - Must fix field at one location
 - Boundary condition on UV brane fixes field

Dogwood & Potestiller

Boundaly conditions require --- =

- Need to achieve $\mu/k \sim 10^{-16}$
- What sets μ/k ?
- Consider:
 - \bullet μ sets scale where scalar back-reaction strong
 - Must fix field at one location
 - Boundary condition on UV brane fixes field

poundary potential

nden on diliente veni de

- Need to achieve $\mu/k \sim 10^{-16}$
- What sets μ/k ?
- Consider:
 - \bullet μ sets scale where scalar back-reaction strong
 - Must fix field at one location
 - Boundary condition on UV brane fixes field

Boundary potential

 $u_{uv} = W_{t+e}[-w \dot{W}_{t+e}]_{uv} - u_{e}[-w \dot{W}_{t+$

Boundary conditions require m = 1/2

- Need to achieve $\mu/k \sim 10^{-16}$
- What sets μ/k?
- Consider:
 - \bullet μ sets scale where scalar back-reaction strong
 - Must fix field at one location
 - Boundary condition on UV brane fixes field

Boundary potential

 $\mathbf{u}_{\mathbf{v}} = \mathbf{W}_{\mathbf{v},\mathbf{v}} = \mathbf{W}_{\mathbf{v},\mathbf{v}}$

Boundary conditions require - - -

- Need to achieve $\mu/k \sim 10^{-16}$
- What sets μ/k?
- Consider:
 - μ sets scale where scalar back-reaction strong
 - Must fix field at one location
 - Boundary condition on UV brane fixes field

Boundary potential

- Need to achieve $\mu/k \sim 10^{-16}$
- What sets μ/k ?
- Consider:
 - \bullet μ sets scale where scalar back-reaction strong
 - Must fix field at one location
 - Boundary condition on UV brane fixes field

Boundary potential

- Need to achieve $\mu/k \sim 10^{-16}$
- What sets μ/k ?
- Consider:
 - \bullet μ sets scale where scalar back-reaction strong
 - Must fix field at one location
 - Boundary condition on UV brane fixes field

Boundary potentia

Boundary conditions require in = 115

- Need to achieve $\mu/k \sim 10^{-16}$
- What sets μ/k ?
- Consider:
 - μ sets scale where scalar back-reaction strong
 - Must fix field at one location
 - Boundary condition on UV brane fixes field

Boundary potential

Boundary conditions require me = y -

- Need to achieve $\mu/k \sim 10^{-16}$
- What sets μ/k ?
- Consider:
 - μ sets scale where scalar back-reaction strong
 - Must fix field at one location
 - Boundary condition on UV brane fixes field

Boundary potential

Boundary conditions require =

- Need to achieve $\mu/k \sim 10^{-16}$
- What sets μ/k ?
- Consider:
 - μ sets scale where scalar back-reaction strong
 - Must fix field at one location
 - Boundary condition on UV brane fixes field

Boundary potential

Pirsa: 10050014 Page 993/136

- Need to achieve $\mu/k \sim 10^{-16}$
- What sets μ/k?
- Consider:
 - μ sets scale where scalar back-reaction strong
 - Must fix field at one location
 - Boundary condition on UV brane fixes field
- Boundary potential:

$$\lambda_{\mathsf{UV}} = W(\eta_0) + \partial_{\eta} W(\eta_0)(\eta - \eta_0) + m_{\mathsf{UV}}(\eta - \eta_0)^2 + \cdots$$

- Need to achieve $\mu/k \sim 10^{-16}$
- What sets μ/k?
- Consider:
 - μ sets scale where scalar back-reaction strong
 - Must fix field at one location
 - Boundary condition on UV brane fixes field
- Boundary potential:

$$\lambda_{\mathsf{UV}} = W(\eta_0) + \partial_{\eta} W(\eta_0)(\eta - \eta_0) + m_{\mathsf{UV}}(\eta - \eta_0)^2 + \cdots$$

- Need to achieve $\mu/k \sim 10^{-16}$
- What sets μ/k?
- Consider:
 - μ sets scale where scalar back-reaction strong
 - Must fix field at one location
 - Boundary condition on UV brane fixes field
- Boundary potential:

$$\lambda_{\mathsf{UV}} = W(\eta_0) + \partial_{\eta} W(\eta_0)(\eta - \eta_0) + m_{\mathsf{UV}}(\eta - \eta_0)^2 + \cdots$$

- Need to achieve $\mu/k \sim 10^{-16}$
- What sets μ/k?
- Consider:
 - μ sets scale where scalar back-reaction strong
 - Must fix field at one location
 - Boundary condition on UV brane fixes field
- Boundary potential:

$$\lambda_{\mathsf{UV}} = W(\eta_0) + \partial_{\eta} W(\eta_0)(\eta - \eta_0) + m_{\mathsf{UV}}(\eta - \eta_0)^2 + \cdots$$

- Need to achieve $\mu/k \sim 10^{-16}$
- What sets μ/k?
- Consider:
 - μ sets scale where scalar back-reaction strong
 - Must fix field at one location
 - Boundary condition on UV brane fixes field
- Boundary potential:

$$\lambda_{\mathsf{UV}} = W(\eta_0) + \partial_{\eta} W(\eta_0)(\eta - \eta_0) + m_{\mathsf{UV}}(\eta - \eta_0)^2 + \cdots$$

- Need to achieve $\mu/k \sim 10^{-16}$
- What sets μ/k?
- Consider:
 - μ sets scale where scalar back-reaction strong
 - Must fix field at one location
 - Boundary condition on UV brane fixes field
- Boundary potential:

$$\lambda_{\mathsf{UV}} = W(\eta_0) + \partial_{\eta} W(\eta_0)(\eta - \eta_0) + m_{\mathsf{UV}}(\eta - \eta_0)^2 + \cdots$$

- Need to achieve $\mu/k \sim 10^{-16}$
- What sets μ/k?
- Consider:
 - μ sets scale where scalar back-reaction strong
 - Must fix field at one location
 - Boundary condition on UV brane fixes field
- Boundary potential:

$$\lambda_{\mathsf{UV}} = W(\eta_0) + \partial_{\eta} W(\eta_0)(\eta - \eta_0) + m_{\mathsf{UV}}(\eta - \eta_0)^2 + \cdots$$

- Need to achieve $\mu/k \sim 10^{-16}$
- What sets μ/k?
- Consider:
 - μ sets scale where scalar back-reaction strong
 - Must fix field at one location
 - Boundary condition on UV brane fixes field
- Boundary potential:

$$\lambda_{\mathsf{UV}} = W(\eta_0) + \partial_{\eta} W(\eta_0)(\eta - \eta_0) + m_{\mathsf{UV}}(\eta - \eta_0)^2 + \cdots$$

- Need to achieve $\mu/k \sim 10^{-16}$
- What sets μ/k?
- Consider:
 - μ sets scale where scalar back-reaction strong
 - Must fix field at one location
 - Boundary condition on UV brane fixes field
- Boundary potential:

$$\lambda_{\mathsf{UV}} = W(\eta_0) + \partial_{\eta} W(\eta_0)(\eta - \eta_0) + m_{\mathsf{UV}}(\eta - \eta_0)^2 + \cdots$$

- Need to achieve $\mu/k \sim 10^{-16}$
- What sets μ/k?
- Consider:
 - μ sets scale where scalar back-reaction strong
 - Must fix field at one location
 - Boundary condition on UV brane fixes field
- Boundary potential:

$$\lambda_{\mathsf{UV}} = W(\eta_0) + \partial_{\eta} W(\eta_0)(\eta - \eta_0) + m_{\mathsf{UV}}(\eta - \eta_0)^2 + \cdots$$

- Need to achieve $\mu/k \sim 10^{-16}$
- What sets μ/k?
- Consider:
 - μ sets scale where scalar back-reaction strong
 - Must fix field at one location
 - Boundary condition on UV brane fixes field
- Boundary potential:

$$\lambda_{\mathsf{UV}} = W(\eta_0) + \partial_{\eta} W(\eta_0)(\eta - \eta_0) + m_{\mathsf{UV}}(\eta - \eta_0)^2 + \cdots$$

Pirsa: 10050014 Page 1004/1362

- Need to achieve $\mu/k \sim 10^{-16}$
- What sets μ/k?
- Consider:

- μ sets scale where scalar back-reaction strong
- Must fix field at one location
- Boundary condition on UV brane fixes field
- Boundary potential:

$$\lambda_{\mathsf{UV}} = W(\eta_0) + \partial_{\eta} W(\eta_0)(\eta - \eta_0) + m_{\mathsf{UV}}(\eta - \eta_0)^2 + \cdots$$

- Need to achieve $\mu/k \sim 10^{-16}$
- What sets μ/k?
- Consider:
 - μ sets scale where scalar back-reaction strong
 - Must fix field at one location
 - Boundary condition on UV brane fixes field
- Boundary potential:

$$\lambda_{\mathsf{UV}} = W(\eta_0) + \partial_{\eta} W(\eta_0)(\eta - \eta_0) + m_{\mathsf{UV}}(\eta - \eta_0)^2 + \cdots$$

Pirsa: 10050014 Page 1006/1362

- Need to achieve $\mu/k \sim 10^{-16}$
- What sets μ/k?
- Consider:
 - μ sets scale where scalar back-reaction strong
 - Must fix field at one location
 - Boundary condition on UV brane fixes field
- Boundary potential:

$$\lambda_{\mathsf{UV}} = W(\eta_0) + \partial_{\eta} W(\eta_0)(\eta - \eta_0) + m_{\mathsf{UV}}(\eta - \eta_0)^2 + \cdots$$

• Boundary conditions require $\eta_0 = \langle \eta \rangle_0$

- Need to achieve $\mu/k \sim 10^{-16}$
- What sets μ/k?
- Consider:
 - μ sets scale where scalar back-reaction strong
 - Must fix field at one location
 - Boundary condition on UV brane fixes field
- Boundary potential:

$$\lambda_{\mathsf{UV}} = W(\eta_0) + \partial_{\eta} W(\eta_0)(\eta - \eta_0) + m_{\mathsf{UV}}(\eta - \eta_0)^2 + \cdots$$

• Boundary conditions require $\eta_0 = \langle \eta \rangle_0$

- Need to achieve $\mu/k \sim 10^{-16}$
- What sets μ/k?
- Consider:
 - μ sets scale where scalar back-reaction strong
 - Must fix field at one location
 - Boundary condition on UV brane fixes field
- Boundary potential:

$$\lambda_{\mathsf{UV}} = W(\eta_0) + \partial_{\eta} W(\eta_0)(\eta - \eta_0) + m_{\mathsf{UV}}(\eta - \eta_0)^2 + \cdots$$

• Boundary conditions require $\eta_0 = \langle \eta \rangle_0$

- Need to achieve $\mu/k \sim 10^{-16}$
- What sets μ/k?
- Consider:
 - μ sets scale where scalar back-reaction strong
 - Must fix field at one location
 - Boundary condition on UV brane fixes field
- Boundary potential:

$$\lambda_{\mathsf{UV}} = W(\eta_0) + \partial_{\eta} W(\eta_0)(\eta - \eta_0) + m_{\mathsf{UV}}(\eta - \eta_0)^2 + \cdots$$

• Boundary conditions require $\eta_0 = \langle \eta \rangle_0$

- Need to achieve $\mu/k \sim 10^{-16}$
- What sets μ/k?
- Consider:
 - μ sets scale where scalar back-reaction strong
 - Must fix field at one location
 - Boundary condition on UV brane fixes field
- Boundary potential:

$$\lambda_{\mathsf{UV}} = W(\eta_0) + \partial_{\eta} W(\eta_0)(\eta - \eta_0) + m_{\mathsf{UV}}(\eta - \eta_0)^2 + \cdots$$

• Boundary conditions require $\eta_0 = \langle \eta \rangle_0$

- Need to achieve $\mu/k \sim 10^{-16}$
- What sets μ/k?
- Consider:
 - μ sets scale where scalar back-reaction strong
 - Must fix field at one location
 - Boundary condition on UV brane fixes field
- Boundary potential:

$$\lambda_{\mathsf{UV}} = W(\eta_0) + \partial_{\eta} W(\eta_0)(\eta - \eta_0) + m_{\mathsf{UV}}(\eta - \eta_0)^2 + \cdots$$

• Boundary conditions require $\eta_0 = \langle \eta \rangle_0$

- Need to achieve $\mu/k \sim 10^{-16}$
- What sets μ/k?
- Consider:
 - μ sets scale where scalar back-reaction strong
 - Must fix field at one location
 - Boundary condition on UV brane fixes field
- Boundary potential:

$$\lambda_{\mathsf{UV}} = W(\eta_0) + \partial_{\eta} W(\eta_0)(\eta - \eta_0) + m_{\mathsf{UV}}(\eta - \eta_0)^2 + \cdots$$

• Boundary conditions require $\eta_0 = \langle \eta \rangle_0$

- Need to achieve $\mu/k \sim 10^{-16}$
- What sets μ/k?
- Consider:
 - μ sets scale where scalar back-reaction strong
 - Must fix field at one location
 - Boundary condition on UV brane fixes field
- Boundary potential:

$$\lambda_{\mathsf{UV}} = W(\eta_0) + \partial_{\eta} W(\eta_0)(\eta - \eta_0) + m_{\mathsf{UV}}(\eta - \eta_0)^2 + \cdots$$

• Boundary conditions require $\eta_0 = \langle \eta \rangle_0$

- Need to achieve $\mu/k \sim 10^{-16}$
- What sets μ/k?
- Consider:
 - μ sets scale where scalar back-reaction strong
 - Must fix field at one location
 - Boundary condition on UV brane fixes field
- Boundary potential:

$$\lambda_{\mathsf{UV}} = W(\eta_0) + \partial_{\eta} W(\eta_0)(\eta - \eta_0) + m_{\mathsf{UV}}(\eta - \eta_0)^2 + \cdots$$

• Boundary conditions require $\eta_0 = \langle \eta \rangle_0$

- Need to achieve $\mu/k \sim 10^{-16}$
- What sets μ/k?
- Consider:
 - μ sets scale where scalar back-reaction strong
 - Must fix field at one location
 - Boundary condition on UV brane fixes field
- Boundary potential:

$$\lambda_{\mathsf{UV}} = W(\eta_0) + \partial_{\eta} W(\eta_0)(\eta - \eta_0) + m_{\mathsf{UV}}(\eta - \eta_0)^2 + \cdots$$

• Boundary conditions require $\eta_0 = \langle \eta \rangle_0$

The value of the field at the UV brane is

$$\eta_0 = \pm \sqrt{3} \left(\frac{\nu+1}{\nu} \right) \left[\sqrt{\frac{2}{3}} \frac{\nu}{\nu+1} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu+1} \left(\frac{\mu}{k} \right)^{\nu} \right)^2 \right.$$
$$\left. + \sinh^{-1} \sqrt{\frac{2}{3}} \frac{\nu}{\nu+1} \left(\frac{\mu}{k} \right)^{\nu} \right]$$

The value of the field at the UV brane is

$$\begin{split} \eta_0 = \pm \sqrt{3} \bigg(\frac{\nu+1}{\nu} \bigg) \, \left[\sqrt{\frac{2}{3}} \frac{\nu}{\nu+1} \Big(\frac{\mu}{k} \Big)^{\nu} + \Big(\frac{2}{3} \frac{\nu}{\nu+1} \Big(\frac{\mu}{k} \Big)^{\nu} \Big)^2 \right. \\ \left. + \sinh^{-1} \sqrt{\frac{2}{3}} \frac{\nu}{\nu+1} \Big(\frac{\mu}{k} \Big)^{\nu} \right] \end{split}$$

HOLEGONY HIVE LEG.

The value of the field at the UV brane is

$$\eta_0 = \pm \sqrt{3} \left(\frac{\nu+1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu+1} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu+1} \left(\frac{\mu}{k} \right)^{\nu} \right)^2} \right.$$

$$\left. + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu+1} \left(\frac{\mu}{k} \right)^{\nu}} \right]$$

The value of the field at the UV brane is

$$\begin{split} \eta_0 = \pm \sqrt{3} \bigg(\frac{\nu+1}{\nu} \bigg) \, \left[\sqrt{\frac{2}{3}} \frac{\nu}{\nu+1} \Big(\frac{\mu}{k} \Big)^{\nu} + \Big(\frac{2}{3} \frac{\nu}{\nu+1} \Big(\frac{\mu}{k} \Big)^{\nu} \Big)^2 \right. \\ \left. + \sinh^{-1} \sqrt{\frac{2}{3}} \frac{\nu}{\nu+1} \Big(\frac{\mu}{k} \Big)^{\nu} \right] \end{split}$$

The value of the field at the UV brane is

$$\eta_0 = \pm \sqrt{3} \left(\frac{\nu+1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu+1}} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu+1} \left(\frac{\mu}{k} \right)^{\nu} \right)^2 \right.$$

$$\left. + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu+1}} \left(\frac{\mu}{k} \right)^{\nu} \right]$$

The value of the field at the UV brane is

$$\eta_0 = \pm \sqrt{3} \left(\frac{\nu+1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu+1}} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu+1} \left(\frac{\mu}{k} \right)^{\nu} \right)^2 \right.$$

$$\left. + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu+1}} \left(\frac{\mu}{k} \right)^{\nu} \right]$$

The value of the field at the UV brane is

$$\eta_0 = \pm \sqrt{3} \left(\frac{\nu+1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu+1} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu+1} \left(\frac{\mu}{k} \right)^{\nu} \right)^2} \right.$$

$$\left. + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu+1} \left(\frac{\mu}{k} \right)^{\nu}} \right]$$

The value of the field at the UV brane is

$$\eta_0 = \pm \sqrt{3} \left(\frac{\nu+1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu+1}} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu+1} \left(\frac{\mu}{k} \right)^{\nu} \right)^2 \right.$$
$$\left. + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu+1}} \left(\frac{\mu}{k} \right)^{\nu} \right]$$

Not easily inverted...

The value of the field at the UV brane is

$$\eta_0 = \pm \sqrt{3} \left(\frac{\nu+1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu+1} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu+1} \left(\frac{\mu}{k} \right)^{\nu} \right)^2} \right.$$

$$\left. + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu+1} \left(\frac{\mu}{k} \right)^{\nu}} \right]$$

Not easily inverted...

The value of the field at the UV brane is

$$\eta_{0} = \pm \sqrt{3} \left(\frac{\nu + 1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu + 1} \left(\frac{\mu}{k} \right)^{\nu} \right)^{2} + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} \left(\frac{\mu}{k} \right)^{\nu} \right]$$

Not easily inverted.

Pirsa: 10050014 Page 1026/136

The value of the field at the UV brane is

$$\eta_0 = \pm \sqrt{3} \left(\frac{\nu+1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu+1} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu+1} \left(\frac{\mu}{k} \right)^{\nu} \right)^2} \right.$$

$$\left. + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu+1} \left(\frac{\mu}{k} \right)^{\nu}} \right]$$

The value of the field at the UV brane is

$$\eta_0 = \pm \sqrt{3} \left(\frac{\nu+1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu+1} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu+1} \left(\frac{\mu}{k} \right)^{\nu} \right)^2} \right.$$

$$\left. + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu+1} \left(\frac{\mu}{k} \right)^{\nu}} \right]$$

Not easily inverted...

The value of the field at the UV brane is

$$\begin{split} \eta_0 = \pm \sqrt{3} \bigg(\frac{\nu+1}{\nu} \bigg) \, \left[\sqrt{\frac{2}{3}} \frac{\nu}{\nu+1} \Big(\frac{\mu}{k} \Big)^{\nu} + \Big(\frac{2}{3} \frac{\nu}{\nu+1} \Big(\frac{\mu}{k} \Big)^{\nu} \Big)^2 \right. \\ \left. + \sinh^{-1} \sqrt{\frac{2}{3}} \frac{\nu}{\nu+1} \Big(\frac{\mu}{k} \Big)^{\nu} \right] \end{split}$$

The value of the field at the UV brane is

$$\eta_0 = \pm \sqrt{3} \left(\frac{\nu+1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu+1}} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu+1} \left(\frac{\mu}{k} \right)^{\nu} \right)^2 \right.$$
$$\left. + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu+1}} \left(\frac{\mu}{k} \right)^{\nu} \right]$$

Not easily inverted...

The value of the field at the UV brane is

$$\begin{split} \eta_0 = \pm \sqrt{3} \bigg(\frac{\nu+1}{\nu} \bigg) \, \left[\sqrt{\frac{2}{3}} \frac{\nu}{\nu+1} \Big(\frac{\mu}{k} \Big)^{\nu} + \Big(\frac{2}{3} \frac{\nu}{\nu+1} \Big(\frac{\mu}{k} \Big)^{\nu} \Big)^2 \right. \\ \left. + \sinh^{-1} \sqrt{\frac{2}{3}} \frac{\nu}{\nu+1} \Big(\frac{\mu}{k} \Big)^{\nu} \right] \end{split}$$

The value of the field at the UV brane is

$$\eta_0 = \pm \sqrt{3} \left(\frac{\nu+1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu+1} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu+1} \left(\frac{\mu}{k} \right)^{\nu} \right)^2} \right.$$

$$\left. + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu+1} \left(\frac{\mu}{k} \right)^{\nu}} \right]$$

The value of the field at the UV brane is

$$\eta_{0} = \pm \sqrt{3} \left(\frac{\nu + 1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu + 1} \left(\frac{\mu}{k} \right)^{\nu} \right)^{2} + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} \left(\frac{\mu}{k} \right)^{\nu} \right]$$

The value of the field at the UV brane is

$$\eta_{0} = \pm \sqrt{3} \left(\frac{\nu + 1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu + 1} \left(\frac{\mu}{k} \right)^{\nu} \right)^{2} + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} \left(\frac{\mu}{k} \right)^{\nu} \right]$$

The value of the field at the UV brane is

$$\eta_0 = \pm \sqrt{3} \left(\frac{\nu+1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu+1} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu+1} \left(\frac{\mu}{k} \right)^{\nu} \right)^2} \right.$$

$$\left. + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu+1} \left(\frac{\mu}{k} \right)^{\nu}} \right]$$

The value of the field at the UV brane is

$$\eta_0 = \pm \sqrt{3} \left(\frac{\nu+1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu+1} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu+1} \left(\frac{\mu}{k} \right)^{\nu} \right)^2} \right.$$

$$\left. + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu+1} \left(\frac{\mu}{k} \right)^{\nu}} \right]$$

100 2000) 100 000

Pirsa: 10050014 Page 1036/136:

The value of the field at the UV brane is

$$\eta_{0} = \pm \sqrt{3} \left(\frac{\nu + 1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu + 1} \left(\frac{\mu}{k} \right)^{\nu} \right)^{2} + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} \left(\frac{\mu}{k} \right)^{\nu} \right]$$

Not easily inverted...

Pirsa: 10050014 Page 1037/136

The value of the field at the UV brane is

$$\eta_{0} = \pm \sqrt{3} \left(\frac{\nu + 1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu + 1} \left(\frac{\mu}{k} \right)^{\nu} \right)^{2} + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} \left(\frac{\mu}{k} \right)^{\nu} \right]$$

Not easily inverted...

The value of the field at the UV brane is

$$\eta_{0} = \pm \sqrt{3} \left(\frac{\nu + 1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu + 1} \left(\frac{\mu}{k} \right)^{\nu} \right)^{2} + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} \left(\frac{\mu}{k} \right)^{\nu} \right]$$

Not easily inverted...

The value of the field at the UV brane is

$$\eta_0 = \pm \sqrt{3} \left(\frac{\nu+1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu+1}} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu+1} \left(\frac{\mu}{k} \right)^{\nu} \right)^2 \right.$$

$$\left. + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu+1}} \left(\frac{\mu}{k} \right)^{\nu} \right]$$

Not easily inverted...

Pirsa: 10050014 Page 10

The value of the field at the UV brane is

$$\eta_{0} = \pm \sqrt{3} \left(\frac{\nu + 1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu + 1} \left(\frac{\mu}{k} \right)^{\nu} \right)^{2} + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} \left(\frac{\mu}{k} \right)^{\nu} \right]$$

Not easily inverted...

Pirsa: 10050014 Page 1073/136

The value of the field at the UV brane is

$$\eta_{0} = \pm \sqrt{3} \left(\frac{\nu + 1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu + 1} \left(\frac{\mu}{k} \right)^{\nu} \right)^{2} + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} \left(\frac{\mu}{k} \right)^{\nu} \right]$$

Not easily inverted...

The value of the field at the UV brane is

$$\eta_0 = \pm \sqrt{3} \left(\frac{\nu+1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu+1}} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu+1} \left(\frac{\mu}{k} \right)^{\nu} \right)^2 \right.$$

$$\left. + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu+1}} \left(\frac{\mu}{k} \right)^{\nu} \right]$$

Not easily inverted...

Pirsa: 10050014 Pag

The value of the field at the UV brane is

$$\eta_0 = \pm \sqrt{3} \left(\frac{\nu+1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu+1}} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu+1} \left(\frac{\mu}{k} \right)^{\nu} \right)^2 \right.$$

$$\left. + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu+1}} \left(\frac{\mu}{k} \right)^{\nu} \right]$$

Not easily inverted...

The value of the field at the UV brane is

$$\eta_{0} = \pm \sqrt{3} \left(\frac{\nu + 1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu + 1} \left(\frac{\mu}{k} \right)^{\nu} \right)^{2} + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} \left(\frac{\mu}{k} \right)^{\nu} \right]$$

Not easily inverted...

The value of the field at the UV brane is

$$\eta_0 = \pm \sqrt{3} \left(\frac{\nu+1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu+1}} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu+1} \left(\frac{\mu}{k} \right)^{\nu} \right)^2 \right.$$
$$\left. + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu+1}} \left(\frac{\mu}{k} \right)^{\nu} \right]$$

Not easily inverted...

Pirsa: 10050014 Page 1078/13

The value of the field at the UV brane is

$$\eta_0 = \pm \sqrt{3} \left(\frac{\nu+1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu+1}} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu+1} \left(\frac{\mu}{k} \right)^{\nu} \right)^2 \right.$$

$$\left. + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu+1}} \left(\frac{\mu}{k} \right)^{\nu} \right]$$

Not easily inverted...

Pirsa: 10050014 Page 1079/136

The value of the field at the UV brane is

$$\eta_{0} = \pm \sqrt{3} \left(\frac{\nu + 1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu + 1} \left(\frac{\mu}{k} \right)^{\nu} \right)^{2} + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} \left(\frac{\mu}{k} \right)^{\nu} \right]$$

Not easily inverted...

Pirsa: 10050014 Page 1080/13

The value of the field at the UV brane is

$$\eta_{0} = \pm \sqrt{3} \left(\frac{\nu + 1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu + 1} \left(\frac{\mu}{k} \right)^{\nu} \right)^{2} + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} \left(\frac{\mu}{k} \right)^{\nu} \right]$$

Not easily inverted...

Pirsa: 10050014 Page 1081/136

The value of the field at the UV brane is

$$\eta_0 = \pm \sqrt{3} \left(\frac{\nu+1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu+1}} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu+1} \left(\frac{\mu}{k} \right)^{\nu} \right)^2 \right.$$
$$\left. + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu+1}} \left(\frac{\mu}{k} \right)^{\nu} \right]$$

Not easily inverted...

Pirsa: 10050014 Page 1082/136

The value of the field at the UV brane is

$$\eta_{0} = \pm \sqrt{3} \left(\frac{\nu + 1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu + 1} \left(\frac{\mu}{k} \right)^{\nu} \right)^{2} + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} \left(\frac{\mu}{k} \right)^{\nu} \right]$$

Not easily inverted...

Pirsa: 10050014 Page 1083/13

The value of the field at the UV brane is

$$\eta_{0} = \pm \sqrt{3} \left(\frac{\nu + 1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu + 1} \left(\frac{\mu}{k} \right)^{\nu} \right)^{2} + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} \left(\frac{\mu}{k} \right)^{\nu} \right]$$

Not easily inverted...

The value of the field at the UV brane is

$$\eta_{0} = \pm \sqrt{3} \left(\frac{\nu + 1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu + 1} \left(\frac{\mu}{k} \right)^{\nu} \right)^{2} + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} \left(\frac{\mu}{k} \right)^{\nu} \right]$$

Not easily inverted...

The value of the field at the UV brane is

$$\eta_0 = \pm \sqrt{3} \left(\frac{\nu+1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu+1}} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu+1} \left(\frac{\mu}{k} \right)^{\nu} \right)^2 \right.$$

$$\left. + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu+1}} \left(\frac{\mu}{k} \right)^{\nu} \right]$$

Not easily inverted...

Pirsa: 10050014 Page 1086/136

The value of the field at the UV brane is

$$\eta_{0} = \pm \sqrt{3} \left(\frac{\nu + 1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu + 1} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu + 1} \left(\frac{\mu}{k} \right)^{\nu} \right)^{2}} + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu + 1} \left(\frac{\mu}{k} \right)^{\nu}} \right]$$

Not easily inverted...

Pirsa: 10050014 Page 1087/1

The value of the field at the UV brane is

$$\eta_{0} = \pm \sqrt{3} \left(\frac{\nu + 1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu + 1} \left(\frac{\mu}{k} \right)^{\nu} \right)^{2} + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} \left(\frac{\mu}{k} \right)^{\nu} \right]$$

Not easily inverted...

Pirsa: 10050014 Page 1088/136

The value of the field at the UV brane is

$$\eta_{0} = \pm \sqrt{3} \left(\frac{\nu + 1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu + 1} \left(\frac{\mu}{k} \right)^{\nu} \right)^{2} + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} \left(\frac{\mu}{k} \right)^{\nu} \right]$$

Not easily inverted...

Pirsa: 10050014 Page 1089/136

an also ask how sensitive $\langle \eta \rangle_0$ is to μ/k (and vice-versa).

% change in $\langle \eta \rangle_0$ for 1% change in weak scale

 $\sim 1/4$ 0.1% (fairly robust)

 $\leq \nu \leq$ 3 1% (robust)

>> 1 very sensitive to variation

course, ν has other consequences...

an also ask how sensitive $\langle \eta \rangle_0$ is to μ/k (and vice-versa).

% change in $\langle \eta \rangle_0$ for 1% change in weak scale

 $\sim 1/4$ 0.1% (fairly robust)

 $\leq \nu \leq$ 3 1% (robust)

>> 1 very sensitive to variation

course, ν has other consequences...

an also ask how sensitive $\langle \eta \rangle_0$ is to μ/k (and vice-versa).

% change in $\langle \eta \rangle_0$ for 1% change in weak scale

 $\sim 1/4$ 0.1% (fairly robust)

 $\leq \nu \leq$ 3 1% (robust)

>> 1 very sensitive to variation

course, ν has other consequences...

an also ask how sensitive $\langle \eta \rangle_0$ is to μ/k (and vice-versa).

% change in $\langle \eta \rangle_0$ for 1% change in weak scale

 $\sim 1/4$ 0.1% (fairly robust)

 $\leq \nu \leq$ 3 1% (robust)

>> 1 very sensitive to variation

course, ν has other consequences...

an also ask how sensitive $\langle \eta \rangle_0$ is to μ/k (and vice-versa).

% change in $\langle \eta \rangle_0$ for 1% change in weak scale

 $\sim 1/4$ 0.1% (fairly robust)

 $\leq \nu \leq$ 3 1% (robust)

>> 1 very sensitive to variation

course, ν has other consequences...

an also ask how sensitive $\langle \eta \rangle_0$ is to μ/k (and vice-versa).

% change in $\langle \eta \rangle_0$ for 1% change in weak scale

 $\sim 1/4$ 0.1% (fairly robust)

 $\leq \nu \leq$ 3 1% (robust)

yery sensitive to variation

course, ν has other consequences...

an also ask how sensitive $\langle \eta \rangle_0$ is to μ/k (and vice-versa).

% change in $\langle \eta \rangle_0$ for 1% change in weak scale

 $\sim 1/4$ 0.1% (fairly robust)

 $\leq \nu \leq$ 3 1% (robust)

>> 1 very sensitive to variation

course, ν has other consequences...

an also ask how sensitive $\langle \eta \rangle_0$ is to μ/k (and vice-versa).

% change in $\langle \eta \rangle_0$ for 1% change in weak scale

 $\sim 1/4$ 0.1% (fairly robust)

 $\leq \nu \leq$ 3 1% (robust)

>> 1 very sensitive to variation

course, ν has other consequences...

an also ask how sensitive $\langle \eta \rangle_0$ is to μ/k (and vice-versa).

% change in $\langle \eta \rangle_0$ for 1% change in weak scale

 $\sim 1/4$ 0.1% (fairly robust)

 $\leq \nu \leq$ 3 1% (robust)

>> 1 very sensitive to variation

course, ν has other consequences...

an also ask how sensitive $\langle \eta \rangle_0$ is to μ/k (and vice-versa).

% change in $\langle \eta \rangle_0$ for 1% change in weak scale

 $\sim 1/4$ 0.1% (fairly robust)

 $\leq \nu \leq$ 3 1% (robust)

>> 1 very sensitive to variation

course, ν has other consequences...

an also ask how sensitive $\langle \eta \rangle_0$ is to μ/k (and vice-versa).

% change in $\langle \eta \rangle_0$ for 1% change in weak scale

 $\sim 1/4$ 0.1% (fairly robust)

 $\leq \nu \leq$ 3 1% (robust)

> 1 very sensitive to variation

course, ν has other consequences...

an also ask how sensitive $\langle \eta \rangle_0$ is to μ/k (and vice-versa).

% change in $\langle \eta \rangle_0$ for 1% change in weak scale

 $\sim 1/4$ 0.1% (fairly robust)

 $\leq \nu \leq$ 3 1% (robust)

>> 1 very sensitive to variation

course, ν has other consequences...

an also ask how sensitive $\langle \eta \rangle_0$ is to μ/k (and vice-versa).

% change in $\langle \eta \rangle_0$ for 1% change in weak scale

 $\sim 1/4$ 0.1% (fairly robust)

 $\leq \nu \leq$ 3 1% (robust)

>> 1 very sensitive to variation

course, ν has other consequences...

an also ask how sensitive $\langle \eta \rangle_0$ is to μ/k (and vice-versa).

% change in $\langle \eta \rangle_0$ for 1% change in weak scale

 $\sim 1/4$ 0.1% (fairly robust)

 $\leq \nu \leq$ 3 1% (robust)

>> 1 very sensitive to variation

course, ν has other consequences...

an also ask how sensitive $\langle \eta \rangle_0$ is to μ/k (and vice-versa).

% change in $\langle \eta \rangle_0$ for 1% change in weak scale

 $\sim 1/4$ 0.1% (fairly robust)

 $\leq \nu \leq$ 3 1% (robust)

>> 1 very sensitive to variation

course, ν has other consequences...

an also ask how sensitive $\langle \eta \rangle_0$ is to μ/k (and vice-versa).

% change in $\langle \eta \rangle_0$ for 1% change in weak scale

 $\sim 1/4$ 0.1% (fairly robust)

 $\leq \nu \leq$ 3 1% (robust)

>> 1 very sensitive to variation

course, ν has other consequences...

an also ask how sensitive $\langle \eta \rangle_0$ is to μ/k (and vice-versa).

% change in $\langle \eta \rangle_0$ for 1% change in weak scale

 $\sim 1/4$ 0.1% (fairly robust)

 $\leq \nu \leq$ 3 1% (robust)

>> 1 very sensitive to variation

course, ν has other consequences...

an also ask how sensitive $\langle \eta \rangle_0$ is to μ/k (and vice-versa).

% change in $\langle \eta \rangle_0$ for 1% change in weak scale

 $\sim 1/4$ 0.1% (fairly robust)

 $\leq \nu \leq$ 3 1% (robust)

>> 1 very sensitive to variation

course, ν has other consequences...

an also ask how sensitive $\langle \eta \rangle_0$ is to μ/k (and vice-versa).

% change in $\langle \eta \rangle_0$ for 1% change in weak scale

 $\sim 1/4$ 0.1% (fairly robust)

 $\leq \nu \leq$ 3 1% (robust)

>> 1 very sensitive to variation

course, ν has other consequences...

an also ask how sensitive $\langle \eta \rangle_0$ is to μ/k (and vice-versa).

% change in $\langle \eta \rangle_0$ for 1% change in weak scale

 $\sim 1/4$ 0.1% (fairly robust)

 $\leq \nu \leq$ 3 1% (robust)

>> 1 very sensitive to variation

course, ν has other consequences...

an also ask how sensitive $\langle \eta \rangle_0$ is to μ/k (and vice-versa).

% change in $\langle \eta \rangle_0$ for 1% change in weak scale

 $\sim 1/4$ 0.1% (fairly robust)

 $\leq \nu \leq$ 3 1% (robust)

>> 1 very sensitive to variation

course, ν has other consequences...

ok at potential

$$V(\eta) = -12k^2 - k^2\nu \left(1 - \frac{\nu}{8}\right)\eta^2 + \cdots$$

ves η 's mass as

$$m_{\eta}^2 = -2k^2\nu\left(1 - \frac{\nu}{8}\right)$$

IS/CFT correspondence says operator dimension is

$$\Delta = 2 + \sqrt{4 + \frac{m_{\eta}^2}{k^2}} = 2 + \frac{1}{2}|4 - \nu|$$

ok at potential

$$V(\eta) = -12k^2 - k^2\nu\left(1 - \frac{\nu}{8}\right)\eta^2 + \cdots$$

ves η 's mass as

$$m_{\eta}^2 = -2k^2\nu \left(1 - \frac{\nu}{8}\right)$$

S/CFT correspondence says operator dimension is

$$\Delta = 2 + \sqrt{4 + \frac{m_{\eta}^2}{k^2}} = 2 + \frac{1}{2}|4 - \nu|$$

Pirsa: 10050014 Page 1112/13

ok at potential

$$V(\eta) = -12k^2 - k^2\nu\left(1 - \frac{\nu}{8}\right)\eta^2 + \cdots$$

ves η 's mass as

$$m_{\eta}^2 = -2k^2\nu \left(1 - \frac{\nu}{8}\right)$$

IS/CFT correspondence says operator dimension is

$$\Delta = 2 + \sqrt{4 + \frac{m_{\eta}^2}{k^2}} = 2 + \frac{1}{2}|4 - \nu|$$

Pirsa: 10050014 Page 1113/13

ok at potential

$$V(\eta) = -12k^2 - k^2\nu \left(1 - \frac{\nu}{8}\right)\eta^2 + \cdots$$

ves η 's mass as

$$m_{\eta}^2 = -2k^2\nu \left(1 - \frac{\nu}{8}\right)$$

IS/CFT correspondence says operator dimension is

$$\Delta = 2 + \sqrt{4 + \frac{m_{\eta}^2}{k^2}} = 2 + \frac{1}{2}|4 - \nu|$$

Pirsa: 10050014 Page 1114/13

ok at potential

$$V(\eta) = -12k^2 - k^2\nu\left(1 - \frac{\nu}{8}\right)\eta^2 + \cdots$$

ves η 's mass as

$$m_{\eta}^2 = -2k^2\nu \left(1 - \frac{\nu}{8}\right)$$

S/CFT correspondence says operator dimension is

$$\Delta = 2 + \sqrt{4 + \frac{m_{\eta}^2}{k^2}} = 2 + \frac{1}{2}|4 - \nu|$$

Pirsa: 10050014 Page 1115/13

ok at potential

$$V(\eta) = -12k^2 - k^2\nu\left(1 - \frac{\nu}{8}\right)\eta^2 + \cdots$$

ves η 's mass as

$$m_{\eta}^2 = -2k^2\nu \left(1 - \frac{\nu}{8}\right)$$

IS/CFT correspondence says operator dimension is

$$\Delta = 2 + \sqrt{4 + \frac{m_{\eta}^2}{k^2}} = 2 + \frac{1}{2}|4 - \nu|$$

ok at potential

$$V(\eta) = -12k^2 - k^2\nu\left(1 - \frac{\nu}{8}\right)\eta^2 + \cdots$$

ves η 's mass as

$$m_{\eta}^2 = -2k^2\nu \left(1 - \frac{\nu}{8}\right)$$

IS/CFT correspondence says operator dimension is

$$\Delta = 2 + \sqrt{4 + \frac{m_{\eta}^2}{k^2}} = 2 + \frac{1}{2}|4 - \nu|$$

Pirsa: 10050014 Page 1117/136

ok at potential

$$V(\eta) = -12k^2 - k^2\nu\left(1 - \frac{\nu}{8}\right)\eta^2 + \cdots$$

ves η 's mass as

$$m_{\eta}^2 = -2k^2\nu \left(1 - \frac{\nu}{8}\right)$$

S/CFT correspondence says operator dimension is

$$\Delta = 2 + \sqrt{4 + \frac{m_{\eta}^2}{k^2}} = 2 + \frac{1}{2}|4 - \nu|$$

ok at potential

$$V(\eta) = -12k^2 - k^2\nu\left(1 - \frac{\nu}{8}\right)\eta^2 + \cdots$$

ves η 's mass as

$$m_{\eta}^2 = -2k^2\nu \left(1 - \frac{\nu}{8}\right)$$

IS/CFT correspondence says operator dimension is

$$\Delta = 2 + \sqrt{4 + \frac{m_{\eta}^2}{k^2}} = 2 + \frac{1}{2}|4 - \nu|$$

ok at potential

$$V(\eta) = -12k^2 - k^2\nu\left(1 - \frac{\nu}{8}\right)\eta^2 + \cdots$$

ves η 's mass as

$$m_{\eta}^2 = -2k^2\nu \left(1 - \frac{\nu}{8}\right)$$

S/CFT correspondence says operator dimension is

$$\Delta = 2 + \sqrt{4 + \frac{m_{\eta}^2}{k^2}} = 2 + \frac{1}{2}|4 - \nu|$$

ok at potential

$$V(\eta) = -12k^2 - k^2\nu\left(1 - \frac{\nu}{8}\right)\eta^2 + \cdots$$

ves η 's mass as

$$m_{\eta}^2 = -2k^2\nu\left(1 - \frac{\nu}{8}\right)$$

S/CFT correspondence says operator dimension is

$$\Delta = 2 + \sqrt{4 + \frac{m_{\eta}^2}{k^2}} = 2 + \frac{1}{2}|4 - \nu|$$

ok at potential

$$V(\eta) = -12k^2 - k^2\nu\left(1 - \frac{\nu}{8}\right)\eta^2 + \cdots$$

ves η 's mass as

$$m_{\eta}^2 = -2k^2\nu \left(1 - \frac{\nu}{8}\right)$$

S/CFT correspondence says operator dimension is

$$\Delta = 2 + \sqrt{4 + \frac{m_{\eta}^2}{k^2}} = 2 + \frac{1}{2}|4 - \nu|$$

ok at potential

$$V(\eta) = -12k^2 - k^2\nu\left(1 - \frac{\nu}{8}\right)\eta^2 + \cdots$$

ves η 's mass as

$$m_{\eta}^2 = -2k^2\nu\left(1 - \frac{\nu}{8}\right)$$

IS/CFT correspondence says operator dimension is

$$\Delta = 2 + \sqrt{4 + \frac{m_{\eta}^2}{k^2}} = 2 + \frac{1}{2}|4 - \nu|$$

ok at potential

$$V(\eta) = -12k^2 - k^2\nu\left(1 - \frac{\nu}{8}\right)\eta^2 + \cdots$$

ves η 's mass as

$$m_{\eta}^2 = -2k^2\nu \left(1 - \frac{\nu}{8}\right)$$

IS/CFT correspondence says operator dimension is

$$\Delta = 2 + \sqrt{4 + \frac{m_{\eta}^2}{k^2}} = 2 + \frac{1}{2}|4 - \nu|$$

ok at potential

$$V(\eta) = -12k^2 - k^2\nu\left(1 - \frac{\nu}{8}\right)\eta^2 + \cdots$$

ves η 's mass as

$$m_{\eta}^2 = -2k^2\nu \left(1 - \frac{\nu}{8}\right)$$

IS/CFT correspondence says operator dimension is

$$\Delta = 2 + \sqrt{4 + \frac{m_{\eta}^2}{k^2}} = 2 + \frac{1}{2}|4 - \nu|$$

Pirsa: 10050014 Page 1125/13

ok at potential

$$V(\eta) = -12k^2 - k^2\nu\left(1 - \frac{\nu}{8}\right)\eta^2 + \cdots$$

ves η 's mass as

$$m_{\eta}^2 = -2k^2\nu \left(1 - \frac{\nu}{8}\right)$$

IS/CFT correspondence says operator dimension is

$$\Delta = 2 + \sqrt{4 + \frac{m_{\eta}^2}{k^2}} = 2 + \frac{1}{2}|4 - \nu|$$

ok at potential

$$V(\eta) = -12k^2 - k^2\nu \left(1 - \frac{\nu}{8}\right)\eta^2 + \cdots$$

ves η 's mass as

$$m_{\eta}^2 = -2k^2\nu \left(1 - \frac{\nu}{8}\right)$$

S/CFT correspondence says operator dimension is

$$\Delta = 2 + \sqrt{4 + \frac{m_{\eta}^2}{k^2}} = 2 + \frac{1}{2}|4 - \nu|$$

Pirsa: 10050014 Page 1127/13

ok at potential

$$V(\eta) = -12k^2 - k^2\nu\left(1 - \frac{\nu}{8}\right)\eta^2 + \cdots$$

ves η 's mass as

$$m_{\eta}^2 = -2k^2\nu \left(1 - \frac{\nu}{8}\right)$$

IS/CFT correspondence says operator dimension is

$$\Delta = 2 + \sqrt{4 + \frac{m_{\eta}^2}{k^2}} = 2 + \frac{1}{2}|4 - \nu|$$

ok at potential

$$V(\eta) = -12k^2 - k^2\nu\left(1 - \frac{\nu}{8}\right)\eta^2 + \cdots$$

ves η 's mass as

$$m_{\eta}^2 = -2k^2\nu\left(1 - \frac{\nu}{8}\right)$$

IS/CFT correspondence says operator dimension is

$$\Delta = 2 + \sqrt{4 + \frac{m_{\eta}^2}{k^2}} = 2 + \frac{1}{2}|4 - \nu|$$

ok at potential

$$V(\eta) = -12k^2 - k^2\nu\left(1 - \frac{\nu}{8}\right)\eta^2 + \cdots$$

ves η 's mass as

$$m_{\eta}^2 = -2k^2\nu \left(1 - \frac{\nu}{8}\right)$$

S/CFT correspondence says operator dimension is

$$\Delta = 2 + \sqrt{4 + \frac{m_{\eta}^2}{k^2}} = 2 + \frac{1}{2}|4 - \nu|$$

ok at potential

$$V(\eta) = -12k^2 - k^2\nu\left(1 - \frac{\nu}{8}\right)\eta^2 + \cdots$$

ves η 's mass as

$$m_{\eta}^2 = -2k^2\nu \left(1 - \frac{\nu}{8}\right)$$

IS/CFT correspondence says operator dimension is

$$\Delta = 2 + \sqrt{4 + \frac{m_{\eta}^2}{k^2}} = 2 + \frac{1}{2}|4 - \nu|$$

perator Dimension

e breakdown is

Hierarchy by Hand
$$\nu > 1$$

$$\nu > 1$$

$$\Delta > \frac{5}{2}$$

Improved Hierarchy
$$\nu \sim 1$$
 $\Delta \sim \frac{5}{2}$

$$\nu \sim 1$$

$$\Delta \sim \frac{5}{2}$$

Natural Hierarchy
$$0 < \nu < 1$$
 $2 < \Delta < \frac{5}{2}$

$$0 < \nu < 1$$

$$2 < \Delta < \frac{5}{2}$$

ok at potential

$$V(\eta) = -12k^2 - k^2\nu\left(1 - \frac{\nu}{8}\right)\eta^2 + \cdots$$

ves η 's mass as

$$m_{\eta}^2 = -2k^2\nu \left(1 - \frac{\nu}{8}\right)$$

S/CFT correspondence says operator dimension is

$$\Delta = 2 + \sqrt{4 + \frac{m_{\eta}^2}{k^2}} = 2 + \frac{1}{2}|4 - \nu|$$

ok at potential

$$V(\eta) = -12k^2 - k^2\nu\left(1 - \frac{\nu}{8}\right)\eta^2 + \cdots$$

ves η 's mass as

$$m_{\eta}^2 = -2k^2\nu \left(1 - \frac{\nu}{8}\right)$$

S/CFT correspondence says operator dimension is

$$\Delta = 2 + \sqrt{4 + \frac{m_{\eta}^2}{k^2}} = 2 + \frac{1}{2}|4 - \nu|$$

ok at potential

$$V(\eta) = -12k^2 - k^2\nu\left(1 - \frac{\nu}{8}\right)\eta^2 + \cdots$$

ves η 's mass as

$$m_{\eta}^2 = -2k^2\nu\left(1 - \frac{\nu}{8}\right)$$

IS/CFT correspondence says operator dimension is

$$\Delta = 2 + \sqrt{4 + \frac{m_{\eta}^2}{k^2}} = 2 + \frac{1}{2}|4 - \nu|$$

ok at potential

$$V(\eta) = -12k^2 - k^2\nu\left(1 - \frac{\nu}{8}\right)\eta^2 + \cdots$$

ves η 's mass as

$$m_{\eta}^2 = -2k^2\nu\left(1 - \frac{\nu}{8}\right)$$

IS/CFT correspondence says operator dimension is

$$\Delta = 2 + \sqrt{4 + \frac{m_{\eta}^2}{k^2}} = 2 + \frac{1}{2}|4 - \nu|$$

ok at potential

$$V(\eta) = -12k^2 - k^2\nu\left(1 - \frac{\nu}{8}\right)\eta^2 + \cdots$$

ves η 's mass as

$$m_{\eta}^2 = -2k^2\nu\left(1 - \frac{\nu}{8}\right)$$

IS/CFT correspondence says operator dimension is

$$\Delta = 2 + \sqrt{4 + \frac{m_{\eta}^2}{k^2}} = 2 + \frac{1}{2}|4 - \nu|$$

Pirsa: 10050014 Page 1137/13

ok at potential

$$V(\eta) = -12k^2 - k^2\nu\left(1 - \frac{\nu}{8}\right)\eta^2 + \cdots$$

ves η 's mass as

$$m_{\eta}^2 = -2k^2\nu\left(1 - \frac{\nu}{8}\right)$$

IS/CFT correspondence says operator dimension is

$$\Delta = 2 + \sqrt{4 + \frac{m_{\eta}^2}{k^2}} = 2 + \frac{1}{2}|4 - \nu|$$

Pirsa: 10050014 Page 1138/

ok at potential

$$V(\eta) = -12k^2 - k^2\nu\left(1 - \frac{\nu}{8}\right)\eta^2 + \cdots$$

ves η 's mass as

$$m_{\eta}^2 = -2k^2\nu \left(1 - \frac{\nu}{8}\right)$$

S/CFT correspondence says operator dimension is

$$\Delta = 2 + \sqrt{4 + \frac{m_{\eta}^2}{k^2}} = 2 + \frac{1}{2}|4 - \nu|$$

ok at potential

$$V(\eta) = -12k^2 - k^2\nu\left(1 - \frac{\nu}{8}\right)\eta^2 + \cdots$$

ves η 's mass as

$$m_{\eta}^2 = -2k^2\nu\left(1 - \frac{\nu}{8}\right)$$

IS/CFT correspondence says operator dimension is

$$\Delta = 2 + \sqrt{4 + \frac{m_{\eta}^2}{k^2}} = 2 + \frac{1}{2}|4 - \nu|$$

ok at potential

$$V(\eta) = -12k^2 - k^2\nu\left(1 - \frac{\nu}{8}\right)\eta^2 + \cdots$$

ves η 's mass as

$$m_{\eta}^2 = -2k^2\nu \left(1 - \frac{\nu}{8}\right)$$

S/CFT correspondence says operator dimension is

$$\Delta = 2 + \sqrt{4 + \frac{m_{\eta}^2}{k^2}} = 2 + \frac{1}{2}|4 - \nu|$$

ok at potential

$$V(\eta) = -12k^2 - k^2\nu\left(1 - \frac{\nu}{8}\right)\eta^2 + \cdots$$

ves η 's mass as

$$m_{\eta}^2 = -2k^2\nu \left(1 - \frac{\nu}{8}\right)$$

IS/CFT correspondence says operator dimension is

$$\Delta = 2 + \sqrt{4 + \frac{m_{\eta}^2}{k^2}} = 2 + \frac{1}{2}|4 - \nu|$$

Pirsa: 10050014 Page 1142/13

ok at potential

$$V(\eta) = -12k^2 - k^2\nu\left(1 - \frac{\nu}{8}\right)\eta^2 + \cdots$$

ves η 's mass as

$$m_{\eta}^2 = -2k^2\nu\left(1 - \frac{\nu}{8}\right)$$

IS/CFT correspondence says operator dimension is

$$\Delta = 2 + \sqrt{4 + \frac{m_{\eta}^2}{k^2}} = 2 + \frac{1}{2}|4 - \nu|$$

ok at potential

$$V(\eta) = -12k^2 - k^2\nu\left(1 - \frac{\nu}{8}\right)\eta^2 + \cdots$$

ves η 's mass as

$$m_{\eta}^2 = -2k^2\nu\left(1 - \frac{\nu}{8}\right)$$

IS/CFT correspondence says operator dimension is

$$\Delta = 2 + \sqrt{4 + \frac{m_{\eta}^2}{k^2}} = 2 + \frac{1}{2}|4 - \nu|$$

ok at potential

$$V(\eta) = -12k^2 - k^2\nu\left(1 - \frac{\nu}{8}\right)\eta^2 + \cdots$$

ves η 's mass as

$$m_{\eta}^2 = -2k^2\nu\left(1 - \frac{\nu}{8}\right)$$

IS/CFT correspondence says operator dimension is

$$\Delta = 2 + \sqrt{4 + \frac{m_{\eta}^2}{k^2}} = 2 + \frac{1}{2}|4 - \nu|$$

Pirsa: 10050014 Page 1145/13

ok at potential

$$V(\eta) = -12k^2 - k^2\nu\left(1 - \frac{\nu}{8}\right)\eta^2 + \cdots$$

ves η 's mass as

$$m_{\eta}^2 = -2k^2\nu \left(1 - \frac{\nu}{8}\right)$$

S/CFT correspondence says operator dimension is

$$\Delta = 2 + \sqrt{4 + \frac{m_{\eta}^2}{k^2}} = 2 + \frac{1}{2}|4 - \nu|$$

ok at potential

$$V(\eta) = -12k^2 - k^2\nu\left(1 - \frac{\nu}{8}\right)\eta^2 + \cdots$$

ves η 's mass as

$$m_{\eta}^2 = -2k^2\nu\left(1 - \frac{\nu}{8}\right)$$

IS/CFT correspondence says operator dimension is

$$\Delta = 2 + \sqrt{4 + \frac{m_{\eta}^2}{k^2}} = 2 + \frac{1}{2}|4 - \nu|$$

Pirsa: 10050014 Page 1147/136

ok at potential

$$V(\eta) = -12k^2 - k^2\nu\left(1 - \frac{\nu}{8}\right)\eta^2 + \cdots$$

ves η 's mass as

$$m_{\eta}^2 = -2k^2\nu\left(1 - \frac{\nu}{8}\right)$$

IS/CFT correspondence says operator dimension is

$$\Delta = 2 + \sqrt{4 + \frac{m_{\eta}^2}{k^2}} = 2 + \frac{1}{2}|4 - \nu|$$

Pirsa: 10050014 Page 114.

ok at potential

$$V(\eta) = -12k^2 - k^2\nu\left(1 - \frac{\nu}{8}\right)\eta^2 + \cdots$$

ves η 's mass as

$$m_{\eta}^2 = -2k^2\nu\left(1 - \frac{\nu}{8}\right)$$

IS/CFT correspondence says operator dimension is

$$\Delta = 2 + \sqrt{4 + \frac{m_{\eta}^2}{k^2}} = 2 + \frac{1}{2}|4 - \nu|$$

ok at potential

$$V(\eta) = -12k^2 - k^2\nu\left(1 - \frac{\nu}{8}\right)\eta^2 + \cdots$$

ves η 's mass as

$$m_{\eta}^2 = -2k^2\nu\left(1 - \frac{\nu}{8}\right)$$

IS/CFT correspondence says operator dimension is

$$\Delta = 2 + \sqrt{4 + \frac{m_{\eta}^2}{k^2}} = 2 + \frac{1}{2}|4 - \nu|$$

ok at potential

$$V(\eta) = -12k^2 - k^2\nu\left(1 - \frac{\nu}{8}\right)\eta^2 + \cdots$$

ves η 's mass as

$$m_{\eta}^2 = -2k^2\nu \left(1 - \frac{\nu}{8}\right)$$

IS/CFT correspondence says operator dimension is

$$\Delta = 2 + \sqrt{4 + \frac{m_{\eta}^2}{k^2}} = 2 + \frac{1}{2}|4 - \nu|$$

Pirsa: 10050014 Page 1151/13

ok at potential

$$V(\eta) = -12k^2 - k^2\nu\left(1 - \frac{\nu}{8}\right)\eta^2 + \cdots$$

ves η 's mass as

$$m_{\eta}^2 = -2k^2\nu \left(1 - \frac{\nu}{8}\right)$$

IS/CFT correspondence says operator dimension is

$$\Delta = 2 + \sqrt{4 + \frac{m_{\eta}^2}{k^2}} = 2 + \frac{1}{2}|4 - \nu|$$

Pirsa: 10050014 Page 11

calar's Potential

ok at potential

$$V(\eta) = -12k^2 - k^2\nu\left(1 - \frac{\nu}{8}\right)\eta^2 + \cdots$$

ves η 's mass as

$$m_{\eta}^2 = -2k^2\nu \left(1 - \frac{\nu}{8}\right)$$

IS/CFT correspondence says operator dimension is

$$\Delta = 2 + \sqrt{4 + \frac{m_{\eta}^2}{k^2}} = 2 + \frac{1}{2}|4 - \nu|$$

lanck Weak Hierarchy Robustness

an also ask how sensitive $\langle \eta \rangle_0$ is to μ/k (and vice-versa).

% change in $\langle \eta \rangle_0$ for 1% change in weak scale

 $\sim 1/4$ 0.1% (fairly robust)

 $\leq \nu \leq$ 3 1% (robust)

>> 1 very sensitive to variation

course, ν has other consequences...

The value of the field at the UV brane is

$$\eta_{0} = \pm \sqrt{3} \left(\frac{\nu + 1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu + 1} \left(\frac{\mu}{k} \right)^{\nu} \right)^{2} + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} \left(\frac{\mu}{k} \right)^{\nu} \right]$$

Not easily inverted...

Pirsa: 10050014 Page:

The value of the field at the UV brane is

$$\eta_0 = \pm \sqrt{3} \left(\frac{\nu+1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu+1}} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu+1} \left(\frac{\mu}{k} \right)^{\nu} \right)^2 \right.$$

$$\left. + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu+1}} \left(\frac{\mu}{k} \right)^{\nu} \right]$$

Not easily inverted...

The value of the field at the UV brane is

$$\eta_{0} = \pm \sqrt{3} \left(\frac{\nu + 1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu + 1} \left(\frac{\mu}{k} \right)^{\nu} \right)^{2} + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} \left(\frac{\mu}{k} \right)^{\nu} \right]$$

Not easily inverted...

The value of the field at the UV brane is

$$\eta_0 = \pm \sqrt{3} \left(\frac{\nu+1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu+1}} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu+1} \left(\frac{\mu}{k} \right)^{\nu} \right)^2 \right.$$
$$\left. + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu+1}} \left(\frac{\mu}{k} \right)^{\nu} \right]$$

Not easily inverted...

The value of the field at the UV brane is

$$\eta_{0} = \pm \sqrt{3} \left(\frac{\nu + 1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu + 1} \left(\frac{\mu}{k} \right)^{\nu} \right)^{2} + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} \left(\frac{\mu}{k} \right)^{\nu} \right]$$

Not easily inverted...

The value of the field at the UV brane is

$$\eta_{0} = \pm \sqrt{3} \left(\frac{\nu + 1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu + 1} \left(\frac{\mu}{k} \right)^{\nu} \right)^{2} + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} \left(\frac{\mu}{k} \right)^{\nu} \right]$$

Not easily inverted...

Pirsa: 10050014 Page 1161/136

The value of the field at the UV brane is

$$\eta_{0} = \pm \sqrt{3} \left(\frac{\nu + 1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu + 1} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu + 1} \left(\frac{\mu}{k} \right)^{\nu} \right)^{2}} + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu + 1} \left(\frac{\mu}{k} \right)^{\nu}} \right]$$

Not easily inverted...

Pirsa: 10050014 Page 1162/1362

The value of the field at the UV brane is

$$\eta_{0} = \pm \sqrt{3} \left(\frac{\nu + 1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu + 1} \left(\frac{\mu}{k} \right)^{\nu} \right)^{2} + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} \left(\frac{\mu}{k} \right)^{\nu} \right]$$

Not easily inverted...

Pirsa: 10050014 Page 1163/136

The value of the field at the UV brane is

$$\eta_{0} = \pm \sqrt{3} \left(\frac{\nu + 1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu + 1} \left(\frac{\mu}{k} \right)^{\nu} \right)^{2} + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} \left(\frac{\mu}{k} \right)^{\nu} \right]$$

Not easily inverted...

The value of the field at the UV brane is

$$\eta_0 = \pm \sqrt{3} \left(\frac{\nu+1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu+1}} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu+1} \left(\frac{\mu}{k} \right)^{\nu} \right)^2 \right.$$

$$\left. + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu+1}} \left(\frac{\mu}{k} \right)^{\nu} \right]$$

Not easily inverted...

The value of the field at the UV brane is

$$\eta_{0} = \pm \sqrt{3} \left(\frac{\nu + 1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu + 1} \left(\frac{\mu}{k} \right)^{\nu} \right)^{2} + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} \left(\frac{\mu}{k} \right)^{\nu} \right]$$

Not easily inverted...

The value of the field at the UV brane is

$$\eta_0 = \pm \sqrt{3} \left(\frac{\nu+1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu+1}} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu+1} \left(\frac{\mu}{k} \right)^{\nu} \right)^2 \right.$$

$$\left. + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu+1}} \left(\frac{\mu}{k} \right)^{\nu} \right]$$

Not easily inverted...

Pirsa: 10050014 Page 1167/136

The value of the field at the UV brane is

$$\eta_{0} = \pm \sqrt{3} \left(\frac{\nu + 1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu + 1} \left(\frac{\mu}{k} \right)^{\nu} \right)^{2} + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} \left(\frac{\mu}{k} \right)^{\nu} \right]$$

Not easily inverted...

The value of the field at the UV brane is

$$\eta_{0} = \pm \sqrt{3} \left(\frac{\nu + 1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu + 1} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu + 1} \left(\frac{\mu}{k} \right)^{\nu} \right)^{2}} + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu + 1} \left(\frac{\mu}{k} \right)^{\nu}} \right]$$

Not easily inverted...

The value of the field at the UV brane is

$$\eta_0 = \pm \sqrt{3} \left(\frac{\nu+1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu+1}} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu+1} \left(\frac{\mu}{k} \right)^{\nu} \right)^2 \right.$$

$$\left. + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu+1}} \left(\frac{\mu}{k} \right)^{\nu} \right]$$

Not easily inverted...

Pirsa: 10050014 Page 1170/13

The value of the field at the UV brane is

$$\eta_{0} = \pm \sqrt{3} \left(\frac{\nu + 1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu + 1} \left(\frac{\mu}{k} \right)^{\nu} \right)^{2} + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} \left(\frac{\mu}{k} \right)^{\nu} \right]$$

Not easily inverted...

The value of the field at the UV brane is

$$\eta_0 = \pm \sqrt{3} \left(\frac{\nu+1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu+1}} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu+1} \left(\frac{\mu}{k} \right)^{\nu} \right)^2 \right.$$

$$\left. + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu+1}} \left(\frac{\mu}{k} \right)^{\nu} \right]$$

Not easily inverted...

The value of the field at the UV brane is

$$\eta_{0} = \pm \sqrt{3} \left(\frac{\nu + 1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu + 1} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu + 1} \left(\frac{\mu}{k} \right)^{\nu} \right)^{2}} + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu + 1} \left(\frac{\mu}{k} \right)^{\nu}} \right]$$

Not easily inverted...

The value of the field at the UV brane is

$$\eta_{0} = \pm \sqrt{3} \left(\frac{\nu + 1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu + 1} \left(\frac{\mu}{k} \right)^{\nu} \right)^{2} + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} \left(\frac{\mu}{k} \right)^{\nu} \right]$$

Not easily inverted...

Pirsa: 10050014 Page 1174/136

The value of the field at the UV brane is

$$\eta_0 = \pm \sqrt{3} \left(\frac{\nu+1}{\nu} \right) \left[\sqrt{\frac{2}{3}} \frac{\nu}{\nu+1} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu+1} \left(\frac{\mu}{k} \right)^{\nu} \right)^2 \right.$$
$$\left. + \sinh^{-1} \sqrt{\frac{2}{3}} \frac{\nu}{\nu+1} \left(\frac{\mu}{k} \right)^{\nu} \right]$$

Not easily inverted...

Pirsa: 10050014 Page 1175/1

The value of the field at the UV brane is

$$\eta_0 = \pm \sqrt{3} \left(\frac{\nu+1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu+1}} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu+1} \left(\frac{\mu}{k} \right)^{\nu} \right)^2 \right.$$

$$\left. + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu+1}} \left(\frac{\mu}{k} \right)^{\nu} \right]$$

Not easily inverted...

The value of the field at the UV brane is

$$\eta_0 = \pm \sqrt{3} \left(\frac{\nu+1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu+1}} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu+1} \left(\frac{\mu}{k} \right)^{\nu} \right)^2 \right.$$

$$\left. + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu+1}} \left(\frac{\mu}{k} \right)^{\nu} \right]$$

Not easily inverted...

Pirsa: 10050014 Pag

The value of the field at the UV brane is

$$\eta_{0} = \pm \sqrt{3} \left(\frac{\nu + 1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu + 1} \left(\frac{\mu}{k} \right)^{\nu} \right)^{2} + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} \left(\frac{\mu}{k} \right)^{\nu} \right]$$

Not easily inverted...

Pirsa: 10050014 Page 1178/13

The value of the field at the UV brane is

$$\eta_0 = \pm \sqrt{3} \left(\frac{\nu+1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu+1}} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu+1} \left(\frac{\mu}{k} \right)^{\nu} \right)^2 \right.$$

$$\left. + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu+1}} \left(\frac{\mu}{k} \right)^{\nu} \right]$$

Not easily inverted...

The value of the field at the UV brane is

$$\eta_{0} = \pm \sqrt{3} \left(\frac{\nu + 1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu + 1} \left(\frac{\mu}{k} \right)^{\nu} \right)^{2} + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} \left(\frac{\mu}{k} \right)^{\nu} \right]$$

Not easily inverted...

The value of the field at the UV brane is

$$\eta_{0} = \pm \sqrt{3} \left(\frac{\nu + 1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu + 1} \left(\frac{\mu}{k} \right)^{\nu} \right)^{2} + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} \left(\frac{\mu}{k} \right)^{\nu} \right]$$

Not easily inverted...

The value of the field at the UV brane is

$$\eta_{0} = \pm \sqrt{3} \left(\frac{\nu + 1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu + 1} \left(\frac{\mu}{k} \right)^{\nu} \right)^{2} + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} \left(\frac{\mu}{k} \right)^{\nu} \right]$$

Not easily inverted...

The value of the field at the UV brane is

$$\eta_{0} = \pm \sqrt{3} \left(\frac{\nu + 1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu + 1} \left(\frac{\mu}{k} \right)^{\nu} \right)^{2} + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} \left(\frac{\mu}{k} \right)^{\nu} \right]$$

Not easily inverted...

Pirsa: 10050014 Page 11

The value of the field at the UV brane is

$$\eta_{0} = \pm \sqrt{3} \left(\frac{\nu + 1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu + 1} \left(\frac{\mu}{k} \right)^{\nu} \right)^{2} + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} \left(\frac{\mu}{k} \right)^{\nu} \right]$$

Not easily inverted...

The value of the field at the UV brane is

$$\eta_{0} = \pm \sqrt{3} \left(\frac{\nu + 1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu + 1} \left(\frac{\mu}{k} \right)^{\nu} \right)^{2} + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} \left(\frac{\mu}{k} \right)^{\nu} \right]$$

Not easily inverted...

The value of the field at the UV brane is

$$\eta_{0} = \pm \sqrt{3} \left(\frac{\nu + 1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu + 1} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu + 1} \left(\frac{\mu}{k} \right)^{\nu} \right)^{2}} + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu + 1} \left(\frac{\mu}{k} \right)^{\nu}} \right]$$

Not easily inverted...

The value of the field at the UV brane is

$$\eta_{0} = \pm \sqrt{3} \left(\frac{\nu + 1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu + 1} \left(\frac{\mu}{k} \right)^{\nu} \right)^{2} + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} \left(\frac{\mu}{k} \right)^{\nu} \right]$$

Not easily inverted...

Pirsa: 10050014 Page 1187/1

The value of the field at the UV brane is

$$\eta_0 = \pm \sqrt{3} \left(\frac{\nu+1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu+1}} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu+1} \left(\frac{\mu}{k} \right)^{\nu} \right)^2 \right.$$

$$\left. + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu+1}} \left(\frac{\mu}{k} \right)^{\nu} \right]$$

Not easily inverted...

The value of the field at the UV brane is

$$\eta_0 = \pm \sqrt{3} \left(\frac{\nu+1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu+1}} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu+1} \left(\frac{\mu}{k} \right)^{\nu} \right)^2 \right.$$

$$\left. + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu+1}} \left(\frac{\mu}{k} \right)^{\nu} \right]$$

Not easily inverted...

The value of the field at the UV brane is

$$\eta_0 = \pm \sqrt{3} \left(\frac{\nu+1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu+1}} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu+1} \left(\frac{\mu}{k} \right)^{\nu} \right)^2 \right.$$

$$\left. + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu+1}} \left(\frac{\mu}{k} \right)^{\nu} \right]$$

Not easily inverted...

The value of the field at the UV brane is

$$\eta_0 = \pm \sqrt{3} \left(\frac{\nu+1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu+1} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu+1} \left(\frac{\mu}{k} \right)^{\nu} \right)^2} \right.$$

$$\left. + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu+1} \left(\frac{\mu}{k} \right)^{\nu}} \right]$$

Not easily inverted...

The value of the field at the UV brane is

$$\eta_{0} = \pm \sqrt{3} \left(\frac{\nu + 1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu + 1} \left(\frac{\mu}{k} \right)^{\nu} \right)^{2} + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} \left(\frac{\mu}{k} \right)^{\nu} \right]$$

Not easily inverted...

Pirsa: 10050014 Page 1192/136

The value of the field at the UV brane is

$$\eta_{0} = \pm \sqrt{3} \left(\frac{\nu + 1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu + 1} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu + 1} \left(\frac{\mu}{k} \right)^{\nu} \right)^{2}} + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu + 1} \left(\frac{\mu}{k} \right)^{\nu}} \right]$$

Not easily inverted...

The value of the field at the UV brane is

$$\eta_{0} = \pm \sqrt{3} \left(\frac{\nu + 1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu + 1} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu + 1} \left(\frac{\mu}{k} \right)^{\nu} \right)^{2}} + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu + 1} \left(\frac{\mu}{k} \right)^{\nu}} \right]$$

Not easily inverted...

The value of the field at the UV brane is

$$\eta_0 = \pm \sqrt{3} \left(\frac{\nu+1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu+1}} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu+1} \left(\frac{\mu}{k} \right)^{\nu} \right)^2 \right.$$

$$\left. + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu+1}} \left(\frac{\mu}{k} \right)^{\nu} \right]$$

Not easily inverted...

The value of the field at the UV brane is

$$\eta_{0} = \pm \sqrt{3} \left(\frac{\nu + 1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu + 1} \left(\frac{\mu}{k} \right)^{\nu} \right)^{2} + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} \left(\frac{\mu}{k} \right)^{\nu} \right]$$

Not easily inverted...

The value of the field at the UV brane is

$$\eta_{0} = \pm \sqrt{3} \left(\frac{\nu + 1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu + 1} \left(\frac{\mu}{k} \right)^{\nu} \right)^{2} + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} \left(\frac{\mu}{k} \right)^{\nu} \right]$$

Not easily inverted...

Pirsa: 10050014 Page 1197/136

The value of the field at the UV brane is

$$\eta_0 = \pm \sqrt{3} \left(\frac{\nu+1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu+1}} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu+1} \left(\frac{\mu}{k} \right)^{\nu} \right)^2 \right.$$
$$\left. + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu+1}} \left(\frac{\mu}{k} \right)^{\nu} \right]$$

Not easily inverted...

The value of the field at the UV brane is

$$\eta_{0} = \pm \sqrt{3} \left(\frac{\nu + 1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu + 1} \left(\frac{\mu}{k} \right)^{\nu} \right)^{2} + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} \left(\frac{\mu}{k} \right)^{\nu} \right]$$

Not easily inverted...

Pirsa: 10050014 Page 1199/136

The value of the field at the UV brane is

$$\eta_0 = \pm \sqrt{3} \left(\frac{\nu+1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu+1}} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu+1} \left(\frac{\mu}{k} \right)^{\nu} \right)^2 \right.$$

$$\left. + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu+1}} \left(\frac{\mu}{k} \right)^{\nu} \right]$$

Not easily inverted...

The value of the field at the UV brane is

$$\eta_0 = \pm \sqrt{3} \left(\frac{\nu+1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu+1}} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu+1} \left(\frac{\mu}{k} \right)^{\nu} \right)^2 \right.$$

$$\left. + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu+1}} \left(\frac{\mu}{k} \right)^{\nu} \right]$$

Not easily inverted...

The value of the field at the UV brane is

$$\eta_0 = \pm \sqrt{3} \left(\frac{\nu+1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu+1}} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu+1} \left(\frac{\mu}{k} \right)^{\nu} \right)^2 \right.$$

$$\left. + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu+1}} \left(\frac{\mu}{k} \right)^{\nu} \right]$$

Not easily inverted...

Pirsa: 10050014 Page 1202/136

The value of the field at the UV brane is

$$\eta_0 = \pm \sqrt{3} \left(\frac{\nu+1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu+1}} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu+1} \left(\frac{\mu}{k} \right)^{\nu} \right)^2 \right.$$

$$\left. + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu+1}} \left(\frac{\mu}{k} \right)^{\nu} \right]$$

Not easily inverted...

Pirsa: 10050014 Page 1203/136

The value of the field at the UV brane is

$$\eta_0 = \pm \sqrt{3} \left(\frac{\nu+1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu+1}} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu+1} \left(\frac{\mu}{k} \right)^{\nu} \right)^2 \right.$$

$$\left. + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu+1}} \left(\frac{\mu}{k} \right)^{\nu} \right]$$

Not easily inverted...

The value of the field at the UV brane is

$$\eta_0 = \pm \sqrt{3} \left(\frac{\nu+1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu+1}} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu+1} \left(\frac{\mu}{k} \right)^{\nu} \right)^2 \right.$$
$$\left. + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu+1}} \left(\frac{\mu}{k} \right)^{\nu} \right]$$

Not easily inverted...

The value of the field at the UV brane is

$$\eta_0 = \pm \sqrt{3} \left(\frac{\nu+1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu+1}} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu+1} \left(\frac{\mu}{k} \right)^{\nu} \right)^2 \right.$$

$$\left. + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu+1}} \left(\frac{\mu}{k} \right)^{\nu} \right]$$

Not easily inverted...

The value of the field at the UV brane is

$$\eta_0 = \pm \sqrt{3} \left(\frac{\nu+1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu+1}} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu+1} \left(\frac{\mu}{k} \right)^{\nu} \right)^2 \right.$$

$$\left. + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu+1}} \left(\frac{\mu}{k} \right)^{\nu} \right]$$

Not easily inverted...

The value of the field at the UV brane is

$$\eta_{0} = \pm \sqrt{3} \left(\frac{\nu + 1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu + 1} \left(\frac{\mu}{k} \right)^{\nu} \right)^{2} + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} \left(\frac{\mu}{k} \right)^{\nu} \right]$$

Not easily inverted...

Pirsa: 10050014 Page 1208/136

The value of the field at the UV brane is

$$\eta_{0} = \pm \sqrt{3} \left(\frac{\nu + 1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu + 1} \left(\frac{\mu}{k} \right)^{\nu} \right)^{2} + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} \left(\frac{\mu}{k} \right)^{\nu} \right]$$

Not easily inverted...

Pirsa: 10050014 Page 1209/136

The value of the field at the UV brane is

$$\eta_{0} = \pm \sqrt{3} \left(\frac{\nu + 1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu + 1} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu + 1} \left(\frac{\mu}{k} \right)^{\nu} \right)^{2}} + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu + 1} \left(\frac{\mu}{k} \right)^{\nu}} \right]$$

Not easily inverted...

The value of the field at the UV brane is

$$\eta_0 = \pm \sqrt{3} \left(\frac{\nu+1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu+1}} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu+1} \left(\frac{\mu}{k} \right)^{\nu} \right)^2 \right.$$

$$\left. + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu+1}} \left(\frac{\mu}{k} \right)^{\nu} \right]$$

Not easily inverted...

The value of the field at the UV brane is

$$\eta_0 = \pm \sqrt{3} \left(\frac{\nu+1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu+1}} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu+1} \left(\frac{\mu}{k} \right)^{\nu} \right)^2 \right.$$

$$\left. + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu+1}} \left(\frac{\mu}{k} \right)^{\nu} \right]$$

Not easily inverted...

Pirsa: 10050014 Page 1212/136

The value of the field at the UV brane is

$$\eta_0 = \pm \sqrt{3} \left(\frac{\nu+1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu+1}} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu+1} \left(\frac{\mu}{k} \right)^{\nu} \right)^2 \right.$$

$$\left. + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu+1}} \left(\frac{\mu}{k} \right)^{\nu} \right]$$

Not easily inverted...

Pirsa: 10050014 Page 1213/13

The value of the field at the UV brane is

$$\eta_{0} = \pm \sqrt{3} \left(\frac{\nu + 1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu + 1} \left(\frac{\mu}{k} \right)^{\nu} \right)^{2} + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu + 1}} \left(\frac{\mu}{k} \right)^{\nu} \right]$$

Not easily inverted...

The value of the field at the UV brane is

$$\eta_0 = \pm \sqrt{3} \left(\frac{\nu+1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu+1}} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu+1} \left(\frac{\mu}{k} \right)^{\nu} \right)^2 \right.$$

$$\left. + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu+1}} \left(\frac{\mu}{k} \right)^{\nu} \right]$$

Not easily inverted...

Pirsa: 10050014 Page 1215/136

The value of the field at the UV brane is

$$\eta_0 = \pm \sqrt{3} \left(\frac{\nu+1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu+1}} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu+1} \left(\frac{\mu}{k} \right)^{\nu} \right)^2 \right.$$

$$\left. + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu+1}} \left(\frac{\mu}{k} \right)^{\nu} \right]$$

Not easily inverted...

Pirsa: 10050014 Page 12

The value of the field at the UV brane is

$$\eta_0 = \pm \sqrt{3} \left(\frac{\nu+1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu+1}} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu+1} \left(\frac{\mu}{k} \right)^{\nu} \right)^2 \right.$$
$$\left. + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu+1}} \left(\frac{\mu}{k} \right)^{\nu} \right]$$

Not easily inverted...

Pirsa: 10050014 Page 1217/136

The value of the field at the UV brane is

$$\eta_0 = \pm \sqrt{3} \left(\frac{\nu+1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu+1}} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu+1} \left(\frac{\mu}{k} \right)^{\nu} \right)^2 \right.$$

$$\left. + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu+1}} \left(\frac{\mu}{k} \right)^{\nu} \right]$$

Not easily inverted...

The value of the field at the UV brane is

$$\eta_0 = \pm \sqrt{3} \left(\frac{\nu+1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu+1}} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu+1} \left(\frac{\mu}{k} \right)^{\nu} \right)^2 \right.$$
$$\left. + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu+1}} \left(\frac{\mu}{k} \right)^{\nu} \right]$$

Not easily inverted...

The value of the field at the UV brane is

$$\eta_{0} = \pm \sqrt{3} \left(\frac{\nu + 1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu + 1} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu + 1} \left(\frac{\mu}{k} \right)^{\nu} \right)^{2}} + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu + 1} \left(\frac{\mu}{k} \right)^{\nu}} \right]$$

Not easily inverted...

lanck Weak Hierarchy Robustness

an also ask how sensitive $\langle \eta \rangle_0$ is to μ/k (and vice-versa).

% change in $\langle \eta \rangle_0$ for 1% change in weak scale

 $\sim 1/4$ 0.1% (fairly robust)

 $\leq \nu \leq$ 3 1% (robust)

>> 1 very sensitive to variation

course, ν has other consequences...

calar's Potential

ok at potential

$$V(\eta) = -12k^2 - k^2\nu\left(1 - \frac{\nu}{8}\right)\eta^2 + \cdots$$

ves η 's mass as

$$m_{\eta}^2 = -2k^2\nu \left(1 - \frac{\nu}{8}\right)$$

S/CFT correspondence says operator dimension is

$$\Delta = 2 + \sqrt{4 + \frac{m_{\eta}^2}{k^2}} = 2 + \frac{1}{2}|4 - \nu|$$

Pirsa: 10050014 Page 1222/136

perator Dimension

e breakdown is

Hierarchy by Hand
$$\nu > 1$$

$$\nu > 1$$

$$\Delta > \frac{5}{2}$$

Improved Hierarchy
$$\nu \sim 1$$
 $\Delta \sim \frac{5}{2}$

$$\nu \sim 1$$

$$\Delta \sim \frac{5}{2}$$

Natural Hierarchy
$$0 < \nu < 1$$
 $2 < \Delta < \frac{5}{2}$

$$0 < \nu < 1$$

$$2 < \Delta < \frac{5}{2}$$

perator Dimension

e breakdown is

Hierarchy by Hand
$$\nu > 1$$

$$\Delta > \frac{5}{2}$$

Improved Hierarchy
$$\nu \sim 1$$
 $\Delta \sim \frac{5}{2}$

Natural Hierarchy
$$0 < \nu < 1$$
 $2 < \Delta < \frac{5}{2}$

Hierarchy by Hand
$$\nu > 1$$

$$\nu > 1$$

$$\Delta > \frac{5}{2}$$

Improved Hierarchy
$$\nu \sim 1$$
 $\Delta \sim \frac{5}{2}$

$$\nu \sim 1$$

$$\Delta\sim {5\over 2}$$

Natural Hierarchy
$$0 < \nu < 1$$
 $2 < \Delta < \frac{5}{2}$

$$0 < \nu < 1$$

$$2<\Delta<\frac{5}{2}$$

Hierarchy by Hand
$$\nu > 1$$

$$\nu > 1$$

$$\Delta > \frac{5}{2}$$

Improved Hierarchy
$$\nu \sim 1$$
 $\Delta \sim \frac{5}{2}$

$$\nu \sim 1$$

$$\Delta \sim \tfrac{5}{2}$$

Natural Hierarchy
$$0 < \nu < 1$$
 $2 < \Delta < \frac{5}{2}$

$$0 < \nu < 1$$

$$2 < \Delta < \frac{5}{2}$$

Hierarchy by Hand
$$\nu > 1$$

$$\nu > 1$$

$$\Delta > \frac{5}{2}$$

Improved Hierarchy
$$\nu \sim 1$$
 $\Delta \sim \frac{5}{2}$

$$\nu \sim 1$$

$$\Delta \sim \frac{5}{2}$$

Natural Hierarchy
$$0 < \nu < 1$$
 $2 < \Delta < \frac{5}{2}$

$$0 < \nu < 1$$

$$2 < \Delta < \frac{5}{2}$$

Hierarchy by Hand
$$\nu > 1$$

$$\nu > 1$$

$$\Delta > \frac{5}{2}$$

Improved Hierarchy
$$\nu \sim 1$$
 $\Delta \sim \frac{5}{2}$

$$\nu \sim 1$$

$$\Delta \sim \frac{5}{2}$$

Natural Hierarchy
$$0 < \nu < 1$$
 $2 < \Delta < \frac{5}{2}$

$$0 < \nu < 1$$

$$2 < \Delta < \frac{5}{2}$$

e breakdown is

Hierarchy by Hand
$$\nu > 1$$

$$\nu > 1$$

$$\Delta > \frac{5}{2}$$

Improved Hierarchy
$$\nu \sim 1$$

$$\nu \sim 1$$

$$\Delta \sim {5\over 2}$$

Natural Hierarchy $0 < \nu < 1$ $2 < \Delta < \frac{5}{2}$

$$0 < \nu < 1$$

$$2<\Delta<\tfrac{5}{2}$$

e breakdown is

Hierarchy by Hand
$$\nu > 1$$

$$\nu > 1$$

$$\Delta > \frac{5}{2}$$

Improved Hierarchy
$$\nu \sim 1$$

$$\nu \sim 1$$

$$\Delta\sim {5\over 2}$$

Natural Hierarchy $0 < \nu < 1$ $2 < \Delta < \frac{5}{2}$

$$0 < \nu < 1$$

$$2<\Delta<rac{5}{2}$$

e breakdown is

Hierarchy by Hand
$$\nu > 1$$

$$\nu > 1$$

$$\Delta > \frac{5}{2}$$

Improved Hierarchy
$$\nu \sim 1$$

$$\nu \sim 1$$

$$\Delta \sim \frac{5}{2}$$

Natural Hierarchy $0 < \nu < 1$ $2 < \Delta < \frac{5}{2}$

$$0 < \nu < 1$$

$$2<\Delta<rac{5}{2}$$

e breakdown is

Hierarchy by Hand
$$\nu > 1$$

$$\nu > 1$$

$$\Delta > \frac{5}{2}$$

Improved Hierarchy
$$\nu \sim 1$$

$$\nu \sim 1$$

$$\Delta \sim {5\over 2}$$

Natural Hierarchy $0 < \nu < 1$ $2 < \Delta < \frac{5}{2}$

$$0 < \nu < 1$$

$$2<\Delta<\tfrac{5}{2}$$

e breakdown is

Hierarchy by Hand
$$\nu > 1$$

$$\nu > 1$$

$$\Delta > \frac{5}{2}$$

Improved Hierarchy
$$\nu \sim 1$$

$$\nu \sim 1$$

$$\Delta \sim {5\over 2}$$

Natural Hierarchy $0 < \nu < 1$ $2 < \Delta < \frac{5}{2}$

$$0 < \nu < 1$$

$$2<\Delta<rac{5}{2}$$

e breakdown is

Hierarchy by Hand
$$\nu > 1$$

$$\nu > 1$$

$$\Delta > \frac{5}{2}$$

Improved Hierarchy
$$\nu \sim 1$$

$$\nu \sim 1$$

$$\Delta \sim {5\over 2}$$

Natural Hierarchy $0 < \nu < 1$ $2 < \Delta < \frac{5}{2}$

$$0 < \nu < 1$$

$$2<\Delta<rac{5}{2}$$

e breakdown is

Hierarchy by Hand
$$\nu > 1$$

$$\nu > 1$$

$$\Delta > \frac{5}{2}$$

Improved Hierarchy
$$\nu \sim 1$$

$$\nu \sim 1$$

$$\Delta \sim {5\over 2}$$

Natural Hierarchy $0 < \nu < 1$ $2 < \Delta < \frac{5}{2}$

$$0 < \nu < 1$$

$$2<\Delta<rac{5}{2}$$

Fluctuations

utline

Fluctuations

Pirsa: 10050014 Page 1236/1362

$$ds^2=e^{2(F-A(z))}\Big[ig((1-2F)\eta_{\mu
u}+h_{\mu
u}ig)dx^\mu dx^
u+2A_\mu dx^\mu dz+dz^2\Big]$$
 $\eta=\langle\eta
angle+ ilde\eta$

- Tensor Modes
 - Discussed in arXiv:0808.3977 [Batell et al.]
 - massless zero mode and KK tower

Aectol Wones

andy zero moder higher modes eaten by massive tensor

Scalar Modés

gravi-scalar: E

scalar tower of a

$$ds^2 = e^{2(F-A(z))} \Big[\big((1-2F)\eta_{\mu\nu} + h_{\mu\nu} \big) dx^\mu dx^
u + 2A_\mu dx^\mu dz + dz^2 \Big]$$
 $\eta = \langle \eta \rangle + \tilde{\eta}$

- Tensor Modes
 - Discussed in arXiv:0808.3977 [Batell et al.]
 - massless zero mode and KK tower

Vector Modes

only zero mode: higher modes easen by massive tensor

Scalar Modes

a gravi⊷scalari E

scalar tower of in

$$ds^2=e^{2(F-A(z))}\Big[ig((1-2F)\eta_{\mu
u}+h_{\mu
u}ig)dx^\mu dx^
u+2A_\mu dx^\mu dz+dz^2\Big]$$
 $\eta=\langle\eta
angle+ ilde\eta$

- Tensor Modes
 - Discussed in arXiv:0808.3977 [Batell et al.]
 - massless zero mode and KK tower
- Vector Modes
 - only zero mode: higher modes eaten by massive tensors
- Scalar Modes
 - gravi-scalar, F
 - scalar tower of η

$$ds^2 = e^{2(F-A(z))} \Big[\big((1-2F)\eta_{\mu\nu} + h_{\mu\nu} \big) dx^\mu dx^
u + 2A_\mu dx^\mu dz + dz^2 \Big]$$
 $\eta = \langle \eta \rangle + ilde{\eta}$

- Tensor Modes
 - Discussed in arXiv:0808.3977 [Batell et al.]
 - massless zero mode and KK tower
- Vector Modes
 - only zero mode: higher modes eaten by massive tensors
- Scalar Modes
 - gravi-scalar, F
 - scalar tower of η

$$ds^2=e^{2(F-A(z))}\Big[ig((1-2F)\eta_{\mu
u}+h_{\mu
u}ig)dx^\mu dx^
u+2A_\mu dx^\mu dz+dz^2\Big]$$
 $\eta=\langle\eta
angle+ ilde\eta$

- Tensor Modes
 - Discussed in arXiv:0808.3977 [Batell et al.]
 - massless zero mode and KK tower
- Vector Modes
 - only zero mode: higher modes eaten by massive tensors
- Scalar Modes
 - gravi-scalar, F
 - scalar tower of η

$$ds^2=e^{2(F-A(z))}\Big[ig((1-2F)\eta_{\mu
u}+h_{\mu
u}ig)dx^\mu dx^
u+2A_\mu dx^\mu dz+dz^2\Big]$$
 $\eta=\langle\eta
angle+ ilde\eta$

- Tensor Modes
 - Discussed in arXiv:0808.3977 [Batell et al.]
 - massless zero mode and KK tower
- Vector Modes
 - only zero mode: higher modes eaten by massive tensors
- Scalar Modes
 - gravi-scalar, F
 - scalar tower of η

$$ds^2=e^{2(F-A(z))}\Big[ig((1-2F)\eta_{\mu
u}+h_{\mu
u}ig)dx^\mu dx^
u+2A_\mu dx^\mu dz+dz^2\Big]$$
 $\eta=\langle\eta
angle+ ilde\eta$

- Tensor Modes
 - Discussed in arXiv:0808.3977 [Batell et al.]
 - massless zero mode and KK tower
- Vector Modes
 - only zero mode: higher modes eaten by massive tensors
- Scalar Modes
 - gravi-scalar, F
 - scalar tower of η

$$ds^2=e^{2(F-A(z))}\Big[ig((1-2F)\eta_{\mu
u}+h_{\mu
u}ig)dx^\mu dx^
u+2A_\mu dx^\mu dz+dz^2\Big]$$
 $\eta=\langle\eta\rangle+ ilde{\eta}$

- Tensor Modes
 - Discussed in arXiv:0808.3977 [Batell et al.]
 - massless zero mode and KK tower
- Vector Modes
 - only zero mode: higher modes eaten by massive tensors
- Scalar Modes
 - gravi-scalar, F
 - scalar tower of η

$$ds^2 = e^{2(F-A(z))} \Big[\big((1-2F)\eta_{\mu\nu} + h_{\mu\nu} \big) dx^\mu dx^
u + 2A_\mu dx^\mu dz + dz^2 \Big]$$
 $\eta = \langle \eta \rangle + \tilde{\eta}$

- Tensor Modes
 - Discussed in arXiv:0808.3977 [Batell et al.]
 - massless zero mode and KK tower
- Vector Modes
 - only zero mode: higher modes eaten by massive tensors
- Scalar Modes
 - gravi-scalar, F
 - scalar tower of η

$$ds^2 = e^{2(F-A(z))} \Big[\big((1-2F)\eta_{\mu\nu} + h_{\mu\nu} \big) dx^\mu dx^
u + 2A_\mu dx^\mu dz + dz^2 \Big]$$
 $\eta = \langle \eta \rangle + ilde{\eta}$

- Tensor Modes
 - Discussed in arXiv:0808.3977 [Batell et al.]
 - massless zero mode and KK tower
- Vector Modes
 - only zero mode: higher modes eaten by massive tensors
- Scalar Modes
 - gravi-scalar, F
 - scalar tower of η

$$ds^2=e^{2(F-A(z))}\Big[ig((1-2F)\eta_{\mu
u}+h_{\mu
u}ig)dx^\mu dx^
u+2A_\mu dx^\mu dz+dz^2\Big]$$
 $\eta=\langle\eta\rangle+ ilde{\eta}$

- Tensor Modes
 - Discussed in arXiv:0808.3977 [Batell et al.]
 - massless zero mode and KK tower
- Vector Modes
 - only zero mode: higher modes eaten by massive tensors
- Scalar Modes
 - gravi-scalar, F
 - scalar tower of η

$$ds^2=e^{2(F-A(z))}\Big[ig((1-2F)\eta_{\mu
u}+h_{\mu
u}ig)dx^\mu dx^
u+2A_\mu dx^\mu dz+dz^2\Big]$$
 $\eta=\langle\eta
angle+ ilde\eta$

- Tensor Modes
 - Discussed in arXiv:0808.3977 [Batell et al.]
 - massless zero mode and KK tower
- Vector Modes
 - only zero mode: higher modes eaten by massive tensors
- Scalar Modes
 - gravi-scalar, F
 - scalar tower of η

$$ds^2=e^{2(F-A(z))}\Big[ig((1-2F)\eta_{\mu
u}+h_{\mu
u}ig)dx^\mu dx^
u+2A_\mu dx^\mu dz+dz^2\Big]$$
 $\eta=\langle\eta
angle+ ilde\eta$

- Tensor Modes
 - Discussed in arXiv:0808.3977 [Batell et al.]
 - massless zero mode and KK tower
- Vector Modes
 - only zero mode: higher modes eaten by massive tensors
- Scalar Modes
 - gravi-scalar, F
 - scalar tower of η

$$ds^2=e^{2(F-A(z))}\Big[ig((1-2F)\eta_{\mu
u}+h_{\mu
u}ig)dx^\mu dx^
u+2A_\mu dx^\mu dz+dz^2\Big]$$
 $\eta=\langle\eta
angle+ ilde\eta$

- Tensor Modes
 - Discussed in arXiv:0808.3977 [Batell et al.]
 - massless zero mode and KK tower
- Vector Modes
 - only zero mode: higher modes eaten by massive tensors
- Scalar Modes
 - gravi-scalar, F
 - scalar tower of η

• Gravi-scalar mixes with scalar η

Pirsa: 10050014 Page 1251/1362

- Gravi-scalar mixes with scalar η
- Careful decomposition required [Kiritsis & Nitti]
 - must treat massless and massive modes separately

Pirsa: 10050014 Page 1252/1362

- Gravi-scalar mixes with scalar η
- Careful decomposition required [Kiritsis & Nitti]
 - must treat massless and massive modes separately
 - massive modes dynamical variable

$$v = -\sqrt{2}e^{-3A(z)/2}\frac{\left\langle \eta \right\rangle'}{A'(z)} \left(-\frac{1}{2}F + \frac{A'(z)}{\left\langle \eta \right\rangle'}\tilde{\eta} \right)$$

two massless modes

$$\zeta = -\frac{1}{2}F + \frac{A'(z)}{\langle \eta \rangle'}\tilde{\eta}$$
 & $\sigma = -\frac{A'(z)}{\langle \eta \rangle'}\tilde{\eta}$

- Gravi-scalar mixes with scalar η
- Careful decomposition required [Kiritsis & Nitti]
 - must treat massless and massive modes separately
 - massive modes dynamical variable

$$v = -\sqrt{2}e^{-3A(z)/2}\frac{\left\langle \eta \right\rangle'}{A'(z)} \left(-\frac{1}{2}F + \frac{A'(z)}{\left\langle \eta \right\rangle'}\tilde{\eta} \right)$$

two massless modes

$$\zeta = -\frac{1}{2}F + \frac{A'(z)}{\langle \eta \rangle'}\tilde{\eta}$$
 & $\sigma = -\frac{A'(z)}{\langle \eta \rangle'}\tilde{\eta}$

- Gravi-scalar mixes with scalar η
- Careful decomposition required [Kiritsis & Nitti]
 - must treat massless and massive modes separately
 - massive modes dynamical variable

$$v = -\sqrt{2}e^{-3A(z)/2}\frac{\left\langle \eta \right\rangle'}{A'(z)} \left(-\frac{1}{2}F + \frac{A'(z)}{\left\langle \eta \right\rangle'}\tilde{\eta} \right)$$

two massless modes

$$\zeta = -\frac{1}{2}F + \frac{A'(z)}{\langle \eta \rangle'}\tilde{\eta}$$
 & $\sigma = -\frac{A'(z)}{\langle \eta \rangle'}\tilde{\eta}$

- Gravi-scalar mixes with scalar η
- Careful decomposition required [Kiritsis & Nitti]
 - must treat massless and massive modes separately
 - massive modes dynamical variable

$$v = -\sqrt{2}e^{-3A(z)/2}\frac{\left\langle \eta \right\rangle'}{A'(z)} \left(-\frac{1}{2}F + \frac{A'(z)}{\left\langle \eta \right\rangle'}\tilde{\eta} \right)$$

two massless modes

$$\zeta = -\frac{1}{2}F + \frac{A'(z)}{\langle \eta \rangle'}\tilde{\eta}$$
 & $\sigma = -\frac{A'(z)}{\langle \eta \rangle'}\tilde{\eta}$

- Gravi-scalar mixes with scalar η
- Careful decomposition required [Kiritsis & Nitti]
 - must treat massless and massive modes separately
 - massive modes dynamical variable

$$v = -\sqrt{2}e^{-3A(z)/2}\frac{\left\langle \eta \right\rangle'}{A'(z)} \left(-\frac{1}{2}F + \frac{A'(z)}{\left\langle \eta \right\rangle'}\tilde{\eta} \right)$$

two massless modes

$$\zeta = -\frac{1}{2}F + \frac{A'(z)}{\langle \eta \rangle'}\tilde{\eta}$$
 & $\sigma = -\frac{A'(z)}{\langle \eta \rangle'}\tilde{\eta}$

- Gravi-scalar mixes with scalar η
- Careful decomposition required [Kiritsis & Nitti]
 - must treat massless and massive modes separately
 - massive modes dynamical variable

$$v = -\sqrt{2}e^{-3A(z)/2}\frac{\left\langle \eta \right\rangle'}{A'(z)} \left(-\frac{1}{2}F + \frac{A'(z)}{\left\langle \eta \right\rangle'}\tilde{\eta} \right)$$

two massless modes

$$\zeta = -\frac{1}{2}F + \frac{A'(z)}{\langle \eta \rangle'}\tilde{\eta}$$
 & $\sigma = -\frac{A'(z)}{\langle \eta \rangle'}\tilde{\eta}$

- Gravi-scalar mixes with scalar η
- Careful decomposition required [Kiritsis & Nitti]
 - must treat massless and massive modes separately
 - massive modes dynamical variable

$$v = -\sqrt{2}e^{-3A(z)/2}\frac{\left\langle \eta \right\rangle'}{A'(z)} \left(-\frac{1}{2}F + \frac{A'(z)}{\left\langle \eta \right\rangle'}\tilde{\eta} \right)$$

two massless modes

$$\zeta = -\frac{1}{2}F + \frac{A'(z)}{\langle \eta \rangle'}\tilde{\eta}$$
 & $\sigma = -\frac{A'(z)}{\langle \eta \rangle'}\tilde{\eta}$

- Gravi-scalar mixes with scalar η
- Careful decomposition required [Kiritsis & Nitti]
 - must treat massless and massive modes separately
 - massive modes dynamical variable

$$v = -\sqrt{2}e^{-3A(z)/2}\frac{\left\langle \eta \right\rangle'}{A'(z)} \left(-\frac{1}{2}F + \frac{A'(z)}{\left\langle \eta \right\rangle'}\tilde{\eta} \right)$$

two massless modes

$$\zeta = -\frac{1}{2}F + \frac{A'(z)}{\langle \eta \rangle'}\tilde{\eta}$$
 & $\sigma = -\frac{A'(z)}{\langle \eta \rangle'}\tilde{\eta}$

- Gravi-scalar mixes with scalar η
- Careful decomposition required [Kiritsis & Nitti]
 - must treat massless and massive modes separately
 - massive modes dynamical variable

$$v = -\sqrt{2}e^{-3A(z)/2}\frac{\left\langle \eta \right\rangle'}{A'(z)}\left(-\frac{1}{2}F + \frac{A'(z)}{\left\langle \eta \right\rangle'}\tilde{\eta}\right)$$

two massless modes

$$\zeta = -\frac{1}{2}F + \frac{A'(z)}{\langle \eta \rangle'}\tilde{\eta}$$
 & $\sigma = -\frac{A'(z)}{\langle \eta \rangle'}\tilde{\eta}$

- Gravi-scalar mixes with scalar η
- Careful decomposition required [Kiritsis & Nitti]
 - must treat massless and massive modes separately
 - massive modes dynamical variable

$$v = -\sqrt{2}e^{-3A(z)/2}\frac{\left\langle \eta \right\rangle'}{A'(z)} \left(-\frac{1}{2}F + \frac{A'(z)}{\left\langle \eta \right\rangle'}\tilde{\eta} \right)$$

two massless modes

$$\zeta = -\frac{1}{2}F + \frac{A'(z)}{\langle \eta \rangle'}\tilde{\eta}$$
 & $\sigma = -\frac{A'(z)}{\langle \eta \rangle'}\tilde{\eta}$

- Gravi-scalar mixes with scalar η
- Careful decomposition required [Kiritsis & Nitti]
 - must treat massless and massive modes separately
 - massive modes dynamical variable

$$v = -\sqrt{2}e^{-3A(z)/2}\frac{\left\langle \eta \right\rangle'}{A'(z)}\left(-\frac{1}{2}F + \frac{A'(z)}{\left\langle \eta \right\rangle'}\tilde{\eta}\right)$$

two massless modes

$$\zeta = -\frac{1}{2}F + \frac{A'(z)}{\langle \eta \rangle'}\tilde{\eta}$$
 & $\sigma = -\frac{A'(z)}{\langle \eta \rangle'}\tilde{\eta}$

- Gravi-scalar mixes with scalar η
- Careful decomposition required [Kiritsis & Nitti]
 - must treat massless and massive modes separately
 - massive modes dynamical variable

$$v = -\sqrt{2}e^{-3A(z)/2}\frac{\left\langle \eta \right\rangle'}{A'(z)} \left(-\frac{1}{2}F + \frac{A'(z)}{\left\langle \eta \right\rangle'}\tilde{\eta} \right)$$

two massless modes

$$\zeta = -\frac{1}{2}F + \frac{A'(z)}{\langle \eta \rangle'}\tilde{\eta}$$
 & $\sigma = -\frac{A'(z)}{\langle \eta \rangle'}\tilde{\eta}$

- Massive modes Schrödinger Potential
 - Behavior similar to massive tensors

$$\nu > 1$$
 $z \to \infty \Rightarrow V_{SE} \to \infty$

$$\nu = 1$$
 $Z \to \infty \Rightarrow V_{SE} \to \mu^2$

$$\nu < 1$$
 $Z \rightarrow \infty \Rightarrow V_{SF} \rightarrow 0$

- Massive modes Schrödinger Potential
 - Behavior similar to massive tensors

$$\nu > 1$$
 $z \to \infty \Rightarrow V_{SF} \to \infty$

$$\nu = 1$$
 $Z \to \infty \Rightarrow V_{SE} \to \mu^2$

$$\nu < 1$$
 $Z \rightarrow \infty \Rightarrow V_{SF} \rightarrow 0$

Pirsa: 10050014 Page 1266/13

- Massive modes Schrödinger Potential
 - Behavior similar to massive tensors

$$\nu > 1$$
 $z \to \infty \Rightarrow V_{SE} \to \infty$

$$\nu = 1$$
 $Z \to \infty \Rightarrow V_{SE} \to \mu^2$

$$\nu < 1$$
 $Z \rightarrow \infty \Rightarrow V_{SF} \rightarrow 0$

- Massive modes Schrödinger Potential
 - Behavior similar to massive tensors

$$\nu > 1$$
 $Z \to \infty \Rightarrow V_{SF} \to \infty$

$$\nu = 1$$
 $Z \to \infty \Rightarrow V_{SE} \to \mu^2$

$$\nu < 1$$
 $Z \rightarrow \infty \Rightarrow V_{SF} \rightarrow 0$

- Massive modes Schrödinger Potential
 - Behavior similar to massive tensors

$$\nu > 1$$
 $z \to \infty \Rightarrow V_{SE} \to \infty$

$$\nu = 1$$
 $Z \to \infty \Rightarrow V_{SE} \to \mu^2$

$$\nu < 1$$
 $Z \rightarrow \infty \Rightarrow V_{SF} \rightarrow 0$

- Massive modes Schrödinger Potential
 - Behavior similar to massive tensors

$$\nu > 1$$
 $z \to \infty \Rightarrow V_{SE} \to \infty$

$$\nu = 1$$
 $Z \to \infty \Rightarrow V_{SE} \to \mu^2$

$$\nu < 1$$
 $z \rightarrow \infty \Rightarrow V_{SF} \rightarrow 0$

- Massive modes Schrödinger Potential
 - Behavior similar to massive tensors

$$\nu > 1$$
 $z \to \infty \Rightarrow V_{SF} \to \infty$

$$\nu = 1$$
 $Z \to \infty \Rightarrow V_{SE} \to \mu^2$

$$\nu < 1$$
 $Z \rightarrow \infty \Rightarrow V_{SF} \rightarrow 0$

- Massive modes Schrödinger Potential
 - Behavior similar to massive tensors

$$\nu > 1$$
 $z \to \infty \Rightarrow V_{SE} \to \infty$

$$\nu = 1$$
 $Z \to \infty \Rightarrow V_{SE} \to \mu^2$

$$\nu < 1$$
 $Z \rightarrow \infty \Rightarrow V_{SF} \rightarrow 0$

- Massive modes Schrödinger Potential
 - Behavior similar to massive tensors

$$\nu > 1$$
 $Z \to \infty \Rightarrow V_{SF} \to \infty$

$$\nu = 1$$
 $z \to \infty \Rightarrow V_{SE} \to \mu^2$

$$\nu < 1$$
 $Z \rightarrow \infty \Rightarrow V_{SF} \rightarrow 0$

- Massive modes Schrödinger Potential
 - Behavior similar to massive tensors

$$\nu > 1$$
 $z \to \infty \Rightarrow V_{SF} \to \infty$

$$\nu = 1$$
 $Z \to \infty \Rightarrow V_{SE} \to \mu^2$

$$\nu < 1$$
 $z \rightarrow \infty \Rightarrow V_{SF} \rightarrow 0$

- Massive modes Schrödinger Potential
 - Behavior similar to massive tensors

$$\nu > 1$$
 $z \to \infty \Rightarrow V_{SF} \to \infty$

$$\nu = 1$$
 $Z \to \infty \Rightarrow V_{SE} \to \mu^2$

$$\nu < 1$$
 $Z \rightarrow \infty \Rightarrow V_{SF} \rightarrow 0$

Pirsa: 10050014 Page 127

- Massive modes Schrödinger Potential
 - Behavior similar to massive tensors

$$\nu > 1$$
 $z \to \infty \Rightarrow V_{SF} \to \infty$

$$\nu = 1$$
 $Z \to \infty \Rightarrow V_{SE} \to \mu^2$

$$\nu < 1$$
 $Z \rightarrow \infty \Rightarrow V_{SF} \rightarrow 0$

- Massive modes Schrödinger Potential
 - Behavior similar to massive tensors

$$\nu > 1$$
 $z \to \infty \Rightarrow V_{SE} \to \infty$

$$\nu = 1$$
 $Z \to \infty \Rightarrow V_{SE} \to \mu^2$

$$\nu < 1$$
 $Z \rightarrow \infty \Rightarrow V_{SF} \rightarrow 0$

- Massive modes Schrödinger Potential
 - Behavior similar to massive tensors

$$\nu > 1$$
 $z \to \infty \Rightarrow V_{SE} \to \infty$

$$\nu = 1$$
 $Z \to \infty \Rightarrow V_{SE} \to \mu^2$

$$\nu < 1$$
 $Z \rightarrow \infty \Rightarrow V_{SF} \rightarrow 0$

- Massive modes Schrödinger Potential
 - Behavior similar to massive tensors

$$\nu > 1$$
 $z \to \infty \Rightarrow V_{SF} \to \infty$

$$\nu = 1$$
 $Z \to \infty \Rightarrow V_{SE} \to \mu^2$

$$\nu < 1$$
 $Z \rightarrow \infty \Rightarrow V_{SF} \rightarrow 0$

- Massive modes Schrödinger Potential
 - Behavior similar to massive tensors

$$\nu > 1$$
 $Z \to \infty \Rightarrow V_{SF} \to \infty$

$$\nu = 1$$
 $Z \to \infty \Rightarrow V_{SE} \to \mu^2$

$$\nu < 1$$
 $Z \rightarrow \infty \Rightarrow V_{SF} \rightarrow 0$

- Massive modes Schrödinger Potential
 - Behavior similar to massive tensors

$$\nu > 1$$
 $z \to \infty \Rightarrow V_{SE} \to \infty$

$$\nu = 1$$
 $Z \to \infty \Rightarrow V_{SE} \to \mu^2$

$$\nu < 1$$
 $Z \rightarrow \infty \Rightarrow V_{SF} \rightarrow 0$

- Massive modes Schrödinger Potential
 - Behavior similar to massive tensors

$$\nu > 1$$
 $z \to \infty \Rightarrow V_{SF} \to \infty$

$$\nu = 1$$
 $z \to \infty \Rightarrow V_{SE} \to \mu^2$

$$\nu < 1$$
 $Z \rightarrow \infty \Rightarrow V_{SF} \rightarrow 0$

- Massive modes Schrödinger Potential
 - Behavior similar to massive tensors

$$\nu > 1$$
 $z \to \infty \Rightarrow V_{SE} \to \infty$

$$\nu = 1$$
 $Z \to \infty \Rightarrow V_{SE} \to \mu^2$

$$\nu < 1$$
 $Z \rightarrow \infty \Rightarrow V_{SF} \rightarrow 0$

- Massive modes Schrödinger Potential
 - Behavior similar to massive tensors

$$\nu > 1$$
 $z \to \infty \Rightarrow V_{SF} \to \infty$

$$\nu = 1$$
 $Z \to \infty \Rightarrow V_{SE} \to \mu^2$

$$\nu < 1$$
 $Z \rightarrow \infty \Rightarrow V_{SF} \rightarrow 0$

- Massive modes Schrödinger Potential
 - Behavior similar to massive tensors

$$\nu > 1$$
 $Z \to \infty \Rightarrow V_{SF} \to \infty$

$$\nu = 1$$
 $Z \to \infty \Rightarrow V_{SE} \to \mu^2$

$$\nu < 1$$
 $Z \rightarrow \infty \Rightarrow V_{SF} \rightarrow 0$

- Massive modes Schrödinger Potential
 - Behavior similar to massive tensors

$$\nu > 1$$
 $z \to \infty \Rightarrow V_{SE} \to \infty$

$$\nu = 1$$
 $Z \to \infty \Rightarrow V_{SE} \to \mu^2$

$$\nu < 1$$
 $Z \rightarrow \infty \Rightarrow V_{SF} \rightarrow 0$

- Massive modes Schrödinger Potential
 - Behavior similar to massive tensors

$$\nu > 1$$
 $z \to \infty \Rightarrow V_{SE} \to \infty$

$$\nu = 1$$
 $Z \to \infty \Rightarrow V_{SE} \to \mu^2$

$$\nu < 1$$
 $Z \rightarrow \infty \Rightarrow V_{SF} \rightarrow 0$

- Massive modes Schrödinger Potential
 - Behavior similar to massive tensors

$$\nu > 1$$
 $z \to \infty \Rightarrow V_{SE} \to \infty$

$$\nu = 1$$
 $Z \to \infty \Rightarrow V_{SE} \to \mu^2$

$$\nu < 1$$
 $Z \rightarrow \infty \Rightarrow V_{SF} \rightarrow 0$

- Massive modes Schrödinger Potential
 - Behavior similar to massive tensors

$$\nu > 1$$
 $z \to \infty \Rightarrow V_{SE} \to \infty$

$$\nu = 1$$
 $Z \to \infty \Rightarrow V_{SE} \to \mu^2$

$$\nu < 1$$
 $z \rightarrow \infty \Rightarrow V_{SE} \rightarrow 0$

• For ν < 1, $V_{\rm SE}$ > 0 for all z

- Massive modes Schrödinger Potential
 - Behavior similar to massive tensors

$$\nu > 1$$
 $z \to \infty \Rightarrow V_{SE} \to \infty$

$$\nu = 1$$
 $Z \to \infty \Rightarrow V_{SE} \to \mu^2$

$$\nu < 1$$
 $z \rightarrow \infty \Rightarrow V_{SE} \rightarrow 0$

• For ν < 1, $V_{\rm SE}$ > 0 for all z

 $m^2 > 0$ always \longrightarrow No 4D Tachyons!

- Massive modes Schrödinger Potential
 - Behavior similar to massive tensors

$$\nu > 1$$
 $z \to \infty \Rightarrow V_{SE} \to \infty$

$$\nu = 1$$
 $Z \to \infty \Rightarrow V_{SE} \to \mu^2$

$$\nu < 1$$
 $z \rightarrow \infty \Rightarrow V_{SE} \rightarrow 0$

• For ν < 1, $V_{\rm SE}$ > 0 for all z

 $m^2 > 0$ always \longrightarrow No 4D Tachyons!

$$\zeta' = 0 \qquad \partial_z \left(\frac{e^{-3A(z)}}{A'(z)} \sigma \right) = 2e^{-3A(z)} \zeta$$

$$\sigma|_{z=z_0} = 0 \qquad \partial_z \left(e^{-2A(z)} (\zeta + \sigma) \right) \Big|_{z=z_0} = 0$$

$$\sigma|_{z=z_0}=0$$

$$\partial_{z} \left(\frac{e^{-3A(z)}}{A'(z)} \sigma \right) = 2e^{-3A(z)} \zeta$$

$$\partial_{z} \left(e^{-2A(z)} (\zeta + \sigma) \right) \Big|_{z=z_{0}} = 0$$

Requires $\zeta = \zeta_0 = \text{constant}$

$$\sigma|_{z=z_0}=0$$

$$\partial_{z} \left(\frac{e^{-3A(z)}}{A'(z)} \sigma \right) = 2e^{-3A(z)} \zeta$$

$$\partial_{z} \left(e^{-2A(z)} (\zeta + \sigma) \right) \Big|_{z=z_{0}} = 0$$

Requires $\zeta = \zeta_0 = \text{constant}$

$$\zeta' = 0$$

$$\partial_{z} \left(\frac{e^{-3A(z)}}{A'(z)} \sigma \right) = 2e^{-3A(z)} \zeta$$

$$\sigma|_{z=z_0} = 0$$
 $\partial_z \left(e^{-2A(z)} (\zeta + \sigma) \right) \Big|_{z=z_0} = 0$

$$\zeta = \zeta_0$$
Requires $\sigma = \zeta_0 \big(f(z) - f(z_0) \big) + \sigma_0$

Pirsa: 10050014 Page 1295/1362

$$\zeta' = 0$$

$$\partial_z \left(\frac{e^{-3A(z)}}{A'(z)} \sigma \right) = 2e^{-3A(z)} \zeta$$

$$\sigma|_{z=z_0} = 0$$
 $\partial_z \left(e^{-2A(z)} (\zeta + \sigma) \right) \Big|_{z=z_0} = 0$

$$\zeta = \zeta_0$$
Requires $\sigma = \zeta_0 \big(f(z) - f(z_0) \big) + \sigma_0$

Pirsa: 10050014 Page 1296/1362

$$\zeta' = 0$$

$$\partial_z \left(\frac{e^{-3A(z)}}{A'(z)} \sigma \right) = 2e^{-3A(z)} \zeta$$

$$\sigma|_{z=z_0} = 0$$
 $\partial_z \left(e^{-2A(z)} (\zeta + \sigma) \right) \Big|_{z=z_0} = 0$

$$\zeta = \zeta_0$$
Requires $\sigma = \zeta_0 \big(f(z) - f(z_0) \big) + \sigma_0$

$$\zeta' = 0$$

$$\partial_z \left(\frac{e^{-3A(z)}}{A'(z)} \sigma \right) = 2e^{-3A(z)} \zeta$$

$$\sigma|_{z=z_0} = 0$$
 $\partial_z \left(e^{-2A(z)} (\zeta + \sigma) \right) \Big|_{z=z_0} = 0$

$$\zeta = \zeta_0$$
Requires $\sigma = \zeta_0 \big(f(z) - f(z_0) \big) + \sigma_0$

$$\zeta' = 0$$

$$\partial_z \left(\frac{e^{-3A(z)}}{A'(z)} \sigma \right) = 2e^{-3A(z)} \zeta$$

$$\sigma|_{z=z_0} = 0$$
 $\partial_z \left(e^{-2A(z)} (\zeta + \sigma) \right) \Big|_{z=z_0} = 0$

$$\zeta = \zeta_0$$
Requires $\sigma = \zeta_0 \big(f(z) - f(z_0) \big) + \sigma_0$

$$\zeta' = 0$$

$$\partial_z \left(\frac{e^{-3A(z)}}{A'(z)} \sigma \right) = 2e^{-3A(z)} \zeta$$

$$\sigma|_{z=z_0} = 0$$
 $\partial_z \left(e^{-2A(z)} (\zeta + \sigma) \right) \Big|_{z=z_0} = 0$

$$\zeta = \zeta_0$$
Requires $\sigma = \zeta_0 \big(f(z) - f(z_0) \big) + \sigma_0$

Pirsa: 10050014 Page 1300/1362

$$\zeta' = 0$$

$$\left.\sigma\right|_{z=z_0}=0$$

$$\partial_{z} \left(\frac{e^{-3A(z)}}{A'(z)} \sigma \right) = 2e^{-3A(z)} \zeta$$

$$\partial_{z} \left(e^{-2A(z)} (\zeta + \sigma) \right) \Big|_{z=z_{0}} = 0$$

$$\zeta = \zeta_0$$

$$\sigma = \zeta_0 (f(z) - f(z_0)) + \sigma_0$$

$$\zeta' = 0$$

$$\left.\sigma\right|_{z=z_0}=\mathbf{0}$$

$$\partial_{z} \left(\frac{e^{-3A(z)}}{A'(z)} \sigma \right) = 2e^{-3A(z)} \zeta$$

$$\partial_{z} \left(e^{-2A(z)} (\zeta + \sigma) \right) \Big|_{z=z_{0}} = 0$$

$$\zeta = \zeta_0$$

$$\sigma = \zeta_0 (f(z) - f(z_0)) + (\zeta_0)$$

$$\zeta' = 0 \qquad \qquad \partial_{Z} \left(\frac{e^{-3A(z)}}{A'(z)} \sigma \right) = 2e^{-3A(z)} \zeta$$

$$\sigma|_{z=z_{0}} = 0 \qquad \qquad \partial_{Z} \left(e^{-2A(z)} (\zeta + \sigma) \right) \Big|_{z=z_{0}} = 0$$

$$\zeta = \zeta_{0}$$

$$\sigma = \zeta_{0} \left(f(z) - f(z_{0}) \right)$$
Requires $\zeta_{0} \underbrace{\partial_{Z} g(z)|_{z=z_{0}}}_{\text{not zero}} = 0$

Pirsa: 10050014 Page 1303/1362

$$\zeta' = 0 \qquad \qquad \partial_{Z} \left(\frac{e^{-3A(z)}}{A'(z)} \sigma \right) = 2e^{-3A(z)} \zeta$$

$$\sigma|_{z=z_{0}} = 0 \qquad \qquad \partial_{Z} \left(e^{-2A(z)} (\zeta + \sigma) \right) \Big|_{z=z_{0}} = 0$$

$$\zeta = \zeta_{0}$$

$$\sigma = \zeta_{0} \left(f(z) - f(z_{0}) \right)$$
Requires $\zeta_{0} \underbrace{\partial_{Z} g(z)|_{z=z_{0}}}_{\text{not zero}} = 0$

Pirsa: 10050014 Page 1304/1362

$$\zeta' = 0 \qquad \qquad \partial_{Z} \left(\frac{e^{-3A(z)}}{A'(z)} \sigma \right) = 2e^{-3A(z)} \zeta$$

$$\sigma|_{z=z_{0}} = 0 \qquad \qquad \partial_{Z} \left(e^{-2A(z)} (\zeta + \sigma) \right) \Big|_{z=z_{0}} = 0$$

$$\zeta = \zeta_{0}$$

$$\sigma = \zeta_{0} \left(f(z) - f(z_{0}) \right)$$
Requires $\zeta_{0} \underbrace{\partial_{Z} g(z)|_{z=z_{0}}}_{\text{not zero}} = 0$

Pirsa: 10050014 Page 1305/1362

$$\zeta' = 0 \qquad \qquad \partial_{Z} \left(\frac{e^{-3A(z)}}{A'(z)} \sigma \right) = 2e^{-3A(z)} \zeta$$

$$\sigma|_{z=z_{0}} = 0 \qquad \qquad \partial_{Z} \left(e^{-2A(z)} (\zeta + \sigma) \right) \Big|_{z=z_{0}} = 0$$

$$\zeta = \zeta_{0}$$

$$\sigma = \zeta_{0} \left(f(z) - f(z_{0}) \right)$$
Requires $\zeta_{0} \underbrace{\partial_{Z} g(z)|_{z=z_{0}}}_{\text{not zero}} = 0$

Pirsa: 10050014 Page 1306/1362

$$\zeta' = 0 \qquad \qquad \partial_{Z} \left(\frac{e^{-3A(z)}}{A'(z)} \sigma \right) = 2e^{-3A(z)} \zeta$$

$$\sigma|_{z=z_{0}} = 0 \qquad \qquad \partial_{Z} \left(e^{-2A(z)} (\zeta + \sigma) \right) \Big|_{z=z_{0}} = 0$$

$$\zeta = \zeta_{0}$$

$$\sigma = \zeta_{0} \left(f(z) - f(z_{0}) \right)$$
Requires $\zeta_{0} \underbrace{\partial_{Z} g(z)|_{z=z_{0}}}_{\text{not zero}} = 0$

Pirsa: 10050014 Page 1307/1362

$$\zeta' = 0 \qquad \partial_{Z} \left(\frac{e^{-3A(z)}}{A'(z)} \sigma \right) = 2e^{-3A(z)} \zeta$$

$$\sigma|_{z=z_{0}} = 0 \qquad \partial_{Z} \left(e^{-2A(z)} (\zeta + \sigma) \right) \Big|_{z=z_{0}} = 0$$

$$\zeta = \zeta_{0}$$

$$\sigma = \zeta_{0} (f(z) - f(z_{0}))$$

$$\zeta_{0} \partial_{z} g(z)|_{z=z_{0}} = 0$$

$$\zeta_{0} = 0 \Rightarrow \text{No Massless Modes}$$

$$\zeta' = 0 \qquad \partial_{z} \left(\frac{e^{-3A(z)}}{A'(z)} \sigma \right) = 2e^{-3A(z)} \zeta$$

$$\sigma|_{z=z_{0}} = 0 \qquad \partial_{z} \left(e^{-2A(z)} (\zeta + \sigma) \right) \Big|_{z=z_{0}} = 0$$

$$\zeta = \zeta_{0}$$

$$\sigma = \zeta_{0} (f(z) - f(z_{0}))$$

$$\zeta_{0} \partial_{z} g(z)|_{z=z_{0}} = 0$$

$$\zeta_{0} = 0 \Rightarrow \text{No Massless Modes}$$

$$\zeta' = 0 \qquad \partial_{Z} \left(\frac{e^{-3A(z)}}{A'(z)} \sigma \right) = 2e^{-3A(z)} \zeta$$

$$\sigma|_{z=z_{0}} = 0 \qquad \partial_{Z} \left(e^{-2A(z)} (\zeta + \sigma) \right) \Big|_{z=z_{0}} = 0$$

$$\zeta = \zeta_{0}$$

$$\sigma = \zeta_{0} (f(z) - f(z_{0}))$$

$$\zeta_{0} \partial_{Z} g(z)|_{z=z_{0}} = 0$$

$$\zeta_{0} = 0 \Rightarrow \text{No Massless Modes}$$

$$\zeta' = 0 \qquad \partial_{z} \left(\frac{e^{-3A(z)}}{A'(z)} \sigma \right) = 2e^{-3A(z)} \zeta$$

$$\sigma|_{z=z_{0}} = 0 \qquad \partial_{z} \left(e^{-2A(z)} (\zeta + \sigma) \right) \Big|_{z=z_{0}} = 0$$

$$\zeta = \zeta_{0}$$

$$\sigma = \zeta_{0} (f(z) - f(z_{0}))$$

$$\zeta_{0} \partial_{z} g(z)|_{z=z_{0}} = 0$$

$$\zeta_{0} = 0 \Rightarrow \text{No Massless Modes}$$

$$\zeta' = 0 \qquad \partial_{Z} \left(\frac{e^{-3A(z)}}{A'(z)} \sigma \right) = 2e^{-3A(z)} \zeta$$

$$\sigma|_{z=z_{0}} = 0 \qquad \partial_{Z} \left(e^{-2A(z)} (\zeta + \sigma) \right) \Big|_{z=z_{0}} = 0$$

$$\zeta = \zeta_{0}$$

$$\sigma = \zeta_{0} (f(z) - f(z_{0}))$$

$$\zeta_{0} \partial_{z} g(z)|_{z=z_{0}} = 0$$

$$\zeta_{0} = 0 \Rightarrow \text{No Massless Modes}$$

$$\zeta' = 0 \qquad \partial_{z} \left(\frac{e^{-3A(z)}}{A'(z)} \sigma \right) = 2e^{-3A(z)} \zeta$$

$$\sigma|_{z=z_{0}} = 0 \qquad \partial_{z} \left(e^{-2A(z)} (\zeta + \sigma) \right) \Big|_{z=z_{0}} = 0$$

$$\zeta = \zeta_{0}$$

$$\sigma = \zeta_{0} (f(z) - f(z_{0}))$$

$$\zeta_{0} \partial_{z} g(z)|_{z=z_{0}} = 0$$

$$\zeta_{0} = 0 \Rightarrow \text{No Massless Modes}$$

$$\zeta' = 0 \qquad \partial_{z} \left(\frac{e^{-3A(z)}}{A'(z)} \sigma \right) = 2e^{-3A(z)} \zeta$$

$$\sigma|_{z=z_{0}} = 0 \qquad \partial_{z} \left(e^{-2A(z)} (\zeta + \sigma) \right) \Big|_{z=z_{0}} = 0$$

$$\zeta = \zeta_{0}$$

$$\sigma = \zeta_{0} (f(z) - f(z_{0}))$$

$$\zeta_{0} \partial_{z} g(z)|_{z=z_{0}} = 0$$

$$\zeta_{0} = 0 \Rightarrow \text{No Massless Modes}$$

$$\zeta' = 0 \qquad \partial_{z} \left(\frac{e^{-3A(z)}}{A'(z)} \sigma \right) = 2e^{-3A(z)} \zeta$$

$$\sigma|_{z=z_{0}} = 0 \qquad \partial_{z} \left(e^{-2A(z)} (\zeta + \sigma) \right) \Big|_{z=z_{0}} = 0$$

$$\zeta = \zeta_{0}$$

$$\sigma = \zeta_{0} (f(z) - f(z_{0}))$$

$$\zeta_{0} \partial_{z} g(z)|_{z=z_{0}} = 0$$

$$\zeta_{0} = 0 \Rightarrow \text{No Massless Modes}$$

$$\zeta' = 0 \qquad \partial_{z} \left(\frac{e^{-3A(z)}}{A'(z)} \sigma \right) = 2e^{-3A(z)} \zeta$$

$$\sigma|_{z=z_{0}} = 0 \qquad \partial_{z} \left(e^{-2A(z)} (\zeta + \sigma) \right) \Big|_{z=z_{0}} = 0$$

$$\zeta = \zeta_{0}$$

$$\sigma = \zeta_{0} (f(z) - f(z_{0}))$$

$$\zeta_{0} \partial_{z} g(z)|_{z=z_{0}} = 0$$

$$\zeta_{0} = 0 \Rightarrow \text{No Massless Modes}$$

$$\zeta' = 0 \qquad \partial_{Z} \left(\frac{e^{-3A(z)}}{A'(z)} \sigma \right) = 2e^{-3A(z)} \zeta$$

$$\sigma|_{z=z_{0}} = 0 \qquad \partial_{Z} \left(e^{-2A(z)} (\zeta + \sigma) \right) \Big|_{z=z_{0}} = 0$$

$$\zeta = \zeta_{0}$$

$$\sigma = \zeta_{0} (f(z) - f(z_{0}))$$

$$\zeta_{0} \partial_{z} g(z)|_{z=z_{0}} = 0$$

$$\zeta_{0} = 0 \Rightarrow \text{No Massless Modes}$$

Pirsa: 10050014 Page 1317/136

$$\zeta' = 0 \qquad \partial_{Z} \left(\frac{e^{-3A(z)}}{A'(z)} \sigma \right) = 2e^{-3A(z)} \zeta$$

$$\sigma|_{z=z_{0}} = 0 \qquad \partial_{Z} \left(e^{-2A(z)} (\zeta + \sigma) \right) \Big|_{z=z_{0}} = 0$$

$$\zeta = \zeta_{0}$$

$$\sigma = \zeta_{0} (f(z) - f(z_{0}))$$

$$\zeta_{0} \partial_{z} g(z)|_{z=z_{0}} = 0$$

$$\zeta_{0} = 0 \Rightarrow \text{No Massless Modes}$$

$$\zeta' = 0 \qquad \partial_{z} \left(\frac{e^{-3A(z)}}{A'(z)} \sigma \right) = 2e^{-3A(z)} \zeta$$

$$\sigma|_{z=z_{0}} = 0 \qquad \partial_{z} \left(e^{-2A(z)} (\zeta + \sigma) \right) \Big|_{z=z_{0}} = 0$$

$$\zeta = \zeta_{0}$$

$$\sigma = \zeta_{0} (f(z) - f(z_{0}))$$

$$\zeta_{0} \partial_{z} g(z)|_{z=z_{0}} = 0$$

$$\zeta_{0} = 0 \Rightarrow \text{No Massless Modes}$$

$$\zeta' = 0 \qquad \partial_{Z} \left(\frac{e^{-3A(z)}}{A'(z)} \sigma \right) = 2e^{-3A(z)} \zeta$$

$$\sigma|_{z=z_{0}} = 0 \qquad \partial_{Z} \left(e^{-2A(z)} (\zeta + \sigma) \right) \Big|_{z=z_{0}} = 0$$

$$\zeta = \zeta_{0}$$

$$\sigma = \zeta_{0} (f(z) - f(z_{0}))$$

$$\zeta_{0} \partial_{z} g(z)|_{z=z_{0}} = 0$$

$$\zeta_{0} = 0 \Rightarrow \text{No Massless Modes}$$

$$\zeta' = 0 \qquad \partial_{z} \left(\frac{e^{-3A(z)}}{A'(z)} \sigma \right) = 2e^{-3A(z)} \zeta$$

$$\sigma|_{z=z_{0}} = 0 \qquad \partial_{z} \left(e^{-2A(z)} (\zeta + \sigma) \right) \Big|_{z=z_{0}} = 0$$

$$\zeta = \zeta_{0}$$

$$\sigma = \zeta_{0} (f(z) - f(z_{0}))$$

$$\zeta_{0} \partial_{z} g(z)|_{z=z_{0}} = 0$$

$$\zeta_{0} = 0 \Rightarrow \text{No Massless Modes}$$

$$\zeta' = 0 \qquad \partial_{Z} \left(\frac{e^{-3A(z)}}{A'(z)} \sigma \right) = 2e^{-3A(z)} \zeta$$

$$\sigma|_{z=z_{0}} = 0 \qquad \partial_{Z} \left(e^{-2A(z)} (\zeta + \sigma) \right) \Big|_{z=z_{0}} = 0$$

$$\zeta = \zeta_{0}$$

$$\sigma = \zeta_{0} (f(z) - f(z_{0}))$$

$$\zeta_{0} \partial_{z} g(z)|_{z=z_{0}} = 0$$

$$\zeta_{0} = 0 \Rightarrow \text{No Massless Modes}$$

$$\zeta' = 0 \qquad \partial_{Z} \left(\frac{e^{-3A(z)}}{A'(z)} \sigma \right) = 2e^{-3A(z)} \zeta$$

$$\sigma|_{z=z_{0}} = 0 \qquad \partial_{Z} \left(e^{-2A(z)} (\zeta + \sigma) \right) \Big|_{z=z_{0}} = 0$$

$$\zeta = \zeta_{0}$$

$$\sigma = \zeta_{0} (f(z) - f(z_{0}))$$

$$\zeta_{0} \partial_{Z} g(z)|_{z=z_{0}} = 0$$

$$\zeta_{0} = 0 \Rightarrow \text{No Massless Modes}$$

$$\zeta' = 0 \qquad \partial_{z} \left(\frac{e^{-3A(z)}}{A'(z)} \sigma \right) = 2e^{-3A(z)} \zeta$$

$$\sigma|_{z=z_{0}} = 0 \qquad \partial_{z} \left(e^{-2A(z)} (\zeta + \sigma) \right) \Big|_{z=z_{0}} = 0$$

$$\zeta = \zeta_{0}$$

$$\sigma = \zeta_{0} (f(z) - f(z_{0}))$$

$$\zeta_{0} \partial_{z} g(z)|_{z=z_{0}} = 0$$

$$\zeta_{0} = 0 \Rightarrow \text{No Massless Modes}$$

$$\zeta' = 0 \qquad \partial_{z} \left(\frac{e^{-3A(z)}}{A'(z)} \sigma \right) = 2e^{-3A(z)} \zeta$$

$$\sigma|_{z=z_{0}} = 0 \qquad \partial_{z} \left(e^{-2A(z)} (\zeta + \sigma) \right) \Big|_{z=z_{0}} = 0$$

$$\zeta = \zeta_{0}$$

$$\sigma = \zeta_{0} (f(z) - f(z_{0}))$$

$$\zeta_{0} \partial_{z} g(z)|_{z=z_{0}} = 0$$

$$\zeta_{0} = 0 \Rightarrow \text{No Massless Modes}$$

$$\zeta' = 0 \qquad \partial_{z} \left(\frac{e^{-3A(z)}}{A'(z)} \sigma \right) = 2e^{-3A(z)} \zeta$$

$$\sigma|_{z=z_{0}} = 0 \qquad \partial_{z} \left(e^{-2A(z)} (\zeta + \sigma) \right) \Big|_{z=z_{0}} = 0$$

$$\zeta = \zeta_{0}$$

$$\sigma = \zeta_{0} (f(z) - f(z_{0}))$$

$$\zeta_{0} \partial_{z} g(z)|_{z=z_{0}} = 0$$

$$\zeta_{0} = 0 \Rightarrow \text{No Massless Modes}$$

$$\zeta' = 0 \qquad \partial_{Z} \left(\frac{e^{-3A(z)}}{A'(z)} \sigma \right) = 2e^{-3A(z)} \zeta$$

$$\sigma|_{z=z_{0}} = 0 \qquad \partial_{Z} \left(e^{-2A(z)} (\zeta + \sigma) \right) \Big|_{z=z_{0}} = 0$$

$$\zeta = \zeta_{0}$$

$$\sigma = \zeta_{0} (f(z) - f(z_{0}))$$

$$\zeta_{0} \partial_{z} g(z)|_{z=z_{0}} = 0$$

$$\zeta_{0} = 0 \Rightarrow \text{No Massless Modes}$$

$$\zeta' = 0 \qquad \partial_{z} \left(\frac{e^{-3A(z)}}{A'(z)} \sigma \right) = 2e^{-3A(z)} \zeta$$

$$\sigma|_{z=z_{0}} = 0 \qquad \partial_{z} \left(e^{-2A(z)} (\zeta + \sigma) \right) \Big|_{z=z_{0}} = 0$$

$$\zeta = \zeta_{0}$$

$$\sigma = \zeta_{0} (f(z) - f(z_{0}))$$

$$\zeta_{0} \partial_{z} g(z)|_{z=z_{0}} = 0$$

$$\zeta_{0} = 0 \Rightarrow \text{No Massless Modes}$$

$$\zeta' = 0 \qquad \partial_{z} \left(\frac{e^{-3A(z)}}{A'(z)} \sigma \right) = 2e^{-3A(z)} \zeta$$

$$\sigma|_{z=z_{0}} = 0 \qquad \partial_{z} \left(e^{-2A(z)} (\zeta + \sigma) \right) \Big|_{z=z_{0}} = 0$$

$$\zeta = \zeta_{0}$$

$$\sigma = \zeta_{0} (f(z) - f(z_{0}))$$

$$\zeta_{0} \partial_{z} g(z)|_{z=z_{0}} = 0$$

$$\zeta_{0} = 0 \Rightarrow \text{No Massless Modes}$$

$$\zeta' = 0 \qquad \partial_{z} \left(\frac{e^{-3A(z)}}{A'(z)} \sigma \right) = 2e^{-3A(z)} \zeta$$

$$\sigma|_{z=z_{0}} = 0 \qquad \partial_{z} \left(e^{-2A(z)} (\zeta + \sigma) \right) \Big|_{z=z_{0}} = 0$$

$$\zeta = \zeta_{0}$$

$$\sigma = \zeta_{0} (f(z) - f(z_{0}))$$

$$\zeta_{0} \partial_{z} g(z)|_{z=z_{0}} = 0$$

$$\zeta_{0} = 0 \Rightarrow \text{No Massless Modes}$$

$$\zeta' = 0 \qquad \partial_{Z} \left(\frac{e^{-3A(z)}}{A'(z)} \sigma \right) = 2e^{-3A(z)} \zeta$$

$$\sigma|_{z=z_{0}} = 0 \qquad \partial_{Z} \left(e^{-2A(z)} (\zeta + \sigma) \right) \Big|_{z=z_{0}} = 0$$

$$\zeta = \zeta_{0}$$

$$\sigma = \zeta_{0} (f(z) - f(z_{0}))$$

$$\zeta_{0} \partial_{z} g(z)|_{z=z_{0}} = 0$$

$$\zeta_{0} = 0 \Rightarrow \text{No Massless Modes}$$

$$\zeta' = 0 \qquad \partial_{Z} \left(\frac{e^{-3A(z)}}{A'(z)} \sigma \right) = 2e^{-3A(z)} \zeta$$

$$\sigma|_{z=z_{0}} = 0 \qquad \partial_{Z} \left(e^{-2A(z)} (\zeta + \sigma) \right) \Big|_{z=z_{0}} = 0$$

$$\zeta = \zeta_{0}$$

$$\sigma = \zeta_{0} (f(z) - f(z_{0}))$$

$$\zeta_{0} \partial_{z} g(z)|_{z=z_{0}} = 0$$

$$\zeta_{0} = 0 \Rightarrow \text{No Massless Modes}$$

$$\zeta' = 0 \qquad \partial_{z} \left(\frac{e^{-3A(z)}}{A'(z)} \sigma \right) = 2e^{-3A(z)} \zeta$$

$$\sigma|_{z=z_{0}} = 0 \qquad \partial_{z} \left(e^{-2A(z)} (\zeta + \sigma) \right) \Big|_{z=z_{0}} = 0$$

$$\zeta = \zeta_{0}$$

$$\sigma = \zeta_{0} (f(z) - f(z_{0}))$$

$$\zeta_{0} \partial_{z} g(z)|_{z=z_{0}} = 0$$

$$\zeta_{0} = 0 \Rightarrow \text{No Massless Modes}$$

$$\zeta' = 0 \qquad \partial_{Z} \left(\frac{e^{-3A(z)}}{A'(z)} \sigma \right) = 2e^{-3A(z)} \zeta$$

$$\sigma|_{z=z_{0}} = 0 \qquad \partial_{Z} \left(e^{-2A(z)} (\zeta + \sigma) \right) \Big|_{z=z_{0}} = 0$$

$$\zeta = \zeta_{0}$$

$$\sigma = \zeta_{0} (f(z) - f(z_{0}))$$

$$\zeta_{0} \partial_{Z} g(z)|_{z=z_{0}} = 0$$

$$\zeta_{0} = 0 \Rightarrow \text{No Massless Modes}$$

$$\zeta' = 0 \qquad \partial_{Z} \left(\frac{e^{-3A(z)}}{A'(z)} \sigma \right) = 2e^{-3A(z)} \zeta$$

$$\sigma|_{z=z_{0}} = 0 \qquad \partial_{Z} \left(e^{-2A(z)} (\zeta + \sigma) \right) \Big|_{z=z_{0}} = 0$$

$$\zeta = \zeta_{0}$$

$$\sigma = \zeta_{0} (f(z) - f(z_{0}))$$

$$\zeta_{0} \partial_{z} g(z)|_{z=z_{0}} = 0$$

$$\zeta_{0} = 0 \Rightarrow \text{No Massless Modes}$$

$$\zeta' = 0 \qquad \partial_{Z} \left(\frac{e^{-3A(z)}}{A'(z)} \sigma \right) = 2e^{-3A(z)} \zeta$$

$$\sigma|_{z=z_{0}} = 0 \qquad \partial_{Z} \left(e^{-2A(z)} (\zeta + \sigma) \right) \Big|_{z=z_{0}} = 0$$

$$\zeta = \zeta_{0}$$

$$\sigma = \zeta_{0} (f(z) - f(z_{0}))$$

$$\zeta_{0} \partial_{z} g(z)|_{z=z_{0}} = 0$$

$$\zeta_{0} = 0 \Rightarrow \text{No Massless Modes}$$

$$\zeta' = 0 \qquad \partial_{z} \left(\frac{e^{-3A(z)}}{A'(z)} \sigma \right) = 2e^{-3A(z)} \zeta$$

$$\sigma|_{z=z_{0}} = 0 \qquad \partial_{z} \left(e^{-2A(z)} (\zeta + \sigma) \right) \Big|_{z=z_{0}} = 0$$

$$\zeta = \zeta_{0}$$

$$\sigma = \zeta_{0} (f(z) - f(z_{0}))$$

$$\zeta_{0} \partial_{z} g(z)|_{z=z_{0}} = 0$$

$$\zeta_{0} = 0 \Rightarrow \text{No Massless Modes}$$

$$\zeta' = 0 \qquad \partial_{Z} \left(\frac{e^{-3A(z)}}{A'(z)} \sigma \right) = 2e^{-3A(z)} \zeta$$

$$\sigma|_{z=z_{0}} = 0 \qquad \partial_{Z} \left(e^{-2A(z)} (\zeta + \sigma) \right) \Big|_{z=z_{0}} = 0$$

$$\zeta = \zeta_{0}$$

$$\sigma = \zeta_{0} (f(z) - f(z_{0}))$$

$$\zeta_{0} \partial_{z} g(z)|_{z=z_{0}} = 0$$

$$\zeta_{0} = 0 \Rightarrow \text{No Massless Modes}$$

$$\zeta' = 0 \qquad \partial_{z} \left(\frac{e^{-3A(z)}}{A'(z)} \sigma \right) = 2e^{-3A(z)} \zeta$$

$$\sigma|_{z=z_{0}} = 0 \qquad \partial_{z} \left(e^{-2A(z)} (\zeta + \sigma) \right) \Big|_{z=z_{0}} = 0$$

$$\zeta = \zeta_{0}$$

$$\sigma = \zeta_{0} (f(z) - f(z_{0}))$$

$$\zeta_{0} \partial_{z} g(z)|_{z=z_{0}} = 0$$

$$\zeta_{0} = 0 \Rightarrow \text{No Massless Modes}$$

$$\zeta' = 0 \qquad \partial_{Z} \left(\frac{e^{-3A(z)}}{A'(z)} \sigma \right) = 2e^{-3A(z)} \zeta$$

$$\sigma|_{z=z_{0}} = 0 \qquad \partial_{Z} \left(e^{-2A(z)} (\zeta + \sigma) \right) \Big|_{z=z_{0}} = 0$$

$$\zeta = \zeta_{0}$$

$$\sigma = \zeta_{0} (f(z) - f(z_{0}))$$

$$\zeta_{0} \partial_{z} g(z)|_{z=z_{0}} = 0$$

$$\zeta_{0} = 0 \Rightarrow \text{No Massless Modes}$$

$$\zeta' = 0 \qquad \partial_{Z} \left(\frac{e^{-3A(z)}}{A'(z)} \sigma \right) = 2e^{-3A(z)} \zeta$$

$$\sigma|_{z=z_{0}} = 0 \qquad \partial_{Z} \left(e^{-2A(z)} (\zeta + \sigma) \right) \Big|_{z=z_{0}} = 0$$

$$\zeta = \zeta_{0}$$

$$\sigma = \zeta_{0} (f(z) - f(z_{0}))$$

$$\zeta_{0} \partial_{z} g(z)|_{z=z_{0}} = 0$$

$$\zeta_{0} = 0 \Rightarrow \text{No Massless Modes}$$

$$\zeta' = 0 \qquad \partial_{z} \left(\frac{e^{-3A(z)}}{A'(z)} \sigma \right) = 2e^{-3A(z)} \zeta$$

$$\sigma|_{z=z_{0}} = 0 \qquad \partial_{z} \left(e^{-2A(z)} (\zeta + \sigma) \right) \Big|_{z=z_{0}} = 0$$

$$\zeta = \zeta_{0}$$

$$\sigma = \zeta_{0} (f(z) - f(z_{0}))$$

$$\zeta_{0} \partial_{z} g(z)|_{z=z_{0}} = 0$$

$$\zeta_{0} = 0 \Rightarrow \text{No Massless Modes}$$

$$\zeta' = 0 \qquad \partial_{Z} \left(\frac{e^{-3A(z)}}{A'(z)} \sigma \right) = 2e^{-3A(z)} \zeta$$

$$\sigma|_{z=z_{0}} = 0 \qquad \partial_{Z} \left(e^{-2A(z)} (\zeta + \sigma) \right) \Big|_{z=z_{0}} = 0$$

$$\zeta = \zeta_{0}$$

$$\sigma = \zeta_{0} (f(z) - f(z_{0}))$$

$$\zeta_{0} \partial_{z} g(z)|_{z=z_{0}} = 0$$

$$\zeta_{0} = 0 \Rightarrow \text{No Massless Modes}$$

$$\zeta' = 0 \qquad \partial_{Z} \left(\frac{e^{-3A(z)}}{A'(z)} \sigma \right) = 2e^{-3A(z)} \zeta$$

$$\sigma|_{z=z_{0}} = 0 \qquad \partial_{Z} \left(e^{-2A(z)} (\zeta + \sigma) \right) \Big|_{z=z_{0}} = 0$$

$$\zeta = \zeta_{0}$$

$$\sigma = \zeta_{0} (f(z) - f(z_{0}))$$

$$\zeta_{0} \partial_{Z} g(z)|_{z=z_{0}} = 0$$

$$\zeta_{0} = 0 \Rightarrow \text{No Massless Modes}$$

$$\zeta' = 0 \qquad \partial_{z} \left(\frac{e^{-3A(z)}}{A'(z)} \sigma \right) = 2e^{-3A(z)} \zeta$$

$$\sigma|_{z=z_{0}} = 0 \qquad \partial_{z} \left(e^{-2A(z)} (\zeta + \sigma) \right) \Big|_{z=z_{0}} = 0$$

$$\zeta = \zeta_{0}$$

$$\sigma = \zeta_{0} (f(z) - f(z_{0}))$$

$$\zeta_{0} \partial_{z} g(z)|_{z=z_{0}} = 0$$

$$\zeta_{0} = 0 \Rightarrow \text{No Massless Modes}$$

$$\zeta' = 0 \qquad \partial_{Z} \left(\frac{e^{-3A(z)}}{A'(z)} \sigma \right) = 2e^{-3A(z)} \zeta$$

$$\sigma|_{z=z_{0}} = 0 \qquad \partial_{Z} \left(e^{-2A(z)} (\zeta + \sigma) \right) \Big|_{z=z_{0}} = 0$$

$$\zeta = \zeta_{0}$$

$$\sigma = \zeta_{0} (f(z) - f(z_{0}))$$

$$\zeta_{0} \partial_{z} g(z)|_{z=z_{0}} = 0$$

$$\zeta_{0} = 0 \Rightarrow \text{No Massless Modes}$$

$$\zeta' = 0 \qquad \partial_{Z} \left(\frac{e^{-3A(z)}}{A'(z)} \sigma \right) = 2e^{-3A(z)} \zeta$$

$$\sigma|_{z=z_{0}} = 0 \qquad \partial_{Z} \left(e^{-2A(z)} (\zeta + \sigma) \right) \Big|_{z=z_{0}} = 0$$

$$\zeta = \zeta_{0}$$

$$\sigma = \zeta_{0} (f(z) - f(z_{0}))$$

$$\zeta_{0} \partial_{z} g(z)|_{z=z_{0}} = 0$$

$$\zeta_{0} = 0 \Rightarrow \text{No Massless Modes}$$

calar Modes - No Massless - Physical Reason

Can better understand lack of massless modes

Pirsa: 10050014 Page 1348/1362

$$V = -12k^{2} + \frac{1}{2}m_{\phi}^{2}\phi^{2} - \frac{\lambda}{12}\phi^{4}$$

$$\lambda_{UV} = 12k^{2} - u\phi_{UV} - 2u\phi_{UV}(\phi - \phi_{UV}) + \frac{1}{2}\mu_{UV}(\phi - \phi_{UV})^{2}$$

$$m_{\phi}^{2} = 4ku + u^{2}$$

$$\lambda = u^{2}$$

$$A(y) = ky + \frac{1}{24}\left(\langle\phi\rangle^{2} - \langle\phi\rangle_{UV}^{2}\right)$$

$$\langle\phi\rangle = \phi_{UV}e^{-uy}$$

- Examined Planck weak Hierarchy for Batell-Gherghetta Soft-Wall
- Found natural hierarchy for $\nu < 1$
- ν < 1 corresponds to fractional-dimension operators in dual theory
- ν < 1 also implies a continuum of modes in the 5D theory
- Thus, natural hierarchy implies unparticles
- Furthermore, can get phenomenologically viable Standard Model Fields

- Examined Planck weak Hierarchy for Batell-Gherghetta Soft-Wall
- Found natural hierarchy for $\nu < 1$
- ν < 1 corresponds to fractional-dimension operators in dual theory
- ν < 1 also implies a continuum of modes in the 5D theory
- Thus, natural hierarchy implies unparticles
- Furthermore, can get phenomenologically viable Standard Model Fields

- Examined Planck weak Hierarchy for Batell-Gherghetta Soft-Wall
- Found natural hierarchy for $\nu < 1$
- ν < 1 corresponds to fractional-dimension operators in dual theory
- ν < 1 also implies a continuum of modes in the 5D theory
- Thus, natural hierarchy implies unparticles
- Furthermore, can get phenomenologically viable Standard Model Fields

- Examined Planck weak Hierarchy for Batell-Gherghetta Soft-Wall
- Found natural hierarchy for $\nu < 1$
- ν < 1 corresponds to fractional-dimension operators in dual theory
- ν < 1 also implies a continuum of modes in the 5D theory
- Thus, natural hierarchy implies unparticles
- Furthermore, can get phenomenologically viable Standard Model Fields

- Examined Planck weak Hierarchy for Batell-Gherghetta Soft-Wall
- Found natural hierarchy for $\nu < 1$
- ν < 1 corresponds to fractional-dimension operators in dual theory
- ν < 1 also implies a continuum of modes in the 5D theory
- Thus, natural hierarchy implies unparticles
- Furthermore, can get phenomenologically viable Standard Model Fields

- Examined Planck weak Hierarchy for Batell-Gherghetta Soft-Wall
- Found natural hierarchy for $\nu < 1$
- ν < 1 corresponds to fractional-dimension operators in dual theory
- ν < 1 also implies a continuum of modes in the 5D theory
- Thus, natural hierarchy implies unparticles
- Furthermore, can get phenomenologically viable Standard Model Fields

- Examined Planck weak Hierarchy for Batell-Gherghetta Soft-Wall
- Found natural hierarchy for $\nu < 1$
- ν < 1 corresponds to fractional-dimension operators in dual theory
- ν < 1 also implies a continuum of modes in the 5D theory
- Thus, natural hierarchy implies unparticles
- Furthermore, can get phenomenologically viable Standard Model Fields

- Examined Planck weak Hierarchy for Batell-Gherghetta Soft-Wall
- Found natural hierarchy for $\nu < 1$
- ν < 1 corresponds to fractional-dimension operators in dual theory
- ν < 1 also implies a continuum of modes in the 5D theory
- Thus, natural hierarchy implies unparticles
- Furthermore, can get phenomenologically viable Standard Model Fields

- Examined Planck weak Hierarchy for Batell-Gherghetta Soft-Wall
- Found natural hierarchy for $\nu < 1$
- ν < 1 corresponds to fractional-dimension operators in dual theory
- ν < 1 also implies a continuum of modes in the 5D theory
- Thus, natural hierarchy implies unparticles
- Furthermore, can get phenomenologically viable Standard Model Fields

- Examined Planck weak Hierarchy for Batell-Gherghetta Soft-Wall
- Found natural hierarchy for $\nu < 1$
- ν < 1 corresponds to fractional-dimension operators in dual theory
- ν < 1 also implies a continuum of modes in the 5D theory
- Thus, natural hierarchy implies unparticles
- Furthermore, can get phenomenologically viable Standard Model Fields

- Examined Planck weak Hierarchy for Batell-Gherghetta Soft-Wall
- Found natural hierarchy for $\nu < 1$
- ν < 1 corresponds to fractional-dimension operators in dual theory
- ν < 1 also implies a continuum of modes in the 5D theory
- Thus, natural hierarchy implies unparticles
- Furthermore, can get phenomenologically viable Standard Model Fields

- Examined Planck weak Hierarchy for Batell-Gherghetta Soft-Wall
- Found natural hierarchy for $\nu < 1$
- ν < 1 corresponds to fractional-dimension operators in dual theory
- ν < 1 also implies a continuum of modes in the 5D theory
- Thus, natural hierarchy implies unparticles
- Furthermore, can get phenomenologically viable Standard Model Fields

- Examined Planck weak Hierarchy for Batell-Gherghetta Soft-Wall
- Found natural hierarchy for $\nu < 1$
- ν < 1 corresponds to fractional-dimension operators in dual theory
- ν < 1 also implies a continuum of modes in the 5D theory
- Thus, natural hierarchy implies unparticles
- Furthermore, can get phenomenologically viable Standard Model Fields