Title: Holography for Cosmology

Date: Apr 15, 2010 01:00 PM

URL: http://pirsa.org/10040089

Abstract: TBA

Pirsa: 10040089

Holography for Cosmology

Paul McFadden Universiteit van Amsterdam

work with Kostas Skenderis arXiv:0907.5542 & 1001.2007

Holography

Holography states that any quantum theory of gravity should have a dual description in terms of a QFT (without gravity) in one dimension less.

Examples found in string theory involve spacetimes with a negative cosmological constant (e.g. AdS/CFT).

Here we propose a holographic framework for inflationary cosmology.

Specifically, we seek a dual description of four-dimensional inflationary cosmology in terms of a three-dimensional QFT (without gravity).

Pirsa: 10040089 Page 3/59

Holography for Cosmology

Any proposed holographic framework for cosmology should specify:

- The precise nature of the dual QFT.
- How to compute cosmological observables (e.g. the primordial power spectrum) from the correlation functions of the dual QFT.

Having defined such a duality,

 Must recover standard inflationary predictions in their regime of validity (namely, when a perturbative quantisation of fluctuations is possible, i.e. weakly coupled gravity = strongly coupled QFT).

Pirsa: 10040089 Page 4/59

Strong gravity

New results then follow by applying the holographic framework in the opposite regime where gravity is *strongly coupled* and a perturbative quantisation of fluctuations breaks down. The dual QFT is then *weakly coupled*.

- Compute cosmological observables holographically using only perturbative QFT.
- Qualitatively different predictions from standard inflation.
- Simple to find holographic models consistent with observation.

Pirsa: 10040089 Page 5/59

Plan of talk

- Part I: Holography for cosmology
- Part II: Strong gravity regime: overview of cosmological results.

Ref: arXiv:1001.2007 & 0907.5542.

Pirsa: 10040089 Page 7/59

Cosmological perturbations

We start by reviewing standard inflationary cosmology and the cosmological observables we would like to compute holographically.

For simplicity, we discuss single-field 4d inflationary models:

$$S = \frac{1}{2\kappa^2} \int d^4x \sqrt{-g} [R - (\partial \Phi)^2 - 2\kappa^2 V(\Phi)].$$

▶ We assume a spatially flat background and perturb

$$ds^{2} = -dt^{2} + a^{2}(t)[\delta_{ij} + h_{ij}(t, \vec{x})]dx^{i}dx^{j}.$$

$$\Phi = \varphi(t) + \delta\varphi(t, \vec{x}).$$

where
$$h_{ij} = -2\psi(z, \vec{x})\delta_{ij} + 2\partial_i\partial_j\chi(z, \vec{x}) + \gamma_{ij}(z, \vec{x})$$
.

 γ_{ij} is transverse traceless and we form the gauge-invariant combination $\zeta = \psi + (H/\dot{\varphi})\delta\varphi$.

Cosmological perturbations

► The equations of motion for the perturbations are:

$$0 = \ddot{\zeta} + (3H + \dot{\epsilon}/\epsilon)\dot{\zeta} + a^{-2}q^{2}\zeta, 0 = \ddot{\gamma}_{ij} + 3H\dot{\gamma}_{ij} + a^{-2}q^{2}\gamma_{ij},$$

where $H=\dot{a}/a$ is the Hubble rate and $\epsilon=-\dot{H}/H^2$ is the 'slow-roll' parameter. We are not assuming that ϵ is small.

Pirsa: 10040089 Page 9/59

Power spectra

In the inflationary paradigm, cosmological perturbations are assumed to originate on sub-horizon scales as quantum fluctuations.

Quantising the perturbations in the usual manner,

$$\langle \zeta(t, \vec{q}) \zeta(t, -\vec{q}) \rangle = |\zeta_q(t)|^2,$$

$$\langle \gamma_{ij}(t, \vec{q}) \gamma_{kl}(t, -\vec{q}) \rangle = 2|\gamma_q(t)|^2 \Pi_{ijkl},$$

where Π_{ijkl} is the transverse traceless projection operator while $\zeta_q(t)$ and $\gamma_q(t)$ are the mode functions.

The superhorizon power spectra are then given by

$$\Delta_S^2(q) = \frac{q^3}{2\pi^2} |\zeta_{q(0)}|^2, \quad \Delta_T^2(q) = \frac{2q^3}{\pi^2} |\gamma_{q(0)}|^2,$$

where $\gamma_{q(0)}$ and $\zeta_{q(0)}$ are the constant late-time values of the mode functions, with initial conditions set by the Bunch-Davies vacuum.

Pirsa: 10040089 Page 10/59

Power spectra via response functions

In preparation for our holographic discussion, we rewrite the power spectrum as follows.

We define the response functions as

$$\Pi^{(\zeta)} = \Omega \zeta, \quad \Pi_{ij}^{(\gamma)} = E \gamma_{ij},$$

where $\Pi^{(\zeta)}$ and $\Pi^{(\gamma)}_{ij}$ are the canonical momenta.

One can show that

$$|\zeta_q|^{-2} = -2\text{Im}[\Omega(q)], \quad |\gamma_q|^{-2} = -4\text{Im}[E(q)].$$

hence the power spectra may be expressed in terms of the late-time behaviour of the response functions.

Pirsa: 10040089 Page 11/59

Power spectra via response functions

In preparation for our holographic discussion, we rewrite the power spectrum as follows.

We define the response functions as

$$\Pi^{(\zeta)} = \Omega \zeta, \quad \Pi_{ij}^{(\gamma)} = E \gamma_{ij},$$

where $\Pi^{(\zeta)}$ and $\Pi^{(\gamma)}_{ij}$ are the canonical momenta.

One can show that

$$|\zeta_q|^{-2} = -2\text{Im}[\Omega(q)], \quad |\gamma_q|^{-2} = -4\text{Im}[E(q)].$$

hence the power spectra may be expressed in terms of the late-time behaviour of the response functions.

Pirsa: 10040089 Page 13/59

Plan of talk

- Part I: Holography for cosmology
- Part II: Strong gravity regime: overview of cosmological results.

Ref: arXiv:1001.2007 & 0907.5542.

Cosmological perturbations

We start by reviewing standard inflationary cosmology and the cosmological observables we would like to compute holographically.

For simplicity, we discuss single-field 4d inflationary models:

$$S = \frac{1}{2\kappa^2} \int d^4x \sqrt{-g} [R - (\partial \Phi)^2 - 2\kappa^2 V(\Phi)].$$

We assume a spatially flat background and perturb

$$ds^{2} = -dt^{2} + a^{2}(t)[\delta_{ij} + h_{ij}(t, \vec{x})]dx^{i}dx^{j}.$$

$$\Phi = \varphi(t) + \delta\varphi(t, \vec{x}).$$

where
$$h_{ij} = -2\psi(z, \vec{x})\delta_{ij} + 2\partial_i\partial_j\chi(z, \vec{x}) + \gamma_{ij}(z, \vec{x})$$
.

 γ_{ij} is transverse traceless and we form the gauge-invariant combination $\zeta = \psi + (H/\dot{\varphi})\delta\varphi$.

Pirsa: 10040089 Page 15/59

Power spectra

In the inflationary paradigm, cosmological perturbations are assumed to originate on sub-horizon scales as quantum fluctuations.

Quantising the perturbations in the usual manner,

$$\begin{aligned} \langle \zeta(t, \vec{q}) \zeta(t, -\vec{q}) \rangle &= |\zeta_q(t)|^2, \\ \langle \gamma_{ij}(t, \vec{q}) \gamma_{kl}(t, -\vec{q}) \rangle &= 2|\gamma_q(t)|^2 \Pi_{ijkl}, \end{aligned}$$

where Π_{ijkl} is the transverse traceless projection operator while $\zeta_q(t)$ and $\gamma_q(t)$ are the mode functions.

The superhorizon power spectra are then given by

$$\Delta_S^2(q) = \frac{q^3}{2\pi^2} |\zeta_{q(0)}|^2, \quad \Delta_T^2(q) = \frac{2q^3}{\pi^2} |\gamma_{q(0)}|^2,$$

where $\gamma_{q(0)}$ and $\zeta_{q(0)}$ are the constant late-time values of the mode functions, with initial conditions set by the Bunch-Davies vacuum.

Pirsa: 10040089 Page 16/59

Cosmological perturbations

► The equations of motion for the perturbations are:

$$0 = \ddot{\zeta} + (3H + \dot{\epsilon}/\epsilon)\dot{\zeta} + a^{-2}q^{2}\zeta, 0 = \ddot{\gamma}_{ij} + 3H\dot{\gamma}_{ij} + a^{-2}q^{2}\gamma_{ij},$$

where $H=\dot{a}/a$ is the Hubble rate and $\epsilon=-\dot{H}/H^2$ is the 'slow-roll' parameter. We are not assuming that ϵ is small.

Pirsa: 10040089 Page 17/59

'Domain-wall' spacetimes are closely related to cosmological spacetimes:

$$ds^2 = \eta dz^2 + a^2(z)d\vec{x}^2, \qquad \Phi = \varphi(z),$$

where $\eta = +1$ for a (Euclidean) DW and $\eta = -1$ for cosmology.

- They play a prominent role in holography where they describe holographic RG flows (i.e. radial evolution of DW ↔ RG flow of dual QFT).
- The DW action is

$$S = \frac{1}{2\kappa^2} \int \mathrm{d}^4 x \sqrt{g} \left[-R + (\partial \Phi)^2 + 2\kappa^2 V(\Phi) \right].$$

Pirsa: 10040089 Page 18/59

Including perturbations, the equations of motion for DW/C read:

$$\begin{split} H &= -(1/2)W(\varphi), \quad \dot{\varphi} = W_{,\varphi}, \quad 2\eta\kappa^2 V = (W_{,\varphi})^2 - (3/2)W^2, \\ 0 &= \ddot{\zeta} + (3H + \dot{\epsilon}/\epsilon)\dot{\zeta} - \eta a^{-2}q^2\zeta, \quad 0 = \ddot{\gamma}_{ij} + 3H\dot{\gamma}_{ij} - \eta a^{-2}q^2\gamma_{ij}, \end{split}$$

Defining the analytically continued variables

$$\bar{\kappa}^2 = -\kappa^2, \quad \bar{q} = -iq,$$

we see that a cosmological solution written in terms of (κ, q) continues to a DW solution expressed in terms of $(\bar{\kappa}, \bar{q})$.

Pirsa: 10040089 Page 19/59

'Domain-wall' spacetimes are closely related to cosmological spacetimes:

$$ds^2 = \eta dz^2 + a^2(z)d\vec{x}^2, \qquad \Phi = \varphi(z),$$

where $\eta = +1$ for a (Euclidean) DW and $\eta = -1$ for cosmology.

- ► They play a prominent role in holography where they describe holographic RG flows (i.e. radial evolution of DW ↔ RG flow of dual QFT).
- The DW action is

$$S = \frac{1}{2\kappa^2} \int d^4x \sqrt{g} \left[-R + (\partial \Phi)^2 + 2\kappa^2 V(\Phi) \right].$$

Pirsa: 10040089 Page 20/59

Including perturbations, the equations of motion for DW/C read:

$$\begin{split} H &= -(1/2)W(\varphi), \quad \dot{\varphi} = W_{,\varphi}, \quad 2\eta\kappa^2 V = (W_{,\varphi})^2 - (3/2)W^2, \\ 0 &= \ddot{\zeta} + (3H + \dot{\epsilon}/\epsilon)\dot{\zeta} - \eta a^{-2}q^2\zeta, \quad 0 = \ddot{\gamma}_{ij} + 3H\dot{\gamma}_{ij} - \eta a^{-2}q^2\gamma_{ij}, \end{split}$$

Defining the analytically continued variables

$$\bar{\kappa}^2 = -\kappa^2, \quad \bar{q} = -iq,$$

we see that a cosmological solution written in terms of (κ, q) continues to a DW solution expressed in terms of $(\bar{\kappa}, \bar{q})$.

- This particular bulk continuation was chosen as it has a clear interpretation in terms of dual QFT variables.
- Our choice of sign in the continuation of q ensures that the Bunch-Davies vacuum on the cosmology side maps to a solution that is regular in the interior of the domain-wall:

$$\zeta, \gamma \sim \exp(-iq\tau) \rightarrow \zeta, \gamma \sim \exp(\bar{q}\tau)$$

where $\tau = \int dz/a$ and the DW interior is $\tau \to -\infty$.

• One can define response functions $\bar{\Omega}$ and \bar{E} for the DW spacetime. They are related to their cosmological counterparts by the analytic continuations $\bar{\Omega}(-iq) = \Omega(q)$ and $\bar{E}(-iq) = E(q)$.

Pirsa: 10040089 Page 22/59

Including perturbations, the equations of motion for DW/C read:

$$\begin{split} H &= -(1/2)W(\varphi), \quad \dot{\varphi} = W_{,\varphi}, \quad 2\eta\kappa^2 V = (W_{,\varphi})^2 - (3/2)W^2, \\ 0 &= \ddot{\zeta} + (3H + \dot{\epsilon}/\epsilon)\dot{\zeta} - \eta a^{-2}q^2\zeta, \quad 0 = \ddot{\gamma}_{ij} + 3H\dot{\gamma}_{ij} - \eta a^{-2}q^2\gamma_{ij}, \end{split}$$

Defining the analytically continued variables

$$\bar{\kappa}^2 = -\kappa^2, \quad \bar{q} = -iq,$$

we see that a cosmological solution written in terms of (κ, q) continues to a DW solution expressed in terms of $(\bar{\kappa}, \bar{q})$.

- This particular bulk continuation was chosen as it has a clear interpretation in terms of dual QFT variables.
- Our choice of sign in the continuation of q ensures that the Bunch-Davies vacuum on the cosmology side maps to a solution that is regular in the interior of the domain-wall:

$$\zeta, \gamma \sim \exp(-iq\tau) \rightarrow \zeta, \gamma \sim \exp(\bar{q}\tau)$$

where $\tau = \int dz/a$ and the DW interior is $\tau \to -\infty$.

• One can define response functions $\bar{\Omega}$ and \bar{E} for the DW spacetime. They are related to their cosmological counterparts by the analytic continuations $\bar{\Omega}(-iq) = \Omega(q)$ and $\bar{E}(-iq) = E(q)$.

Pirsa: 10040089 Page 24/59

Including perturbations, the equations of motion for DW/C read:

$$\begin{split} H &= -(1/2)W(\varphi), \quad \dot{\varphi} = W_{,\varphi}, \quad 2\eta\kappa^2 V = (W_{,\varphi})^2 - (3/2)W^2, \\ 0 &= \ddot{\zeta} + (3H + \dot{\epsilon}/\epsilon)\dot{\zeta} - \eta a^{-2}q^2\zeta, \quad 0 = \ddot{\gamma}_{ij} + 3H\dot{\gamma}_{ij} - \eta a^{-2}q^2\gamma_{ij}, \end{split}$$

Defining the analytically continued variables

$$\bar{\kappa}^2 = -\kappa^2, \quad \bar{q} = -iq,$$

we see that a cosmological solution written in terms of (κ, q) continues to a DW solution expressed in terms of $(\bar{\kappa}, \bar{q})$.

Pirsa: 10040089 Page 25/59

'Domain-wall' spacetimes are closely related to cosmological spacetimes:

$$ds^2 = \eta dz^2 + a^2(z)d\vec{x}^2, \qquad \Phi = \varphi(z),$$

where $\eta = +1$ for a (Euclidean) DW and $\eta = -1$ for cosmology.

- ► They play a prominent role in holography where they describe holographic RG flows (i.e. radial evolution of DW ↔ RG flow of dual QFT).
- The DW action is

$$S = \frac{1}{2\kappa^2} \int \mathrm{d}^4 x \sqrt{g} \left[-R + (\partial \Phi)^2 + 2\kappa^2 V(\Phi) \right].$$

Pirsa: 10040089 Page 26/59

Including perturbations, the equations of motion for DW/C read:

$$\begin{split} H &= -(1/2)W(\varphi), \quad \dot{\varphi} = W_{,\varphi}, \quad 2\eta\kappa^2 V = (W_{,\varphi})^2 - (3/2)W^2, \\ 0 &= \ddot{\zeta} + (3H + \dot{\epsilon}/\epsilon)\dot{\zeta} - \eta a^{-2}q^2\zeta, \quad 0 = \ddot{\gamma}_{ij} + 3H\dot{\gamma}_{ij} - \eta a^{-2}q^2\gamma_{ij}, \end{split}$$

Defining the analytically continued variables

$$\bar{\kappa}^2 = -\kappa^2, \quad \bar{q} = -iq,$$

we see that a cosmological solution written in terms of (κ, q) continues to a DW solution expressed in terms of $(\bar{\kappa}, \bar{q})$.

- This particular bulk continuation was chosen as it has a clear interpretation in terms of dual QFT variables.
- Our choice of sign in the continuation of q ensures that the Bunch-Davies vacuum on the cosmology side maps to a solution that is regular in the interior of the domain-wall:

$$\zeta, \gamma \sim \exp(-iq\tau) \rightarrow \zeta, \gamma \sim \exp(\bar{q}\tau)$$

where $\tau = \int dz/a$ and the DW interior is $\tau \to -\infty$.

• One can define response functions $\bar{\Omega}$ and \bar{E} for the DW spacetime. They are related to their cosmological counterparts by the analytic continuations $\bar{\Omega}(-iq) = \Omega(q)$ and $\bar{E}(-iq) = E(q)$.

Pirsa: 10040089 Page 28/59

Pirsa: 10040089 Page 29/59

Holographic RG flows

There are two classes of domain-wall spacetimes whose holographic interpretation is well understood:

- 1. Asymptotically AdS solutions: $a \sim e^z$, $\varphi \sim 0$ as $z \to \infty$.
- These solutions describe a QFT that approaches a fixed point in the UV. The fixed point is the CFT dual to the asymptotic AdS spacetime.
- Under the DW/C correspondence, these solutions are mapped to cosmologies that are asymptotically de Sitter at late times.

Pirsa: 10040089 Page 30/59

Holographic RG flows

- 2. Asymptotically power-law solutions: $a \sim (z/z_0)^n$, $\varphi \sim \sqrt{2n} \ln(z/z_0)$ as $z \to \infty$.
- ▶ Specific cases of such spacetimes may be obtained by taking the near-horizon limit of non-conformal branes (e.g. D2 brane $\leftrightarrow n = 7$).
- These solutions describe QFTs with a dimensionful coupling constant in the regime where the dimensionality of the coupling constant drives the dynamics¹.
- Under the DW/C correspondence, they are mapped to cosmologies that undergo asymptotic power-law inflation.

Pirsa: 10040089 Page 31/59

Pirsa: 10040089 Page 32/59

Holography: a primer

Our holographic dictionary for cosmology will be based on the standard holographic dictionary, so we now briefly review standard holography:

- There is a 1-to-1 correspondence between local gauge-invariant operators of the boundary QFT and bulk supergravity modes:
 - → The bulk metric corresponds to the stress-energy tensor T_{ij} of the boundary theory.
 - ⇒ Bulk scalar fields correspond to boundary scalar operators, e.g. trF_{1,7}F^{1,7}.
- Correlation functions of the dual QFT may be read off from the asymptotics of the bulk solution. Conversely, given appropriate QFT data, one can reconstruct the bulk asymptotics.

Pirsa: 10040089 Page 33/59

Holographic RG flows

- 2. Asymptotically power-law solutions: $a \sim (z/z_0)^n$, $\varphi \sim \sqrt{2n} \ln(z/z_0)$ as $z \to \infty$.
- ▶ Specific cases of such spacetimes may be obtained by taking the near-horizon limit of non-conformal branes (e.g. D2 brane $\leftrightarrow n = 7$).
- These solutions describe QFTs with a dimensionful coupling constant in the regime where the dimensionality of the coupling constant drives the dynamics¹.
- Under the DW/C correspondence, they are mapped to cosmologies that undergo asymptotic power-law inflation.

Pirsa: 10040089 Page 34/59

Pirsa: 10040089 Page 35/59

Holography: a primer

Our holographic dictionary for cosmology will be based on the standard holographic dictionary, so we now briefly review standard holography:

- There is a 1-to-1 correspondence between local gauge-invariant operators of the boundary QFT and bulk supergravity modes:
 - → The bulk metric corresponds to the stress-energy tensor T_{ij} of the boundary theory.
 - ⇒ Bulk scalar fields correspond to boundary scalar operators, e.g. trF_{1,7}F^{1,7}.
- Correlation functions of the dual QFT may be read off from the asymptotics of the bulk solution. Conversely, given appropriate QFT data, one can reconstruct the bulk asymptotics.

Pirsa: 10040089 Page 36/59

The general asymptotic solution for the 4d bulk metric reads:

$$ds^{2} = dr^{2} + e^{2r}g_{ij}(r, x)dx^{i}dx^{j},$$

$$g_{ij}(r, x) = g_{(0)ij}(x) + e^{-2r}g_{(2)ij}(x) + \dots + e^{-2\sigma r}g_{(2\sigma)ij}(x) + \dots$$

- g(0)ij(x) is the metric seen by the dual QFT, and hence acts as the source for the dual stress tensor Tij.
- ▶ The $g_{(2k)ij}(x)$ with $k < \sigma$ are locally determined in terms of $g_{(0)ij}(x)$ via the asymptotic analysis of the field equations.
- $g_{(2\sigma)ij}(x)$ is only partially constrained by the asymptotic analysis of the field equations, and is related to the dual 1-pt function:

$$\langle T_{ij} \rangle = \frac{1}{2\bar{\kappa}^2} (2\sigma g_{(2\sigma)ij}).$$

Pirsa: 10040089

The general asymptotic solution for the 4d bulk metric reads:

$$ds^{2} = dr^{2} + e^{2r}g_{ij}(r, x)dx^{i}dx^{j},$$

$$g_{ij}(r, x) = g_{(0)ij}(x) + e^{-2r}g_{(2)ij}(x) + \dots + e^{-2\sigma r}g_{(2\sigma)ij}(x) + \dots$$

- g(0)ij(x) is the metric seen by the dual QFT, and hence acts as the source for the dual stress tensor Tij.
- ▶ The $g_{(2k)ij}(x)$ with $k < \sigma$ are locally determined in terms of $g_{(0)ij}(x)$ via the asymptotic analysis of the field equations.
- $g_{(2\sigma)ij}(x)$ is only partially constrained by the asymptotic analysis of the field equations, and is related to the dual 1-pt function:

$$\langle T_{ij} \rangle = \frac{1}{2\bar{\kappa}^2} (2\sigma g_{(2\sigma)ij}).$$

Pirsa: 10040089 Page 38/59

- From the bulk asymptotics, we can read off $\langle T_{ij} \rangle$. Equivalently, given $\langle T_{ij} \rangle$, we can reconstruct the bulk asymptotics.
- This remains true even in the regime where gravity is strongly coupled and the description in terms of low-energy fields (such as the metric) breaks down deep in the interior.
- The metric description is still valid asymptotically, however, and takes the same form as before. Gauge/gravity duality requires the value of $g_{(2\sigma)ij}$ deriving from stringy dynamics to match that derived from the dual weakly coupled QFT.

Pirsa: 10040089 Page 39/59

The general asymptotic solution for the 4d bulk metric reads:

$$ds^{2} = dr^{2} + e^{2r}g_{ij}(r, x)dx^{i}dx^{j},$$

$$g_{ij}(r, x) = g_{(0)ij}(x) + e^{-2r}g_{(2)ij}(x) + \dots + e^{-2\sigma r}g_{(2\sigma)ij}(x) + \dots$$

- $g_{(0)ij}(x)$ is the metric seen by the dual QFT, and hence acts as the source for the dual stress tensor T_{ij} .
- ▶ The $g_{(2k)ij}(x)$ with $k < \sigma$ are locally determined in terms of $g_{(0)ij}(x)$ via the asymptotic analysis of the field equations.
- $g_{(2\sigma)ij}(x)$ is only partially constrained by the asymptotic analysis of the field equations, and is related to the dual 1-pt function:

$$\langle T_{ij} \rangle = \frac{1}{2\bar{\kappa}^2} (2\sigma g_{(2\sigma)ij}).$$

Pirsa: 10040089 Page 40/59

- From the bulk asymptotics, we can read off $\langle T_{ij} \rangle$. Equivalently, given $\langle T_{ij} \rangle$, we can reconstruct the bulk asymptotics.
- This remains true even in the regime where gravity is strongly coupled and the description in terms of low-energy fields (such as the metric) breaks down deep in the interior.
- The metric description is still valid asymptotically, however, and takes the same form as before. Gauge/gravity duality requires the value of $g_{(2\sigma)ij}$ deriving from stringy dynamics to match that derived from the dual weakly coupled QFT.

Pirsa: 10040089 Page 41/59

The general asymptotic solution for the 4d bulk metric reads:

$$ds^{2} = dr^{2} + e^{2r}g_{ij}(r, x)dx^{i}dx^{j},$$

$$g_{ij}(r, x) = g_{(0)ij}(x) + e^{-2r}g_{(2)ij}(x) + \dots + e^{-2\sigma r}g_{(2\sigma)ij}(x) + \dots$$

- $g_{(0)ij}(x)$ is the metric seen by the dual QFT, and hence acts as the source for the dual stress tensor T_{ij} .
- ▶ The $g_{(2k)ij}(x)$ with $k < \sigma$ are locally determined in terms of $g_{(0)ij}(x)$ via the asymptotic analysis of the field equations.
- $g_{(2\sigma)ij}(x)$ is only partially constrained by the asymptotic analysis of the field equations, and is related to the dual 1-pt function:

$$\langle T_{ij} \rangle = \frac{1}{2\bar{\kappa}^2} (2\sigma g_{(2\sigma)ij}).$$

Pirsa: 10040089 Page 42/59

- From the bulk asymptotics, we can read off $\langle T_{ij} \rangle$. Equivalently, given $\langle T_{ij} \rangle$, we can reconstruct the bulk asymptotics.
- This remains true even in the regime where gravity is strongly coupled and the description in terms of low-energy fields (such as the metric) breaks down deep in the interior.
- The metric description is still valid asymptotically, however, and takes the same form as before. Gauge/gravity duality requires the value of $g_{(2\sigma)ij}$ deriving from stringy dynamics to match that derived from the dual weakly coupled QFT.

Pirsa: 10040089 Page 43/59

The general asymptotic solution for the 4d bulk metric reads:

$$ds^{2} = dr^{2} + e^{2r}g_{ij}(r, x)dx^{i}dx^{j},$$

$$g_{ij}(r, x) = g_{(0)ij}(x) + e^{-2r}g_{(2)ij}(x) + \dots + e^{-2\sigma r}g_{(2\sigma)ij}(x) + \dots$$

- ▶ $g_{(0)ij}(x)$ is the metric seen by the dual QFT, and hence acts as the source for the dual stress tensor T_{ij} .
- ▶ The $g_{(2k)ij}(x)$ with $k < \sigma$ are locally determined in terms of $g_{(0)ij}(x)$ via the asymptotic analysis of the field equations.
- $g_{(2\sigma)ij}(x)$ is only partially constrained by the asymptotic analysis of the field equations, and is related to the dual 1-pt function:

$$\langle T_{ij} \rangle = \frac{1}{2\bar{\kappa}^2} (2\sigma g_{(2\sigma)ij}).$$

Pirsa: 10040089 Page 44/59

- From the bulk asymptotics, we can read off $\langle T_{ij} \rangle$. Equivalently, given $\langle T_{ij} \rangle$, we can reconstruct the bulk asymptotics.
- This remains true even in the regime where gravity is strongly coupled and the description in terms of low-energy fields (such as the metric) breaks down deep in the interior.
- The metric description is still valid asymptotically, however, and takes the same form as before. Gauge/gravity duality requires the value of $g_{(2\sigma)ij}$ deriving from stringy dynamics to match that derived from the dual weakly coupled QFT.

Pirsa: 10040089 Page 45/59

Two-point functions

 Higher-point functions may be obtained by differentiating the 1-pt function w.r.t. the sources and then setting the sources to their background values,

e.g.
$$\langle T_{ij}(x)T_{kl}(y)\rangle \sim \frac{\delta g_{(2\sigma)ij}(x)}{\delta g_{(0)kl}(y)}\Big|_{g_{(0)}=\delta}$$

- To compute 2-pt functions one only needs to solve for the fluctuations to linear order.
- On general grounds, the 2-pt function for the stress tensor admits the decomposition

$$\langle T_{ij}(\bar{q})T_{kl}(-\bar{q})\rangle = A(\bar{q})\Pi_{ijkl} + B(\bar{q})\pi_{ij}\pi_{kl},$$

where the transverse and transverse traceless projection operators are

$$\pi_{ij} = \delta_{ij} - \bar{q}_i \bar{q}_j / \bar{q}^2$$
, $\Pi_{ijkl} = \pi_{i(k} \pi_{l)j} - (1/2) \pi_{ij} \pi_{kl}$.

Pirsa: 10040089 Page 46/59

Holographic analysis

 Employing the radial Hamiltonian formulation of holographic renormalisation², we showed that for both asymptotically AdS and asymptotically power-law DW spacetimes,

$$A(\bar{q}) = 4\bar{E}_{(0)}(\bar{q}), \quad B(\bar{q}) = (1/4)\bar{\Omega}_{(0)}(\bar{q}).$$

▶ Thus, the 2-pt function $\langle T_{ij}(\bar{q})T_{kl}(-\bar{q})\rangle$ may be extracted from the DW response functions. The subscript indicates taking the term with appropriate scaling in the asymptotic expansion.

Pirsa: 10040089 Page 47/59

Two-point functions

 Higher-point functions may be obtained by differentiating the 1-pt function w.r.t. the sources and then setting the sources to their background values,

e.g.
$$\langle T_{ij}(x)T_{kl}(y)\rangle \sim \frac{\delta g_{(2\sigma)ij}(x)}{\delta g_{(0)kl}(y)}\Big|_{g_{(0)}=\delta}$$

- To compute 2-pt functions one only needs to solve for the fluctuations to linear order.
- On general grounds, the 2-pt function for the stress tensor admits the decomposition

$$\langle T_{ij}(\bar{q})T_{kl}(-\bar{q})\rangle = A(\bar{q})\Pi_{ijkl} + B(\bar{q})\pi_{ij}\pi_{kl},$$

where the transverse and transverse traceless projection operators are

$$\pi_{ij} = \delta_{ij} - \bar{q}_i \bar{q}_j / \bar{q}^2$$
. $\Pi_{ijkl} = \pi_{i(k} \pi_{l)j} - (1/2) \pi_{ij} \pi_{kl}$.

Pirsa: 10040089 Page 48/59

Holographic analysis

 Employing the radial Hamiltonian formulation of holographic renormalisation², we showed that for both asymptotically AdS and asymptotically power-law DW spacetimes,

$$A(\bar{q}) = 4\bar{E}_{(0)}(\bar{q}), \quad B(\bar{q}) = (1/4)\bar{\Omega}_{(0)}(\bar{q}).$$

▶ Thus, the 2-pt function $\langle T_{ij}(\bar{q})T_{kl}(-\bar{q})\rangle$ may be extracted from the DW response functions. The subscript indicates taking the term with appropriate scaling in the asymptotic expansion.

Pirsa: 10040089 Page 49/59

In the Hamiltonian formalism, the asymptotic radial expansion of the metric is replaced by a covariant expansion in eigenfunctions of the dilatation operator:

$$\delta_D = \partial_r + O(e^{-2r}), \qquad \delta_D A_{(m)} = -m A_{(m)}.$$

▶ The dual 1-pt function is then

$$\langle T_j^i \rangle = \left(\frac{-2}{\sqrt{g}} \bar{\Pi}_j^i \right)_{(3)}$$

where Π_j^i is the radial canonical momentum.

For asymptotically power-law spacetimes, the holographic analysis takes place in the dual frame, where the metric is asymptotically AdS.

Pirsa: 10040089 Page 50/59

Under a linear variation of the QFT sources $g_{(0)ij}$ and $\varphi_{(0)}$,

$$\begin{split} \delta \langle T_{ij} \rangle &= -\frac{1}{2} \sqrt{g_{(0)}} \langle T_{ij}(\bar{q}) T_{kl}(-\bar{q}) \rangle \delta g_{(0)}^{kl} - \sqrt{g_{(0)}} \langle T_{ij}(\bar{q}) \mathcal{O}(-\bar{q}) \rangle \delta \varphi_{(0)} \\ &= \frac{1}{2} A(\bar{q}) \gamma_{j(0)}^i - 2 B(\bar{q}) \psi_{(0)} \pi_j^i - \langle T_j^i(\bar{q}) \mathcal{O}(-\bar{q}) \rangle \delta \varphi_{(0)}. \end{split}$$

In comparison, perturbing the bulk radial canonical momentum to linear order, we find (e.g. in the asymptotically AdS case)

$$\delta \langle T_j^i \rangle = \left[\frac{2\bar{E}(\bar{q})}{a^3} \gamma_j^i - \left(\frac{\bar{q}^2}{\bar{\kappa}^2 a^2 H} + \frac{\bar{\Omega}(\bar{q})}{2a^3} \right) \psi \pi_j^i - (\dots) \delta \varphi \right]_{(3)}$$

Extracting the terms with appropriate dilatation weight then yields:

$$A(\bar{q}) = 4\bar{E}_{(0)}(\bar{q}), \quad B(\bar{q}) = (1/4)\bar{\Omega}_{(0)}(\bar{q})$$

Pirsa: 10040089 Page 51/59

In the Hamiltonian formalism, the asymptotic radial expansion of the metric is replaced by a covariant expansion in eigenfunctions of the dilatation operator:

$$\delta_D = \partial_r + O(e^{-2r}), \qquad \delta_D A_{(m)} = -m A_{(m)}.$$

▶ The dual 1-pt function is then

$$\langle T_j^i \rangle = \left(\frac{-2}{\sqrt{g}} \bar{\Pi}_j^i \right)_{(3)}$$

where Π_{j}^{i} is the radial canonical momentum.

For asymptotically power-law spacetimes, the holographic analysis takes place in the dual frame, where the metric is asymptotically AdS.

Pirsa: 10040089 Page 52/59

Under a linear variation of the QFT sources $g_{(0)ij}$ and $\varphi_{(0)}$,

$$\begin{split} \delta \langle T_{ij} \rangle &= -\frac{1}{2} \sqrt{g_{(0)}} \langle T_{ij}(\bar{q}) T_{kl}(-\bar{q}) \rangle \delta g_{(0)}^{kl} - \sqrt{g_{(0)}} \langle T_{ij}(\bar{q}) \mathcal{O}(-\bar{q}) \rangle \delta \varphi_{(0)} \\ &= \frac{1}{2} A(\bar{q}) \gamma_{j(0)}^i - 2 B(\bar{q}) \psi_{(0)} \pi_j^i - \langle T_j^i(\bar{q}) \mathcal{O}(-\bar{q}) \rangle \delta \varphi_{(0)}. \end{split}$$

In comparison, perturbing the bulk radial canonical momentum to linear order, we find (e.g. in the asymptotically AdS case)

$$\delta \langle T_j^i \rangle = \left[\frac{2\bar{E}(\bar{q})}{a^3} \gamma_j^i - \left(\frac{\bar{q}^2}{\bar{\kappa}^2 a^2 H} + \frac{\bar{\Omega}(\bar{q})}{2a^3} \right) \psi \pi_j^i - (\dots) \delta \varphi \right]_{(3)}$$

Extracting the terms with appropriate dilatation weight then yields:

$$A(\bar{q}) = 4\bar{E}_{(0)}(\bar{q}), \quad B(\bar{q}) = (1/4)\bar{\Omega}_{(0)}(\bar{q})$$

Pirsa: 10040089 Page 53/59

Pirsa: 10040089 Page 54/59

In the Hamiltonian formalism, the asymptotic radial expansion of the metric is replaced by a covariant expansion in eigenfunctions of the dilatation operator:

$$\delta_D = \partial_r + O(e^{-2r}), \qquad \delta_D A_{(m)} = -m A_{(m)}.$$

► The dual 1-pt function is then

$$\langle T_j^i \rangle = \left(\frac{-2}{\sqrt{g}} \bar{\Pi}_j^i \right)_{(3)}$$

where Π_{j}^{i} is the radial canonical momentum.

For asymptotically power-law spacetimes, the holographic analysis takes place in the dual frame, where the metric is asymptotically AdS.

Pirsa: 10040089 Page 55/59

Holographic analysis

 Employing the radial Hamiltonian formulation of holographic renormalisation², we showed that for both asymptotically AdS and asymptotically power-law DW spacetimes,

$$A(\bar{q}) = 4\bar{E}_{(0)}(\bar{q}), \quad B(\bar{q}) = (1/4)\bar{\Omega}_{(0)}(\bar{q}).$$

▶ Thus, the 2-pt function $\langle T_{ij}(\bar{q})T_{kl}(-\bar{q})\rangle$ may be extracted from the DW response functions. The subscript indicates taking the term with appropriate scaling in the asymptotic expansion.

Pirsa: 10040089 Page 56/59

In the Hamiltonian formalism, the asymptotic radial expansion of the metric is replaced by a covariant expansion in eigenfunctions of the dilatation operator:

$$\delta_D = \partial_r + O(e^{-2r}), \qquad \delta_D A_{(m)} = -m A_{(m)}.$$

The dual 1-pt function is then

$$\langle T_j^i \rangle = \left(\frac{-2}{\sqrt{g}} \bar{\Pi}_j^i \right)_{(3)}$$

where Π_j^i is the radial canonical momentum.

For asymptotically power-law spacetimes, the holographic analysis takes place in the dual frame, where the metric is asymptotically AdS.

Pirsa: 10040089 Page 57/59

Pirsa: 10040089 Page 58/59

From cosmology to QFT

Applying the analytic continuations $\bar{\kappa}^2 = -\kappa^2$, $\bar{q} = -iq$, we find a direct relation between the cosmological power spectra and the 2-pt functions of the dual QFT:

$$\Delta_S^2(q) = \frac{-q^3}{16\pi^2 {\rm Im} B(-iq)}, \quad \Delta_T^2(q) = \frac{-2q^3}{\pi^2 {\rm Im} A(-iq)},$$

where

$$\langle T_{ij}(\bar{q})T_{kl}(-\bar{q})\rangle = A(\bar{q})\Pi_{ijkl} + B(\bar{q})\pi_{ij}\pi_{kl}.$$

Pirsa: 10040089