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Abstract: | will describe a very specia (infinite-parameter) family of gravity theories that all describe, exactly like General Relativity, just two
propagating degrees of freedom. The theories are obtained by generalizing Plebanski's self-dual (chiral) formulation of GR. | will argue that this
class of gravity theories provides a potentially powerful new framework for testing the asymptotic safety conjecture in quantum gravity.
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Perimeter talk on:
Renormalizable non-metric
quantum gravity?
November 30, 2006

http://pirsa.org/061 10041

The present talk is about the same theory

Much better understood, many more reasons
to be interested in it!

Will only discuss aspects of relevance for quantum
~gravity, ignoring other, e.g. modified gravity



Outline

® |ntroduction: Perturbative quantum gravity, non-
renormalizability, asymptotic safety

® Deformations of GR - an infinite-parametric class
of gravity theories with 2 propagating DOF

® On the UV fixed point
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Part |: Asymptotic Safety

Effective Field Theory:

Standard Model plus GR Lagrangian - only the first
few terms of an infinitely complicated Lagrangian
comprising all terms compatible with symmetries

Explains why renormalizable is what
is relevant at low energies
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Parameters of the EFT Lagrangian - coupling
constants - are energy scale dependent

Dimensionless couplings §( )

that measure interaction g(p) == gp_[g]

strength at given energy

scale i

9 does not run = g(pe) -0 as p—0
lg] <0

Jon-renormalizable interactions are irrelevant at low energies

Renormalizability is not fundamental,
but is a low-energy phenomenon
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Question of Quantum Gravity:

What provides a UV completion of the EFT Lagrangian
of Standard Model + Gravity?

standard expectation is that new DOF become relevant at the
cutoff scale: pions = quarks and gluons
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‘'ossible alternative: Asymptotic Safety

g(p) > g« as M — X

plus finite number of attractive
g e directions for predictive power

An AS theory is UV safe without need for new DOF

There is now more and more

avidence that gravity (plus
matter) may be an AS theory

Perimeter Conference on: Asymptotic Safety-30 Years After

hitp-//oirsa argiC0901S
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Drawbacks:

® [n gravity the UV fixed point is necessarily a non-trivial
one (G, # () (the trivial fixed point is the IR one) =
UV physics is non-perturbative in nature

® By no means guaranteed that the UV theory is unitary
(e.g. RA2 terms)

® Seems impossible to prove AS, as the RG flow in an
infinite-dimensional space of couplings need to be
considered
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\t least some of the difficulties would be removed if had a
:ompact description of a “healthy” and sufficiently large
closed under renormalization) class of Lagrangians.

The class of actions describing deformations of GR may be
exactly such class, and has a potential to provide a powerful
new perspective on asymptotic safety.

Jeformations of GR are obtained by generalizing the so-called
Plebanski self-dual (chiral) formulation.
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lebanski formulation of general relativity:

Consider a tetrad ij for metric guv = 9{,9,{ niJ

where 7;; = diag(—1.1.1.1)

Take
i ne Lo g T= (00
=—1 23
Properties:
¥* are self-dual 56“1,""2;{, =13,
e A Eb 2L 5ub

TEA (D) =0
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instein equations (vacuum) can be stated as:
FYJ)setf—dauat s self-dual as a two-form

"hus fu — (Dabzb

1
where W% .— §ob _ §<5“bTr(fI>) is arbitrary

Tr(®) ~ A

Gives a procedure for computing curvature components
that is more efficient than the tetrad method!
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n reformulate everything in terms of two-forms -
o not need a metric!

Lemma: Given a triple X“ of
two-forms satisfying:

FEAE" ™
¥ A (B%)* =0,
Re(Z°AX,)=0

there exists a unique real Lorentzian
signature metric such that

1 |
> —i0P AN — AP

-
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Idea of the proof:

Declare Y “to span the space of self-dual
two forms wrt some metric

fixes the conformal metric uniquely

P = ~a3poya b ¢ _abe
—99ur ™~ € Zpazu,jzpﬂ'f

| S
then use a multiple of —X“ A X,
/!

as the volume form
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\ction principle (Plebanski)

1
S:s/z:“AF“——Q_xp“bz:”Azb

field equations:
e A =6

2 Su A Zb = 5u;b
7 DET =0

= e ¥ A (%) =0,
3 F=9%"% Re(X® A ) =0

for simplicity and the
reality conditions

to be imposed by hand

Constrained BF theory
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I'he way propagating DOF are introduced is very interesting
Spr = /E’“‘A? + Ay D; I g - By, € gtk ik

here : = 1.2.3 are spatial indices

Bg; are Lagrange multipliers for £7; = 0
generators of

B® — B® + d”u

in Plebanski theory 5 out of 9 of these multipliers

are set to zero by the ?” constraints, leaving only
the diffeos (and SO(3)) as gauge
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Spr = /E‘“A“ + A§D;E** + Bg;&7*F%,

here : = 1.2.3 are spatial indices
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B§; are Lagrange multipliers for £;; =0
generators of

B® — B® + d”u

in Plebanski theory 5 out of 9 of these multipliers

are set to zero by the U?” constraints, leaving only
the diffeos (and SO(3)) as gauge
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xample:

: p1=0
first class constraints: N
p2 =0

can get a system with DOF via

irsa: 10050002

tompletely constrained system with a single DOF

generate

S = /dt (P1q1 + p2G2 — Aip1 — A2p2)

q1 — q1 + A\
g2 — g2 + A2

S = /dt (P1G1 + P2g2 — A1p1 — A2p2 — Y A2)

Ad2

>

q1

! Page 26/92

Q’.! as a relevant variable




0 motivate a construction that follows consider
different way to get a system with DOF

S = /dt (P1g1 + p2g2 — Aip1 — A2p2 — V (A1, A2))
where V(Ct)\l, (]!/\2) — O.'V(/\l, /\2)
introduce 7 = A2/ A\
= /dt (P1q1 + pP2g2 — A1(p1 +1p2 + f(7)))

where f(r):=V(1.,r)
 non-dynamical =

= /dt (plcj'l + paga — Ai(p1 + f(PQ)))

here f — f — rf’ Legendre transform
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0 motivate a construction that follows consider
different way to get a system with DOF

- — /dt (P1G1 + p2g2 — A1p1 — Aap2 — V (A1, A2))

where V(Oj)\l, (}:,\2) — (}:V(/\l, /\2)

introduce 7 = A2/

L /dt (P1q1 + P22 — Ai(p1 +7rp2 + f(7)))

where f(r):=V(1.r)
” non-dynamical =

S = /dt (Plfh + p2g2 — A1(p1 + f(P2)))
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Deformations of GR

S:/B"'AF*A-V(B’:/\BJ)

where the potential satisfies
V(iaX"%) =aV(X"Y)
V(AXAT) =V(X) VA e SO(3)

kemark: integrating out B’gets a pure connection theory
- — / f(F* A F?)

most general diff. invariant gauge theory;
closed under renormalization?
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Deformations of GR

Sszi/\FwV(B*'/\BJ)

where the potential satisfies
V(iaX") =aV(X"Y)
V(AXAT) =V(X) VA e SO(3)

kemark: integrating out B’gets a pure connection theory
= / f(F* A F?)

most general diff. invariant gauge theory;
closed under renormalization?
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Properties:

® Describes two propagating DOF forany V' : V" £ 0

Pirsa: 10050002

(complex for SO(3,C))

Deformations of GR, for any of the theories can
be continuously deformed back to GR without
changing dynamical content

Can be shown to be about the conformal metric

wrt which B’ are self-dual: matter moves along
geodesics of one of the metric in this conformal

class
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Deformations of GR

S:/‘BEAF"#V(BE/\BJ)

where the potential satisfies
V(aX"7) = aV(X"Y)
V(AXAT) =V(X) VA e SO(3)

kemark: integrating out B’gets a pure connection theory
55— /f(F"’i A F7)

most general diff. invariant gauge theory;
closed under renormalization?
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Properties:

® Describes two propagating DOF forany V' : V" £ 0
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(complex for SO(3,C))

Deformations of GR, for any of the theories can
be continuously deformed back to GR without
changing dynamical content

Can be shown to be about the conformal metric
wrt which B* are self-dual: matter moves along
geodesics of one of the metric in this conformal
class
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Properties:

® Describes two propagating DOF forany V' : V" £ 0
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(complex for SO(3,C))

Deformations of GR, for any of the theories can
be continuously deformed back to GR without
changing dynamical content

Can be shown to be about the conformal metric

wrt which B* are self-dual: matter moves along
geodesics of one of the metric in this conformal

class
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Reality conditions:

Bi A (Bj)* —a plus a condition for

the volume element

the physical metric is real

Unlike in the Plebanski case, this does not guarantee
reality of the action.

Current prescription - take the real part of the arising
complex action. Consistency’
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A lot is known about the classical theory:

® spherically-symmetric problem can be solved exactly;
spherical symmetry implies staticity; very interesting

KK+Shtanov: 0705.2047

effects of singularity resolution inside BH's ...

® Newtonian limit - MOND-like (arbitrary function of
second derivatives of the grav. potential)

® linearized theory around Minkowski - gravitational
waves unmodlﬁed Freidel: 0812.3200, KK: 0911.4903

® Friedman equations are unmodified

KK+Shtanov: 1002.1210

® Scalar perturbations around FRW background are
modified - time-dependent effective speed of sound
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A lot is known about the classical theory:

® spherically-symmetric problem can be solved exactly;
spherical symmetry implies staticity; very interesting

KK+ Brnrj D705.2047

effects of singularity resolution inside BH’s ...

® Newtonian limit - MOND-like (arbitrary function of
second derivatives of the grav. potential)

e Linearized theory around Minkowski - gravitational
waves unmodified Frede 08125200 K 09114803

® Friedman equations are unmodified

KK+Shtanov: 1002.1210

® Scalar perturbations around FRW background are
modified - time-dependent effective speed of sound
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txplicitly metric formulation is possible
B* defines a (conformal) metric wrt which it is self-dual

construct Y“for this metric satisfying ¥ A 17 ~ §%°

= for some b € GL(3,C)

modulo
ké6=18 9 18-5=13 | _ 5o
rameters parameters parameters b, — b (A~ ), A € SO(3.C)
. ~ SRR g = s s
9+13-4=18 b, — A7,

sa _, \ya Ae C
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= Explicitly metric formulation is possible

= B* defines a (conformal) metric wrt

construct X for this metric satisfyin

B =bp: ¢ for some b




= Explicitly metric formulation is possible

— B* defines a (conformal) metric wrt

construct X“for this metric satisfyin

B! = b ¥ for some b




rxplicitly metric formulation is possible
B* defines a (conformal) metric wrt which it is self-dual

construct X“for this metric satisfying ¥ A 17 ~ §%°

= for some b’ € GL(3,C)

/ b

modulo
= -3=13 _ _ G
rameters parameters pmmeters b:'] — b;,(;\ )a A € SO(3 'ﬂ)
- > 5 = — A gy ok
9+13-4=I8 X%

sa _, \ya AeC
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rewrite the theory as that of quantities »/,
ropagating’’ on a given metric background

eed to solve DB =0

sing the metric 1 = )
= 2de@) > DewY Do

sing DYX" =0 | : cur;:aﬁle
V*B,, = (D"b},)%5,

/ V=9 (4(:1&1:(6) (B2 “=), 55 #55,) (6:D°5;) (8D%%)) +2V(m))

here Magh — b:abiméﬂ

o-model of a new type
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rewrite the theory as that of quantities »/,
ropagating” on a given metric background

eed to solve DB’ =0

sing the metric 1
Ay

= g e
2 det(B) oV v
\ metric

minge 3 — () | , compatible
V“B;, = (D§,)%5,

| ! ]' @ 72 2 e L1 ] - r |
LB = > / vV—g (4det(b) (=5 ”Ef‘ ®e PES,) (D) (b'éD’jbfi) + 2V (m))

here m,, = b’ b)d;;

o-model of a new type
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rewrite the theory as that of quantities #/,
ropagating” on a given metric background

eed to solve DB’ =0
sing the metric 1
A, =
#* 2det(B)

sing D" —( _ : cu:ep:;le
V4B, = (D"b,)55,

BBV B,

| i 1 ey
e T a pyb vye pyd TPy i 3 o 7a
,b]_?/‘ = (mﬂ(b (T2 #5h vxg exd,) (biD°b,) (D7) + 2 (m))

here m,;, = b’ b} 4,

o-model of a new type
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What is the dynamical field is in general
a matter of choice

® (Can interpret the metric as dynamical and
eliminate b’, via constraints (or field equations) =
Effective metric action as an infinite expansion in
curvature invariants 3

® Can solve for the metric in terms of b, (at least in

C

perturbation theory around a fixed background)

Pirsa: 10050002 Page 64/92






Xy
| —D
(0, 2-¢)




What is the dynamical field is in general
a matter of choice

® (Can interpret the metric as dynamical and
eliminate b’, via constraints (or field equations) =
Effective metric action as an infinite expansion in
curvature invariants 3

® Can solve for the metric in terms of b, (at least in

C

perturbation theory around a fixed background)
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What is the dynamical field is in general
a matter of choice
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pnsider the theory for a fixed metric

Auge-symmetries: SO(3,C) ¥ — Ajb{l
| 2 — O*%e
conformal transformations 3 =
b, — Q™ °b
SO(3,C) B, — Bi(AY)2

r-model on the coset

M = GL(3,C)/SO(3,C) x SO(3,C) x C
F b= AAAT, A, A € SO(3,0)

A — djag(al, as . tl;_:;)

then M coordinatized by ratios
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jpeculations on the nature of the UV fixed point

R

Infinitely steep potential V - General Relativity
(or potential of the order M)

relevant dynamical variables - metric

bﬁl — ' variables of the order Weyl /M E <1

a

Torres-Gomez+KK: 0911.3793. KK: 0911.4903

effective metric Lagrangian -
expansion in curvature invariants
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4

B energy increases the derivative terms become more important
han the potential (alternatively, potential becomes flatter)

pproaching the topological BF theory corresponding to
V = const

even though the fixed point is not a

int!
fixed point. dynamical theory, its neighbors are

| this the fixed point controlling the UV behavior?

that are the relevant variables?

E2 for E* > M}
(b—9) ~ V2 (metric - Minkowski) the j-variables are
= more relevant
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ppological symmetry and its gauge-fixings

can use it to put any B'to

B -5 +d77£ one of the two forms:
BE—a> —
ffeomorphisms + 5 Eg.ﬁxed metric two-forms

tra transformations

/ GR
— =
—tpE — & .

(i a f

e ba o-model as the
relevant theory in
the UV?
(T-model . J
e Lt = Xg

1
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Summary:

® [nfinite-parameter (parametrized by v(x")) class of
gravity theories with 2 propagating DOF - effective
metric Lagrangians

® Essentially s - / f(F* » F7) so, naively at least, should
be closed under renormalization

e IR - steep potential, b, =4, - GR

e UV - flat potential, BF theory as the fixed point?
Coset b’ as relevant variables?

the idea of BF theory as the UV
fixed point is not new - spin foams

Explicit description of the neighboring theories
via o-model? UV-valid perturbative description?
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Summary:

® |[nfinite-parameter (parametrized by v(x")) class of
gravity theories with 2 propagating DOF - effective
metric Lagrangians

® Essentially s- / f(F* » F7) so, naively at least, should
be closed under renormalization

e |R - steep potential, b, =4, - GR

e UV - flat potential, BF theory as the fixed point?
Coset b’ as relevant variables?

the idea of BF theory as the UV
fixed point is not new - spin foams

Explicit description of the neighboring theories
via o0-model? UV-valid perturbative description?

Pirsa: 10050002 Page 81/92



ppological symmetry and its gauge-fixings

N 1 ¢ can use it to put any B'to
B — B +d77 one of the two forms:

/ N
Bt =§X B*—¥¥s

ffeomor'phisms = 35 -fixed metric two-forms
tra transformations

4 -
Fl = i b

b
[ o-model as the
relevant theory in
the UV?
(7 -model ~ &
L LY =X

\Na
T change ¥ e







rewrite the theory as that of quantities #/,
ropagating” on a given metric background

eed to solve DB’ =0
sing the metric 1
=
#* 2det(B)

sing DYX* =0 Sneal (D’”bi 5o curr;‘ep:;le
pnyv — a J7a %

RN B

| 2 1 a 72 2 e L1 ] ' Fo% 72 |
LB = 5/1../—5;: (4.:191;(&) (23 = V2C °25,) (B.D°8) (b-gD*jbfi) +2V (m))

here m,, = b:lb';d,j

o-model of a new type
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rewrite the theory as that of quantities »/,
ropagating” on a given metric background

eed to solve DB =0
sing the metric 1
A, =
#“ 2det(B)

sing DYX" =0 _ : cuﬁep:;)le
VHB;H — (pr;)sz

BN B,

| k| 2 1 a b vyve d 1 yox Lt | vyi3 1. 5174 “
W= E/\/—g (4det(b) (=5 . °303) (b.D*b},) (b{,D bff) + 2V (m))

here m;, = b},b}4;;

o-model of a new type
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Deformations of GR

S:/BEAF"E+V(B*'/\BJ)

where the potential satisfies
V(iaX%) =aV(X"Y)
VIAXAT) =V(X) VAe SO®3)

kemark: integrating out B’gets a pure connection theory
L — / f(F* A F?)

most general diff. invariant gauge theory;
closed under renormalization?
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