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Holography

Holography states that any quantum theory of gravity should have a dual
description in terms of a QFT (without gravity) in one dimension less.

Examples found in string theory involve spacetimes with a negative
cosmological constant (e.,g. AdS/CFT).

» Here we propose a holographic framework for inflationary cosmology.

Specifically, we seek a dual description of four-dimensional inflationary
cosmology in terms of a three-dimensional QFT (without gravity).
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Holography for Cosmology

Any proposed holographic framework for cosmology should specify:

1. The precise nature of the dual QFT.

2. How to compute cosmological observables (e.g. the primordial
power spectrum) from the correlation functions of the dual QFT.

Having defined such a duality,

3. Must recover standard inflationary predictions in their regime of
validity (namely, when a perturbative quantisation of fluctuations is
possible, i.e. weakly coupled gravity — strongly coupled QFT).
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Strong gravity

New results then follow by applying the holographic framework in the
opposite regime where gravity is strongly coupled and a perturbative
quantisation of fluctuations breaks down. The dual QFT is then weakly

coupled.

» Compute cosmological observables
holographically using only perturbative
QFT.

» Qualitatively different predictions from
standard inflation.

» Simple to find holographic models
consistent with observation.
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Cosmological perturbations

We start by reviewing standard inflationary cosmology and the
cosmological observables we would like to compute holographically.

» For simplicity, we discuss single-field 4d inflationary models:

- l - T ) Dy -
S = — / d*ry/—g[R — (0®)° — 2x-V (®)].

2u2

» We assume a spatially flat background and perturb

ds?2 = —dt? +a?(t)[s;; + hy;(t.7)]dr'de.
® = () +0p(t.x).
where h;; = —2v(z.x)d;; + 20;0;x(z.T) + 7i;(2-T)-

» -, is transverse traceless and we form the gauge-invariant
combination ( = v' + (H/2)d ..
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Cosmological perturbations

» The equations of motion for the perturbations are:

0 = (+(3H +é/e)C +a2q%C.
- . i —2 9
{J — “_.:J —-—.}H"‘I.U - il "f ".U_
where H = @ /a is the Hubble rate and ¢ = —H /H? is the ‘slow-roll

parameter. We are not assuming that ¢ is small.

Pirsa: 10040089 Page 9/59



Power spectra

In the inflationary paradigm. cosmological perturbations are assumed to
originate on sub-horizon scales as quantum fluctuations.

» Quantising the perturbations in the usual manner.

ijgff.rrll.,,[f.—fﬂ:’ = \-..q[” 21

'fj".U{f.trj“-H[f_—tﬂ'} '.]."-,_-f-lfl _HU*H‘

where II,;; is the transverse traceless projection operator while
G¢(t) and ~,(#) are the mode functions.

» T he superhorizon power spectra are then given by

> ' 9 9 —}3
A:C,‘{q'} — f?l.,q“]} e A}'({;} — %'ﬁ.'qlﬂ

e 1

9

where ~,4, and (40, are the constant late-time values of the mode
functions, with initial conditions set by the Bunch-Davies vacuum.
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Power spectra via response functions

In preparation for our holographic discussion, we rewrite the power

spectrum as follows.

» We define the response functions as

<) — O (1) _ ..
HH —-..-..l._.. HI__I —E EFE

where IT'>' and H_,;' are the canonical momenta.
» One can show that

%)

—

(o™ = —2Im[Q(q)]. |74l~° = —4Im[E(q)].

hence the power spectra may be expressed in terms of the late-time

behaviour of the response functions.
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Power spectra via response functions

In preparation for our holographic discussion, we rewrite the power
spectrum as follows.

» We define the response functions as

where IT'>’ and H;; are the canonical momenta.
» One can show that

3 _D

(a = —2Im[Q(q)]. |7, = —4Im|E(q)]-

hence the power spectra may be expressed in terms of the late-time
behaviour of the response functions.
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Cosmological perturbations

We start by reviewing standard inflationary cosmology and the
cosmological observables we would like to compute holographically.

» For simplicity, we discuss single-field 4d inflationary models:

— l . e p ) Iy 7
S = — / d*ry/—g[R — (0®)° — 2x-V (®)].

22

» We assume a spatially flat background and perturb

ds®> = —dt? +a?(t)[s,; + hy;(t.T)dr'dr.
® = (i) +op(t.T)
where hy; = —2y(z.£)d;; +20,0;x(z.T) + vi;{z-T)

» -, is transverse traceless and we form the gauge-invariant
combination ( = v+ (H/2)d¢.
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Power spectra

In the inflationary paradigm. cosmological perturbations are assumed to
originate on sub-horizon scales as quantum fluctuations.

» Quantising the perturbations in the usual manner,
'fa.,_.“.rrlg_{f.—rrj} — g‘q[f]j.

Y

-'f".U{ f.trj"-mﬁ_f‘ —frl 2 "‘.,_?Ifl _Hz_;ki-

where 11, ;; is the transverse traceless projection operator while
G¢(t) and ~,(#) are the mode functions.

» [ he superhorizon power spectra are then given by

—
¥

e ]

3 &3
2 q 2 - 9 2m 2
AS{Q} — E'gq”]} . AT{"}} — _.-J'ﬂ.'qli_-l . J

where ~,.0, and (40, are the constant late-time values of the mode
functions, with initial conditions set by the Bunch-Davies vacuum.
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Cosmological perturbations

» The equations of motion for the perturbations are:

3 D

B = {... + (3H +€/e ]l.: +a g (.

0 = %;+3H%; +a *qgvj,

where H = a/a is the Hubble rate and ¢ = —H /H? is the ‘slow-roll
parameter. We are not assuming that ¢ is small.
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Domain-wall /cosmology correspondence

» ‘Domain-wall’" spacetimes are closely related to cosmological
spacetimes:

ds? = ndz? + a?(z)d7>. P = o(z).

where 1 = —1 for a (Euclidean) DW and , = —1 for cosmology.

» They play a prominent role in holography where they describe
holographic RG flows (i e radial evolution of DW «+ RG flow of dual
QFT).

» [he DW action is

U‘_,
1

— / d*r /g —R + (0®)° - 25V (D).
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Domain-wall /cosmology correspondence

» Including perturbations, the equations of motion for DW/C read:

H = —(1/2)W(g). ¢=W_.. 2p°V =(W_.)* —(3/2)W=.

2 9 o a3 9

t., — (3H + é_-'-f}t'..: —na q¢, O0=79;+ .‘3H-'_.IJ- — na” g ;.

0

|

il

» Defining the analytically continued variables

a.-’ B "

e o qg = —1q. J

we see that a cosmological solution written in terms of (x, g)
continues to a DW solution expressed in terms of (&, g).
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Domain-wall /cosmology correspondence

» ‘Domain-wall’" spacetimes are closely related to cosmological
spacetimes:

ds? = ndz? + a?(z)dz>. D = o(z). J

where 5 = —1 for a (Euclidean) DW and , = —1 for cosmology.

» They play a prominent role in holography where they describe
holographic RG flows (i.e. radial evolution of DW «+ RG flow of dual
QFT).

» [he DW action is

' 5
1

— / d*r/g —R + (0®)° - 25"V (D) .
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Domain-wall /cosmology correspondence

» Including perturbations, the equations of motion for DW/C read:

H —(1/2)W (). ¢=W_.. 29V = (W .)*— (3/2)W?=.

I

a.j. a.j

H + (3H + é_,"f}t; —na~*¢g°(. 0= Yi; + 3y — 8 q 75

0

|

il

» Defining the analytically continued variables

= —K" qg = —1q. J

we see that a cosmological solution written in terms of (x, g)
continues to a DW solution expressed in terms of (&, g).
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Domain-wall /cosmology correspondence

>
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This particular bulk continuation was chosen as it has a clear
interpretation in terms of dual QFT variables.

QOur choice of sign in the continuation of ¢ ensures that the
Bunch-Davies vacuum on the cosmology side maps to a solution
that is regular in the interior of the domain-wall:

(.7 ~exp(—igr) — (.7~ exp(qr)
where = = [ dz/a and the DW interior is 7 — —x.

One can define response functions (2 and E for the DW spacetime.
They are related to their cosmological counterparts by the analytic
continuations (—ig) = Q(q) and E(—iq) = E(q).
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Domain-wall/cosmology correspondence

» Including perturbations, the equations of motion for DW/C read:

H —(1/2)W (). ¢=W_.. 29V =(W_)* — (3/2)W=

I

a.-l. - 1

0 = *'5 B (3H 53 ‘C‘F }L- === ’!ﬂ*_'i'_k- = ;.-'1"} = 3H“1_} = f}ﬂ_iqj“*i;

il

» Defining the analytically continued variables

a-. -"

K== —K", q = —1q.

we see that a cosmological solution written in terms of (~, q)
continues to a DW solution expressed in terms of (&, g).
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Domain-wall /cosmology correspondence

>
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This particular bulk continuation was chosen as it has a clear
interpretation in terms of dual QFT variables.

QOur choice of sign in the continuation of ¢ ensures that the
Bunch-Davies vacuum on the cosmology side maps to a solution
that is regular in the interior of the domain-wall:

C.y~expl—igr}] — .7~ explqgr)
where 7 = [ dz/a and the DW interior is 7 — —x.

One can define response functions (2 and E for the DW spacetime.
They are related to their cosmological counterparts by the analytic
continuations (—:iq) = Qq) and E(—1q) = E(q).
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Domain-wall /cosmology correspondence

» Including perturbations, the equations of motion for DW/C read:

H —(1/2)W (). ¢=W_.. 255V =(W_.)* — (3/2)W>=

I

a.',. a.j

u',. — (3H ~ é_-"f}t_: - r)a_jqjg. 0= +3H7; —na “q 7;

0

|

il

» Defining the analytically continued variables

2 2 qg = —1q. J

we see that a cosmological solution written in terms of (~, g)
continues to a DW solution expressed in terms of (&, g).
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Domain-wall/cosmology correspondence

» ‘Domain-wall’" spacetimes are closely related to cosmological
spacetimes:

ds? = ndz? + a?(z)dF>. D= o(2). J

where 1 = —1 for a (Euclidean) DW and , = —1 for cosmology.

» They play a prominent role in holography where they describe
holographic RG flows (/e radial evolution of DW «+ RG flow of dual
QFT).

» [he DW action is

' gy
1

— / d*r/g —R + (0®)° - 25"V (D) .
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Domain-wall /cosmology correspondence

» Including perturbations, the equations of motion for DW/C read:

H —(1/2)W (). ¢=W_.. 29V =(W_)* — (3/2)W~=.

|

92 9 = 3 9

C+(3H +¢é/e) —na~3¢*C. 0= Yij + 3H%i; — na™"q vij.

0

|

il

» Defining the analytically continued variables

K- = —K~, qg = —q. J

we see that a cosmological solution written in terms of (~, g)
continues to a DW solution expressed in terms of (&, g).
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Domain-wall /cosmology correspondence

>
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This particular bulk continuation was chosen as it has a clear
interpretation in terms of dual QFT variables.

Qur choice of sign in the continuation of ¢ ensures that the
Bunch-Davies vacuum on the cosmology side maps to a solution
that is regular in the interior of the domain-wall:

C.y~expl—igr) —> (.7%~ exp\qr)
where 7 = [ dz/a and the DW interior is 7 — —x.

One can define response functions (2 and E for the DW spacetime.
They are related to their cosmological counterparts by the analytic
continuations 2(—iq) = Q(q) and E(—1q) = E(q).
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Holographic RG tlows

There are two classes of domain-wall spacetimes whose holographic
interpretation is well understood:

1. Asymptotically AdS solutions: a ~¢*, o ~0as z — x. |

» These solutions describe a QFT that approaches a fixed point in the
UV. The fixed point is the CFT dual to the asymptotic AdS

spacetime.

» Under the DW/C correspondence, these solutions are mapped to
cosmologies that are asymptotically de Sitter at late times.
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Holographic RG tlows

2. Asymptotically power-law solutions: a ~ (z/z0)", ¢ ~ V2nIn(z/ :.-;.JJ
as z — .

» Specific cases of such spacetimes may be obtained by taking the
near-horizon limit of non-conformal branes (e.g. D2 brane <+ n = 7).

» T hese solutions describe QFTs with a dimensionful coupling
constant in the regime where the dimensionality of the coupling

constant drives the dynamics’.

» Under the DW/C correspondence, they are mapped to cosmologies
that undergo asymptotic power-law inflation.
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Holography: a primer

Our holographic dictionary for cosmology will be based on the standard
holographic dictionary, so we now briefly review standard holography:

» There is a 1-to-1 correspondence between local gauge-invariant
operators of the boundary QFT and bulk supergravity modes:

— The bulk metric corresponds to the stress-energy tensor I,, of the
boundary theory.

— Bulk scalar fields correspond to boundary scalar operators, e.g.
3 2 28

» Correlation functions of the dual QFT may be read off from the
asymptotics of the bulk solution. Conversely, given appropriate QFT
data, one can reconstruct the bulk asymptotics.
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Holographic RG tlows

2. Asymptotically power-law solutions: a ~ (z/z9)", ¢ ~ V2nIn(z/ :mJJ
as z — x.

» Specific cases of such spacetimes may be obtained by taking the
near-horizon limit of non-conformal branes (e.g. D2 brane < n = 7).

» T hese solutions describe QFTs with a dimensionful coupling
constant in the regime where the dimensionality of the coupling

constant drives the dynamics®.

» Under the DW/C correspondence, they are mapped to cosmologies
that undergo asymptotic power-law inflation.
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Holography: a primer

Our holographic dictionary for cosmology will be based on the standard
holographic dictionary, so we now briefly review standard holography:

» There is a 1-to-1 correspondence between local gauge-invariant
operators of the boundary QFT and bulk supergravity modes:

= The bulk metric corresponds to the stress-energy tensor I,, of the
boundary theory.

— Bulk scalar fields correspond to boundary scalar operators, e.g.
34 250 2

» Correlation functions of the dual QFT may be read off from the
asymptotics of the bulk solution. Conversely, given appropriate QFT
data, one can reconstruct the bulk asymptotics.
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Bulk asymptotics

The general asymptotic solution for the 4d bulk metric reads:

ds® =dr® + fjrg,-_j[ r.r)dr'ds.

2r — 2o

9ij(r.x) = g(0)ij () + €~ g2)ii(x) +...+e "g(20)ii (X)) + - .

> g0):;(r) is the metric seen by the dual QFT. and hence acts as the
source for the dual stress tensor T,.

» The g/ 51, (r) with £ < & are locally determined in terms of
gi0):;(r) via the asymptotic analysis of the field equations.

» g.2-.;(r) is only partially constrained by the asymptotic analysis of
the field equations, and is related to the dual 1-pt function:

|
f \ y
:xTI'J) — .}RE {lﬂ'_f_}' 20 )13 ).
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Bulk asymptotics

The general asymptotic solution for the 4d bulk metric reads:

ds® = dr® + fjrgl-_j( r.r)dr'dr.

— 2T

Q;j{r.:l = f}u_l:;"}(.!':' 2 f.‘_jrgljuj(.l'] = =y r.g.g-_g.j-ujl.t'} 5 et

> g0):;(r) is the metric seen by the dual QFT. and hence acts as the
source for the dual stress tensor T,.

» The g/51,,(r) with & < & are locally determined in terms of
9i0y:;(r) via the asymptotic analysis of the field equations.

» g20:;(r) is only partially constrained by the asymptotic analysis of
the field equations, and is related to the dual 1-pt function:

o 1
’-.T:'J,’ — D52 {-}Jylfr:}'li__} )
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Bulk asymptotics

» From the bulk asymptotics. we can read off (T;). Equivalently,
given (T;,). we can reconstruct the bulk asymptotics.

» This remains true even in the regime where gravity is strongly
coupled and the description in terms of low-energy fields (such as
the metric) breaks down deep in the interior.

» The metric description is still valid asymptotically, however, and
takes the same form as before. Gauge gravity duality requires the
value of g»-,;; deriving from stringy dynamics to match that
derived from the dual weakly coupled QFT.
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Bulk asymptotics

The general asymptotic solution for the 4d bulk metric reads:

ds® = dr® - fjrg,-_j[ r.r)dr'dr.

— 20

gij(r.x) = g(0)ij(x) + f:-_ﬂrg,-;“_}(r] + ...+ e€ "Gy lE) F -

» g0):;(r) is the metric seen by the dual QFT. and hence acts as the
source for the dual stress tensor T,.

» The g5z, (r) with k < & are locally determined in terms of
gi0):;(r) via the asymptotic analysis of the field equations.

» g2-.;(r) is only partially constrained by the asymptotic analysis of
the field equations, and is related to the dual 1-pt function:

|
| % . :
:uTiJ,’ — 552 {30’”, 20 )1 ).
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Bulk asymptotics

» From the bulk asymptotics. we can read off (T;). Equivalently,
given (T,). we can reconstruct the bulk asymptotics.

» This remains true even in the regime where gravity is strongly
coupled and the description in terms of low-energy fields (such as
the metric) breaks down deep in the interior.

» The metric description is still valid asymptotically, however, and
takes the same form as before. Gauge, gravity duality requires the
value of g2, ,;; deriving from stringy dynamics to match that
derived from the dual weakly coupled QFT.
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Bulk asymptotics

The general asymptotic solution for the 4d bulk metric reads:

ds®> =dr? + Ejrg‘u[ r.r)dr'dr’.

2r =2

IJI_}(F.II:-‘}.._:;_}(J':'--E'_ yljilj(‘r)___'"*t r:}f:{Jll_}lJ-}f---

» g0):;(r) is the metric seen by the dual QFT. and hence acts as the
source for the dual stress tensor T,.

» The g, 51,;(r) with £ < & are locally determined in terms of
gi0):;(r) via the asymptotic analysis of the field equations.

» 20:;(r) is only partially constrained by the asymptotic analysis of
the field equations, and is related to the dual 1-pt function:

1
¥ "I -
’aTi_}) = .}Rgilggl:}:r]f_)}'
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Bulk asymptotics

» From the bulk asymptotics. we can read off (T;). Equivalently.
given (T;,). we can reconstruct the bulk asymptotics.

» This remains true even in the regime where gravity is strongly
coupled and the description in terms of low-energy fields (such as
the metric) breaks down deep in the interior.

» The metric description is still valid asymptotically, however, and
takes the same form as before. Gauge gravity duality requires the
value of g/2,;; deriving from stringy dynamics to match that
derived from the dual weakly coupled QFT.
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Bulk asymptotics

The general asymptotic solution for the 4d bulk metric reads:

ds® = dr® - fjrg,-_j[ r.r)dr'dr.

— 20

gij (1-x) = g(0)i; (z) + € T g2)i;(x) + - - - + € T giagyii(x) + - --

» g0):;(r) is the metric seen by the dual QFT. and hence acts as the
source for the dual stress tensor T,.

» The g/5x),;(r) with £ < & are locally determined in terms of
gi0):;(r) via the asymptotic analysis of the field equations.

» g2-.;(r) is only partially constrained by the asymptotic analysis of
the field equations, and is related to the dual 1-pt function:

1
Iy — )
'~.T1_}) — Vic2 (<09 20)1) ).
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Bulk asymptotics

» From the bulk asymptotics. we can read off (T;). Equivalently,
given (T;,). we can reconstruct the bulk asymptotics.

» This remains true even in the regime where gravity is strongly
coupled and the description in terms of low-energy fields (such as
the metric) breaks down deep in the interior.

» The metric description is still valid asymptotically, however, and
takes the same form as before. Gauge gravity duality requires the
value of g2,,;; deriving from stringy dynamics to match that
derived from the dual weakly coupled QFT.
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Two-point functions

» Higher-point functions may be obtained by differentiating the 1-pt
function w.r.t. the sources and then setting the sources to their
background values,

t"'.y. 2017 (T)

e.g. TzJ (L .'T-H (Y Ft: St |
. 0g0kilyY) 'g.0,=9

» To compute 2-pt functions one only needs to solve for the
fluctuations to /inear order.

» On general grounds, the 2-pt function for the stress tensor admits
the decomposition

'lT,J[tﬂTH{ —q_]j} — -'Hq}ni_;kf + B{‘;}ﬁ':; Tkl -

—_

where the transverse and transverse traceless projection operators are

. ] 7 I _: — C— i - '_ i
.iZJ‘ o f\f_j' o tfl"f_] ff‘ = l_[fjr:-_f == "11;\_"‘{I|J == {1 J.I"EIJ ”kf,
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Holographic analysis

» Employing the radial Hamiltonian formulation of holographic
renormalisation”, we showed that for both asymptotically AdS and
asymptotically power-law DW spacetimes,

A(q) = 4E0)(q). B(q) = (1/9)9Q0/(9).

» Thus, the 2-pt function (T;;(q)Tw:(—q)) may be extracted from the
DW response functions. The subscript indicates taking the term
with appropriate scaling in the asymptotic expansion.
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Two-point functions

» Higher-point functions may be obtained by differentiating the 1-pt
function w.r.t. the sources and then setting the sources to their
background values,

ti‘r;. 20)i5(T)

t'-l‘:%_' TIJ { -I' ' TIL-E { 'li_; F:' T = |
0gi0kilY) 1g9.0,=0

» To compute 2-pt functions one only needs to solve for the

fluctuations to /inear order.

» On general grounds, the 2-pt function for the stress tensor admits
the decomposition

';T,J[f;f:'TH{ —f}_]:} = ‘_“q}HUH =+ B(tj}ﬁ','_, kel «

—_

where the transverse and transverse traceless projection operators are
- . g N (1IN
N3 — “Ij —4%9;/9 - H:;i:f — Ag(kil); — \ l ljﬂi; Nkl -
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Holographic analysis

» Employing the radial Hamiltonian formulation of holographic
renormalisation”, we showed that for both asymptotically AdS and
asymptotically power-law DW spacetimes,

A(q) = 4E0)(q). B(q) = (1/9)9Q0/(9).

» Thus, the 2-pt function (T;(q)Tw:(—q)) may be extracted from the
DW response functions. The subscript indicates taking the term
with appropriate scaling in the asymptotic expansion.
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(Some details)

» In the Hamiltonian formalism, the asymptotic radial expansion of the
metric is replaced by a covariant expansion in eigenfunctions of the
dilatation operator:

- . —_ —=F o
D — - 3 Ele "r]'_ r'!_r_‘;_—l,m, — —?H:l.m..

» [he dual 1-pt function is then

—9
(T}) = (—:H)
! V’Kg j, (3) J

where IT* is the radial canonical momentum.
o

» For asymptotically power-law spacetimes, the holographic analysis
takes place in the dual frame, where the metric is asymptotically

AdS.

Pirsa: 10040089 Page 50/59



(Some details)

Under a linear variation of the QFT sources g,,,,, and ~ .

-“‘{Tz_; = _:‘v""l-";‘” -:__TUH;,IT;L.;[—f{l__r'!_qf‘l.‘:l — \_.-'y.” T If'!f:'L-} —q} ""-.n.
= E ’ulql" — QBI:{}L'.”IIJ = .:_T;{r;}{_]{—q}_;n?; 0} -

In comparison. perturbing the bulk radial canonical momentum to linear
order, we find (e.g. in the asymptotically AdS case)

Y Al = f i .[_ =5 TR I
T 2E(q) q Aq)\ . ; )
U\NL 5/ — 3 F3 = D 9 k. 5.3 W, — . ..)O0
J a* r-a-H 2a” | J R

Extracting the terms with appropriate dilatation weight then yields:

A(q) =4E5(q). B(q) = (1/4)Q0,(q)

-
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(Some details)

» In the Hamiltonian formalism, the asymptotic radial expansion of the
metric is replaced by a covariant expansion in eigenfunctions of the
dilatation operator:

- . —~ i — M =
op = Oy + tHe & ). r'J_r_‘;,—l_ mi — —”’L‘l.m -

» [he dual 1-pt function is then

: = il
(TF3) = (—:H‘)
’ VI : (3)

where Hj, is the radial canonical momentum.

» For asymptotically power-law spacetimes, the holographic analysis
takes place in the dual frame, where the metric is asymptotically
AdS.
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(Some details)

Under a linear variation of the QFT sources g,,,, and ~ .
Y = = S (o (6)T (—q))doghs, — Vo (Ti,(9)O(—q))o
= 5 VvIo)\L\9) Lkl —q) )09, vV ,"_f-u q q - (0)
]' ) - 1 ! i —§ 47 = 0 W
= E 1“’{'" — _Blr{}t'.'_.lﬁj i Tj{ff“_j{—f{}”?: 0)-

In comparison, perturbing the bulk radial canonical momentum to linear
order, we find (e.g. in the asymptotically AdS case)

2F(q) Cg° O
:'!Ti — [ _]; "‘Ji — ( ! } q ) L'-Ti — .IJ'I:T_,‘

J , _7) . |
J a h'"(i"H J

—_

Extracting the terms with appropriate dilatation weight then yields:

A(q) =4E (). B(q) = (1/9)9Q,(q)

>
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(Some details)

» In the Hamiltonian formalism, the asymptotic radial expansion of the
metric is replaced by a covariant expansion in eigenfunctions of the
dilatation operator:

.r'i-D — f_f,.. — {(__){ e ¥ r'.;_r_‘;;l, mi — —?”;‘1. m)-

» The dual 1-pt function is then

=€}
(T?) = (—Lf[’)
e O ™ J

where IT' is the radial canonical momentum.
o

» For asymptotically power-law spacetimes, the holographic analysis
takes place in the dual frame, where the metric is asymptotically

AdS.
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Holographic analysis

» Employing the radial Hamiltonian formulation of holographic
renormalisation”, we showed that for both asymptotically AdS and
asymptotically power-law DW spacetimes,

A(q) = 4E0)(q). B(q) = (1/9)Q0/(9).

» Thus, the 2-pt function (T;;(q)Tw:(—q)) may be extracted from the
DW response functions. The subscript indicates taking the term
with appropriate scaling in the asymptotic expansion.
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(Some details)

» In the Hamiltonian formalism, the asymptotic radial expansion of the
metric is replaced by a covariant expansion in eigenfunctions of the
dilatation operator:

- " / —L >
O = &% + (e "r}_ :’f_‘;‘—l m) — —?”:l.m,.

» [he dual 1-pt function is then

_9
() = (—:ﬁ’)
’ VI 7/ J

where IT' is the radial canonical momentum.
of

» For asymptotically power-law spacetimes, the holographic analysis
takes place in the dual frame, where the metric is asymptotically

AdS.
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From cosmology to QFT

]

Applying the analytic continuations x* = —~>, ¢ = —iq. we find a direct
relation between the cosmological power spectra and the 2-pt functions
of the dual QFT:

— a3 . — g3
: AT(q) = :

~ 1672ImB(—iq)

A% - .
s\9) 2ImA(—iq)

where

(Ti;(@)Txi(—q)) = A(@ij: + B(@)7i; T
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