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'here are basically three derivations of this effect:

Peak Background Split (PBS): objects correspond to §);,, > 4.

Aby(k, fnL) = ;.}f?ls (b1o0 — 1)d,

‘Gaussian Field Peaks in high-threshold limit (v > 1)

Aby(k, faL) = %Vz
ba

'Local Eulerian bias model (0g =brd+ 6" +...)

AE fon) — fjf}j)bz -

here M relates the density to the Bardeen potential through the Poisson egn

M(E) = 2¢2k2T (k) D(z) -

Pirsa: 10040094 3! ! Hg kz (k = 0)




n local Eulerian models and peaks there is a generic formula (for any type
yrimordial non-Gaussianity) for the low-k power change

AP(k) ~ / B(—k,q.k — q)d’q

= [ MM (@M (K - a) Ba(—k.a.k — @)
n PBS one splits long wavelength from small scale fluctuations,
@ = Q¢ + Ps
§ ~ 8¢+ V20s + LV (de + 05)° = 8¢ + 8

hus small scales perturbations (objects) will be sensitive to phi and its

Pirsa: 1 P age 3/79

jerivatives at long wavelength.



'here are basically three derivations of this effect:

Peak Background Split (PBS): objects correspond to §);,, > 4.

Aby(k, fnL) = i;z:‘) (b10 — 1)d,

‘Gaussian Field Peaks in high-threshold limit (v > 1)

Aby(k, faL) = %Vz
bo

'Local Eulerian bias model (0g =brd+ 6" +...)

ARGE: Sl — fjf,;bz =

here M relates the density to the Bardeen potential through the Poisson egn

M) — 22k>T (k)D(z)
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n local Eulerian models and peaks there is a generic formula (for any type
wrimordial non-Gaussianity) for the low-k power change

AP(k) ~ / B(—k.q.k — q)d’q

= [ ME)M@M(k— al) Bo(—k,a.k - a)d*g
n PBS one splits long wavelength from small scale fluctuations,
@ = Q¢ + O
§ ~ 8¢+ V305 + fNLV?(0e + 65)° = d¢ + 8,

huys small scales perturbations (objects) will be sensitive to phi and its
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lerivatives at long wavelength.



fe can compare the three models by using PS and peak theory, in which case,
(b]g e 1)5,: — l’!2 -1

£ =

2

b'z’emaz=2(1—w) de + (v* —3)

+ all three formulae agree in the high-peak limit!
owever, the nature of bias in these three models is quite different...
PBS, to linear order we have:

5, = 2fnr(by — 1)3.0 + b1 &

ry different from a local model (which the other two models are, if we
nore non-locality of Lagrangian to Eulerian mapping). We should be able to
stingwish which one is the correct answer! T



'here are basically three derivations of this effect:

Peak Background Split (PBS): objects correspond to §);,, > 4.

Aby(k, fnL) = :{?’:‘) (b1o0 — 1)d,

‘Gaussian Field Peaks in high-threshold limit (v > 1)

Aby (k, fur) = %w
b

Local Eulerian bias model (0g =510+ 0% +...)

Aby (k, far) = i{af)bz o2

here M relates the density to the Bardeen potential through the Poisson egn

M(E) — 2¢2k%T (k) D(z) .
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fe can compare the three models by using PS and peak theory, in which case,

(blﬂ m— 1)15,: — b’z -1

bgeaksa'2=2(1—v2)uz_16c+(u2—3)

=
+ all three formulae agree in the high-peak limit!

owever, the nature of bias in these three models is quite different...
PBS, to linear order we have:

0g = 2fnL(b1 —1)0.0 + b, 6

ry different from a local model (which the other two models are, if we
nore non-locality of Lagrangian to Eulerian mapping).We should be able to
stingwish which one is the correct answer! e i



'here are basically three derivations of this effect:

Peak Background Split (PBS): objects correspond to §y;,, > 4.

By (k. fn) = Sy (a0 — )b

‘Gaussian Field Peaks in high-threshold limit (v > 1)

Aby(k, faL) = %Vz
bo

Local Eulerian bias model (59:515'*‘552"‘---)

Ab;y (k, far) = ;;z;bz o2

here M relates the density to the Bardeen potential through the Poisson egn

M(E) = 2¢2k2T (k) D(z) =

Pirsa: 10040094 3!! Hg kz (k == 0)




n local Eulerian models and peaks there is a generic formula (for any type
srimordial non-Gaussianity) for the low-k power change

AP(k) ~ / B(-k.q.k — q)d’q

= [ ME)M@M(k— al) Bo(—k,a.k - a)d*g
n PBS one splits long wavelength from small scale fluctuations,
O = Q¢ + O,
8 ~ 8¢+ V20s + fNLVZ(de + 05)> = 8¢ + 6,

hys small scales perturbations (objects) will be sensitive to phi and its

irsa: 10040094 Page 13/79

lerivatives at long wavelength.



fe can compare the three models by using PS and peak theory, in which case,
(610 = 1)5;_- — If2 -1

v —1
2

v

b§“‘%2=2(1—:»2) de + (v* —3)

» all three formulae agree in the high-peak limit!
owever, the nature of bias in these three models is quite different...
PBS, to linear order we have:

5, = 2fnr(by — 1)3.0 + b1

ry different from a local model (which the other two models are, if we
nore non-locality of Lagrangian to Eulerian mapping).We should be able to
stingwish which one is the correct answer! e



n local Eulerian models and peaks there is a generic formula (for any type
srimordial non-Gaussianity) for the low-k power change

AP(k) ~ / B(-k.q.k — q)d’g

= [ M()M(@)M(Jk — al) Bo(—k. .k — a)d’q

Aby (k, fx) = ;;f‘;‘)uz
bo

'Local Eulerian bias model (8g =br6+ 6" +...)

Aby (k, far) = fﬁ‘,;bz o2

here M relates the density to the Bardeen potential through the Poisson egn

M(k) 2¢2k%T (k) D(z2) B
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'here are basically three derivations of this effect:

Peak Background Split (PBS): objects correspond to §);,, > 4.

Aby (k, fnr) = ija?) (b1o — 1)0,
‘Gaussian Field Peaks in high-threshold limit (v > 1)
Aby (k, fxr) = fj{‘,j)
'Local Eulerian bias model (5926154-%52%—-”)

Aby (k, far) = gf‘,;b?oﬂ

here M relates the density to the Bardeen potential through the Poisson egn

M) — 2¢2k2T (k) D(z2)
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n local Eulerian models and peaks there is a generic formula (for any type
srimordial non-Gaussianity) for the low-k power change

AP(k) ~ / B(—k.q.k — q)d’g

= [ ME)M@M(k— al) Bo(—k,a.k — a)d*g
n PBS one splits long wavelength from small scale fluctuations,
Pdit- s
8 ~ 8¢+ V30s + fNLV (e + 0s)* = 3¢ + 5

hys small scales perturbations (objects) will be sensitive to phi and its
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lerivatives at long wavelength.



fe can compare the three models by using PS and peak theory, in which case,
(blg — 1)6,: — IJ2 -1

V21

2

b‘;akscrz=2(l—va) o + (* —3)

+ all three formulae agree in the high-peak limit!
owever, the nature of bias in these three models is quite different...

PBS, to linear order we have:
0 = 2fnL(b1 —1)0.0 + b, 6
ry different from a local model (which the other two models are, if we

nore non-locality of Lagrangian to Eulerian mapping).We should be able to
stingwish which one is the correct answer! .



fe can distinguish between linear non-local and non-linear local bias by
)mputing the “galaxy propagator” G(k)

G(k) 8p(k — k') = (522 2b)
or PBS we get
Gk) = 2N 4 1)5, 4 5.Cam(k) = 1/K  (k —0)

M(k)

vhile for local models we get:

G(k) = byGam (k) + by (5%>
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fe can compare the three models by using PS and peak theory, in which case,
(blg = 1)6c — .U2 -1

1

2

b{,’emcrz=2(l—m) de + (v* —3)

+ all three formulae agree in the high-peak limit!
owever, the nature of bias in these three models is quite different...
PBS, to linear order we have:

5, = 2fnr(by — 1)3.6 + b1 &

ry different from a local model (which the other two models are, if we
nore non-locality of Lagrangian to Eulerian mapping). We should be able to
stingwish which one is the correct answer! s



fe can distinguish between linear non-local and non-linear local bias by
)mputing the “galaxy propagator” G(k)

G(k) 3p(k — k) = (522 L)
or PBS we get
. = =
G(k) = T by~ 1. + b1 Gam(K) = 1/ (k—0)
vhile for local models we get:

G(E) = b1Cam (k) + by <ag—§§>

0000000000000



Halo propagator in N-body simulations:

learly, local models are wrong...

e,
2
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Large-Scale Bias in non-local PNG

“In single-field inflationary models, we are instead interested in models that
:orrespond to non-local PNG. For example, the equilateral model has a
Jardeen potential bispectrum,

NL equil = —f112 — 15263 . 2 3
(6fnL) ‘B PP, —2(P,PaP3)*? + PP P3P

permutations are understood), whereas the orthogonal model reads

(6f8L) ' Bortho = —3P1 P> — 8(PL P2 P3)?/3 + 3P 2 P23 b,

Me are interested in generating such bispectra from quadratic (non-local)
nodels, i.e.

® =¢+ fau Klo, 9|
where.K is the appropriate non-local quadratic kernel that generates.the

de<ired hicpectriim Far simnlicity we ascsiuime scale-invariance



Introduce some handy non-local operators

8¢ = \/—V2é(x) = / e~ L (k) B3k

V *Ax)=— f e-“"*(%) A(k) &3k

rom which it follows e_g. that
(I,equﬂ = ¢+ f;jq[‘uii [ -— 3¢2 3 2v—-2(a¢)2 + ﬁa—l(w¢)] 1

reperases the bispectrum in the equilateral model. This is easy enough.te
mplement in initial conditions senerators for numerical simulations.



Large-Scale Bias in non-local PNG

“In single-field inflationary models, we are instead interested in models that
:orrespond to non-local PNG. For example, the equilateral model has a
Jardeen potential bispectrum,

(6f8L) ! Bequit = —P1 P2 — 2(P P2P3)?3 + PP P23 Py
permutations are understood), whereas the orthogonal model reads

(6f8L)  Bosthe = —3P1 P> — 8(PLP2 P3)?/3 + 3PP P2 by

Ne are interested in generating such bispectra from quadratic (non-local)
nodels, i.e.

® = ¢+ fau Ko, 9|
where.K is the appropriate non-local quadratic kernel that generates.the

dec<ired hicnectriim Far simnlicity we ascsume scale-invariance



‘Introduce some handy non-local operators

90 =/ —V32o(x) = fe'ik"‘ ko(k) dk

V2A(x) = — / e-*k*(é) A(k) &k

rom which it follows e_g. that

ol — ¢+ fi! [ — 367 + 2V %(99)” + 6971 (699)|

reperases the bispectrum in the equilateral model. This is easy enough.to
mbplement in initial conditions senerators for numerical simulations.



Large-Scale Bias in non-local PNG

‘In single-field inflationary models, we are instead interested in models that
:orrespond to non-local PNG. For example, the equilateral model has a
Jardeen potential bispectrum,

NL equil = — 1112 — 123 1 2 3
(6fnL) ‘B PP, —2(PPaP3)*? + PP P23 P

permutations are understood), whereas the orthogonal model reads

(6fNL)  Bostho = —3P1 P> — 8(PLP2P3)?/3 + 3P 2 P23 by

Ne are interested in generating such bispectra from quadratic (non-local)
nodels, i.e.

® =¢+ fn Klo, 9
where.K is the appropriate non-local quadratic kernel that generates.the

de<ired hicpectriim Far simnlicity we ascsume scale-invariance



Introduce some handy non-local operators

36 = /—V2(x) = j e . 4(k) @3k
V TAf) =~ / e'ik"(é) A(k) @3k

: 1
3 =  YT—2 A — —kx{ &
lA=/-V A_/e (k)A(k)aFk
rom which it follows e.g. that

=+ fat | - 36 + 2V 2(90)? + 697 (699) .

reperases the bispectrum in the equilateral model. This is easy enough.ta
mbplement in initial conditions senerators for numerical simulations.



fhat’s the predicted low-k power for the equilateral model?

sing PBS, one gets a scale-dependent bias:

2 fnL ( 86V 20
: { . )Vz

Aby(k, far) ~ =

vhile local models predict only a correction to the scale-indep bias,

\P(k) ~ [ M(k)M(q)M(Jk — ql)Bs(—k, a,.k — q)d®q x P(k)

irsa: 10040094
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Power Spectrum for non-gaussian models
Oriana Halos, z=0342, fof =02, Mass range 13-14 [logM/Mo]
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Introduce some handy non-local operators

90 =/ —V?2o(x) = /e'ik'x ko(k) dk

V A=) =-— / e'ik"‘(;—z) A(k) &3k

rom which it follows e_g. that

eerl — ¢ + fid | — 367 +2V2(86)* + 60 (699) .

reperases the bispectrum in the equilateral model. This is easy enough.ta
mbplement in initial conditions senerators for numerical simulations.



fhat’s the predicted low-k power for the equilateral model?
sing PBS, one gets a scale-dependent bias:

2fNL (86V?0) 2

o2

Aby(k, fnL) ~

vhile local models predict only a correction to the scale-indep bias,

\P(k) ~ f M(k)M(q)M(Jk — ql)Bs(—k, a,.k — q)d®q x P(k)
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P(k)
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Power Spectrum for non-gaussian models
Oriana Halos, z=0342, fof =02, Mass range 13-14 [logM/Mo]
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Large-Scale Bias in non-local PNG

‘In single-field inflationary models, we are instead interested in models that
:orrespond to non-local PNG. For example, the equilateral model has a

Jardeen potential bispectrum,
(6fNL) ! Bequit = —PL P2 — 2(P P2 P3)?*? + PP PP Py

permutations are understood), whereas the orthogonal model reads

(6fNL) " Bortho = —3P P2 — 8(PL P P5)?*/3 + 3P 2 P2 py

Me are interested in generating such bispectra from quadratic (non-local)
nodels, i.e.

where.K is the appropriate non-local quadratic kernel that generates.the

de<ired hicnpectriim Far simnlicity we ascume scale-invariance



fe can distinguish between linear non-local and non-linear local bias by
)mputing the “galaxy propagator” G(k)

(D)
Glk) dp (ke — ) = (552 5)
or PBS we get
G(k) = T (b — 13, + by Gam(B) — 1/ (k—0)

vhile for local models we get:

a0
G(k) = b1Gam(k) + b2 (58—£>
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fe can compare the three models by using PS and peak theory, in which case,

(blg — 1)5,: — Ifz —1

b5 0'2=2(1—'-'-’2)U2y_1

2
5—0c + (v° —3)

+ all three formulae agree in the high-peak limit!
owever, the nature of bias in these three models is quite different...
PBS, to linear order we have:

5, = 2fnr(by — 1)3.0 + b1

ry different from a local model (which the other two models are, if we
nore non-locality of Lagrangian to Eulerian mapping). We should be able to
stingwish which one is the correct answer! s



n local Eulerian models and peaks there is a generic formula (for any type
srimordial non-Gaussianity) for the low-k power change

AP(k) ~ / B(-k.q.k — q)d’g

= [ ME)M@M(k— a) Bo(—k.a.k — a)d*g
n PBS one splits long wavelength from small scale fluctuations,
O = Q¢ + Oy
8 ~ 8¢+ V20s + fNLVZ(de + 05)> = d¢ + 8

hys small scales perturbations (objects) will be sensitive to phi and its
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'here are basically three derivations of this effect:

Peak Background Split (PBS): objects correspond to §);,, > 4.

Aby(k, fnL) = jﬁ:‘) (b1o — 1)0.

‘Gaussian Field Peaks in high-threshold limit (v > 1)

Aby(k, faL) = %VZ
bo

‘Local Eulerian bias model (59:615'*‘552"‘---)

Aby (k, far) = fff‘,:)bzoﬂ

here M relates the density to the Bardeen potential through the Poisson egn

M(E) = 2¢2k2T (k) D(z) >

Pirsa: 10040094 3!! Hg kz (k Sk 0)




Large-Scale Bias in non-local PNG

‘In single-field inflationary models, we are instead interested in models that
:orrespond to non-local PNG. For example, the equilateral model has a

Jardeen potential bispectrum,
(6fNL) ! Bequit = —P1 P2 — 2(P PaP3)?*3 + PP PP Py

permutations are understood), whereas the orthogonal model reads

(6fNL)  Bostho = —3P1 P2 — 8(PLP2 P3)?/3 + 3P 3 P23 p,

e are interested in generating such bispectra from quadratic (non-local)
nodels, i.e.

® =¢+ fnr Ko, 9]
where.K is the appropriate non-local quadratic kernel that generates.the

de<ired hicpectriim Far simnlicity we ascuime scale-invariance



fhat’s the predicted low-k power for the equilateral model?

sing PBS, one gets a scale-dependent bias:

Abi(k, fnr) ~

2 fnr (86V %0
:L( . )u2

o

vhile local models predict only a correction to the scale-indep bias,

\P(k) ~ / M(k)M(q)M(Jk — ql)Bs(—k, a,.k — q)d®q x P(k)

irsa: 10040094
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Power Spectrum for non-gaussian models
Oriana Halos, z=0342. fof =0.2. Mass range 13-14 [logM/Mo]
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fhat’s the predicted low-k power for the equilateral model?

sing PBS, one gets a scale-dependent bias:

Abl (k? fNL) e

2 fnr (36V%0
:L( - )u2

o

vhile local models predict only a correction to the scale-indep bias,

\P(k) ~ f M(k)M(q)M(Jk — q])Bs(—k, a,.k — q)d®q x P(k)

irsa: 10040094

(k — 1

Page 42/79



Large-Scale Bias in non-local PNG

“In single-field inflationary models, we are instead interested in models that
:orrespond to non-local PNG. For example, the equilateral model has a

Jardeen potential bispectrum,
(6fNL) 1 Bequit = —PL P2 — 2(P P2 P3)?*3 + PP PP Py

permutations are understood), whereas the orthogonal model reads

(6fNL) 1 Bortho = —3P, P> — 8(P P P3)*/3 + 3P 2 P23 py

Me are interested in generating such bispectra from quadratic (non-local)
nodels, i.e.

® =¢+ fnr Ko, 9]
where.K is the appropriate non-local quadratic kernel that generates.the

de<cired hicsnpectriim Far simnlicity we ascsiume scale-invariance



‘Introduce some handy non-local operators

36 = /—V2é(x) = / e k 4(k) @3k

V Z2AE)=— / e-“"*(%) A(k) &3k

rom which it follows e_g. that

B0 = 6+ 5 [~ 367 +2972(09)7 + 697 (699)],

reperases the bispectrum in the equilateral model. This is easy enough.te
mbplement in initial conditions senerators for numerical simulations.



Power Spectrum for non-gaussian models
Oriana Halos, z=0342, fof =0.2. Mass range 13-14 [logM/Mo]
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Large-Scale Bias in non-local PNG

In single-field inflationary models, we are instead interested in models that
:orrespond to non-local PNG. For example, the equilateral model has a

Jardeen potential bispectrum,
(6fNL) ! Bequit = —PL P2 — 2(P P2 P3)?3 + PP PP Py

permutations are understood), whereas the orthogonal model reads

(6fNL)  Bostho = —3P1 P> — 8(PLPaP3)?/3 + 3PP P23 py

Ne are interested in generating such bispectra from quadratic (non-local)
nodels, i.e.

® =¢+ fau Ko, 9
where.K is the appropriate non-local quadratic kernel that generates.the

de<ired hicsnpectriim Far simnlicity we ascsuume scale-invariance



Introduce some handy non-local operators

86 = /—V2é(x) = f e | 4(k) a3k

V2A(x) = — / e'ik"‘(é) A(k) &3k

rom which it follows e_g. that

peauil _ g 4 peaul [ — 36 + 2V2(36) + w—l(w.:;s)] :

renerases the bispectrum in the equilateral model. This is easy enough.te
mbplement in initial conditions senerators for numerical simulations.



fhat’s the predicted low-k power for the equilateral model?

sing PBS, one gets a scale-dependent bias:

2fNL (06V?0) 5

o2

Aby(k, fnL) ~

vhile local models predict only a correction to the scale-indep bias,

\P(k) ~ ] M(k)M(q)M(Jk — q]) Bs(—k, a,k — q)d®q x P(k)
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Power Spectrum for non-gaussian models
Oriana Halos, z=0342, fof =02, Mass range 13-14 [logM/Mo]
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Large-Scale Bias in non-local PNG

“In single-field inflationary models, we are instead interested in models that
:orrespond to non-local PNG. For example, the equilateral model has a

Jardeen potential bispectrum,
(6fNL) 1 Bequit = —P1 P — 2(P P2 P3)?*3 + PP PP Py

permutations are understood), whereas the orthogonal model reads

(6fNL)  Bortho = —3P, P2 — 8(PL P P3)*/3 + 3P P23 py

Ne are interested in generating such bispectra from quadratic (non-local)
nodels, i.e.

® = ¢+ fa Klo, ¢
where.K is the appropriate non-local quadratic kernel that generates.che

de<ired hicpectriim Foar simnlicity we ascsuume scale-invariance



fe can distinguish between linear non-local and non-linear local bias by
ymputing the “galaxy propagator” G(k)

G(k) 3p(k — ) = (522 o)
or PBS we get
. v = =%
G(k) = > " (by — 1)8. + b1Gam(k) — 1/k* (K —0)
vhile for local models we get:

G(E) = b1Cam (k) + by <5§—§§>

0000000000000



fe can compare the three models by using PS and peak theory, in which case,

(blg e 1)6,_. — IJ2 -1

b5 0% = 2(1 — 1a)

2 —1
2

de + (v* —3)

+ all three formulae agree in the high-peak limit!
owever, the nature of bias in these three models is quite different...
PBS, to linear order we have:

5y = 2fnr(br — 1)5.6 + by &

ry different from a local model (which the other two models are, if we
nore non-locality of Lagrangian to Eulerian mapping).VWe should be able to
stingwish which one is the correct answer! Chns



n local Eulerian models and peaks there is a generic formula (for any type
wrimordial non-Gaussianity) for the low-k power change

AP(k) ~ f B(—k.q.k — q)d*g

= [ ME)M@M(k— al)Bo(—k.a.k - a)d*g
n PBS one splits long wavelength from small scale fluctuations,
O = Q¢ + Ps
§ ~ 8¢+ V20, + fNLV(0e + 05)% = 3¢ + 6,

huys small scales perturbations (objects) will be sensitive to phi and its
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lerivatives at long wavelength.



fe can distinguish between linear non-local and non-linear local bias by
)mputing the “galaxy propagator” G(k)

G(k) 3p(k — ') = (522 L)
or PBS we get
=, e - 2
G(k) = M(E) (by — 1)d. + b1Gam(k) — 1/K* (k —0)
vhile for local models we get:

a0
G(k) = b1Gam(k) + b2 (53—£>
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Large-Scale Bias in non-local PNG

‘In single-field inflationary models, we are instead interested in models that
:orrespond to non-local PNG. For example, the equilateral model has a
Jardeen potential bispectrum,

NL gl =——EXFEEg 1253 1 2 3
(6fnL) ‘B PP, —2(PPaP3)?*? + PP P23 P

permutations are understood), whereas the orthogonal model reads

(6fNL)  Bortho = —3P P2 — 8(P P P3)*/3 + 3P P23 py

Me are interested in generating such bispectra from quadratic (non-local)
nodels, i.e.

® =¢+ fnu Ko, 9]
where.K is the appropriate non-local quadratic kernel that generates.the

de<ired hicpectriim Far simnlicity we ascsume scale-invariance



fhat’s the predicted low-k power for the equilateral model?

sing PBS, one gets a scale-dependent bias:

2fNL (06V?0) =

o2

Aby(k, fnL) ~

vhile local models predict only a correction to the scale-indep bias,

\P(k) ~ / M(k)M(q)M(Jk — ql)Bs(—k, a,.k — q)d®q x P(k)
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Power Spectrum for non-gaussian models
Oriana Halos, z=0342 fof =02, Mass range 13-14 [logM/Mo]
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Signal to Noise for non-gaussian models
Oriana halos, z=0 342, fof=0.2. Mass range 13-14 [logM/Mo)
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Power Spectrum for non-gaussian models
Oriana Halos, z=0342, fof =02, Mass range 13-14 [logM/Mo]
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fhat’s the predicted low-k power for the equilateral model?
sing PBS, one gets a scale-dependent bias:

2f NL (96V?9) £

o2

Abi(k, faL) ~

vhile local models predict only a correction to the scale-indep bias,

\P(k) ~ / M(k)M(q)M(Jk — ql)Bs(—k, a,.k — q)d®q x P(k)

Pirsa: 10040094

(E — 1

Page 60/79



Power Spectrum for non-gaussian models
Oriana Halos, z=0342. fof =0.2. Mass range 13-14 [logM/Mo}
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Signal to Noise for non-gaussian models
Oriana halos, z=0 342, fof=0.2. Mass range 13-14 [logM/Mo]
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Adding Bispectrum information helps a lot...
Signal to Noise f_ =100

LRG mocks including redshift distortions, Mag <212 . z=0342
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Adding Bispectrum information helps a lot...
Signal to Noise f_ =100
LRG mocks including redshift distortions, Mag <212 . z=0342
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Adding Bispectrum information helps a lot...
Signal to Noise f,, =100

LRG mocks including redshift distortions, Mag <212 . z=0342
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Adding Bispectrum information helps a lot...
Signal to Noise f,, =100

LRG mocks including redshift distortions, Mag <212 . z=0342
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Conclusions

Beware of Gaussian peaks in high-nu limit calculations of PNG...

PBS calculations can be generalized to non-local PNG models. Currently testi
ilese in detail.

Bispectrum adds significant StoN, all configurations needed. Extension to non-
cal models in progress.
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Halo propagator in N-body simulations:

learly, local models are wrong...
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Large-Scale Bias in local PNG

“In local models of primordial non-Gaussianity (PNG) we have for the
Jardeen potential,
® =0+ furd®

vhich implies for it a bispectrum,
B =21 P P> + cye.

-For biased tracers (galaxies, halos), this model leads to a scale-dependent bia
it large scales (Dalal et al 2008),

bi(k) = big + Aby (k. fnL)

vhere b~1/k*2 at low-k.

Pirsa: 10040094 Page 72/79



'here are basically three derivations of this effect:

Peak Background Split (PBS): objects correspond to §);,, > 4.

Aby(k, fnL) = iﬁ:‘) (b10 — 1)d,

‘Gaussian Field Peaks in high-threshold limit (v > 1)

Aby(k, faL) = ;If—l(\:‘)"z
bo

Local Eulerian bias model (0g =b10+ 6" +...)

Aby (k, faL) = i{f‘; by o2

here M relates the density to the Bardeen potential through the Poisson egn

A(E) — 2c2k>T (k)D(z)

Pirsa: 10040094 3!! Hg kz (k = 0)




n local Eulerian models and peaks there is a generic formula (for any type
srimordial non-Gaussianity) for the low-k power change

AP(k) ~ / B(-k.q.k — q)d’g

= [ M)M@M(k — al) Bo(—k.a. k — a)d*g
n PBS one splits long wavelength from small scale fluctuations,
O = Q¢ + D5
§ ~ 8¢+ V205 + LV (de + 05)° = d¢ + 4

hys small scales perturbations (objects) will be sensitive to phi and its
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jerivatives at long wavelength.



fe can compare the three models by using PS and peak theory, in which case,
(b]g m— 1)51: — IJ2 -1

= =

2

bge“l‘saz=2(1—w) de + (v* —3)

+ all three formulae agree in the high-peak limit!
owever, the nature of bias in these three models is quite different...
PBS, to linear order we have:

5, = 2fnr(by — 1)3.0 + b1 &

ry different from a local model (which the other two models are, if we
nore non-locality of Lagrangian to Eulerian mapping).We should be able to
stingwish which one is the correct answer! =



n local Eulerian models and peaks there is a generic formula (for any type
yrimordial non-Gaussianity) for the low-k power change

AP(k) ~ f B(—k.q.k — q)d’g

= [ M)M@M(k — al) Bo(—k.a.k — a)d*g
n PBS one splits long wavelength from small scale fluctuations,
O = Q¢ + Oy
§ ~ 8¢+ V20s + LV (0e + 0.)% = 8¢ + 4,

huys small scales perturbations (objects) will be sensitive to phi and its
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lerivatives at long wavelength.



fe can compare the three models by using PS and peak theory, in which case,
(blﬂ s 1)6,_- — D‘2 —1

U2

b,_,p“"“az=2(1—uz) y;16c+(1/2—3)

) all three formulae agree in the high-peak limit!

G(k) = S (b — 13, + by Gam(B) — 1/ (k —0)

vhile for local models we get:

a5,
G(k) = b1Gam(k) + by (56—&)

0000000000000



Conclusions

Beware of Gaussian peaks in high-nu limit calculations of PNG...

PBS calculations can be generalized to non-local PNG models. Currently testi
ilese in detail.

Bispectrum adds significant StoN, all configurations needed. Extension to non:
cal models in progress.
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