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@ Unique EFT for low-energy gravitons
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@ the C.C. problem

® the present acceleration
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@ Nice observational predictions (LLR)
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@ At Hubble scales, the 4D description breaks
down

o Start seeing the 5th dimension (non-locality)
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This Talk

@ Self-acceleration vs. stability

@ For theories where:

Deviations effective light
from GR <:> scalar dof
d << Hubble mixed with metric

(i.e. universally coupled ™17 ;)
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@ O(1) modifications to cosmology
@ negligible effects in the solar system
2 self-accelerating solutions

@ do not assume global scalar field
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Keep lowest order in /1,

"Physical” Metric:
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Claim: brane-bending mode of Luty, Porrati, Rattazzi

Check: plug 7T info their EOM
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€:> need non-linearities
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local matter corrections

distribution to geometry
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In conclusion:

@ Lagrangian very constrained: 5 coeffs.

@ thorough analysis of highly symmetric
solutions

@ for dS and spherical sols.: algebraic problem
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radial excitations
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@ For linear 71 background soutions:
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@ so far: d << Hubble

@ is it possible 7T — global scalar w/ local
4D action?

@ DGP: no (physics is 5D)

@ here: still an open question
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Conclusions

@ Galileon: local dynamics of general theories
where

Deviations effective light
from GR <=3 scalar dof
d << Hubble mixed with metric

@ Vainshtein effect demands Galilean invariance

5 Lagrangian terms overall
solutions

Vainshtein-like spherical solutions
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3 excitations = problems w/
relativistic UV completion

@ low QM strong-coupling scale
@ No satisfying global 4D completion yet

» Stable NEC violation (see next talk)



