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Abstract: We point out and explicitly demonstrate a close connection that exists between featureless Mott insulators and fractional quantum Hall
liquids. Using magnetic Wannier states as the single-particle basis in the lowest Landau level (LLL), we demonstrate that the Hamiltonian of
interacting bosons in the LLL maps onto a Hamiltonian of a featureless Mott insulator on triangular lattice, formed by the magnetic Wannier states.
The Hamiltonian is remarkably simple and consists only of short-range repulsion and ring-exchange terms.
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Outline

® |[ntroduction: what’s the connection and
why it’s interesting.

® FQHL in magnetic Wannier basis: Mott
insulator on triangular lattice.
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FOQHL vs Mott insulator

| 7
2?2

® [ owest Landau level: N, = degenerate single-

particle states.

® Fill with repulsively interacting particles at filling

factor v = N/N, .

) . .
® At some » = ground states are incompressible
q

liquids with topological order.
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FOQHL vs Mott insulator

® Mott insulator: fill degenerate Wannier orbitals
in a crystal lattice with repulsively interacting

particles.
® At filling factors v = = get incompressible
states. !

9 19 ___— Mottinsulator at ¥ = 1/2 on square lattice
. +

o O o Important difference from FQHE: Mott insulators at
+ fractional filling typically break lattice symmetries.

<
o o—9

=wom  EOYHL is related to featureless Mott insulator



Related work

® Kalmeyer-Laughlin spin liquid.

® FQHL on a thin torus: Seidel, Fu, Lee, Leinaas, Moore;

Bergholtz & Karlhede
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Why is it not trivial to make the
connection explicit?

® Standard choices for LLL orbital eigenstates are not localized.

® This makes the energy penalty for doubly occupying a particular
orbital vanish in the thermodynamic limit.

® Then it’s hard to make an analogy to Mott insulator.
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Magnetic VWannier basis

® To make the 2D Mott insulator connection explicit need

irsa: 10040088

to choose a LLL basis, consisting of wavefunctions,
localized in all directions in the 2D plane, analogous to
Wannier functions in insulators.

Thouless: exponentially localized Wannier functions are
incompatible with nonzero Chern number, thus the above
seems impossible.

But turns out to be possible to construct “quasilocalized™
Wannier functions: normalizable but with 1/!‘2 tail.

Rashba, Zhukoyv, Efros, PRB 55, 5306 (1997)
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Magnetic Wannier basis

» Symmetric-gauge LLL wavefunction with zero
angular momentum:

| 1 2 /442
co(r) = et

) Translate to sites of any 2D Bravais lattice with one
flux quantum per unit cell:

{_].)mlm:

vV 2me?

= | —(r—rm)* /464 +(i/26%)z-(rxr
Gl E) =L ae B SO = o =3 f24* )

) Perelomov overcompleteness identity: E (-1 T2 (r)

m /
Thiswteehe origin of the nontrivial topological properties of Bloch states, i. ez

FPRCNpIIOe, S G SR oy PP P
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Magnetic Bloch and Wannier states

e Construct Bloch states out of linear
combinations of “atomic orbitals’™: _ A

. X C pik‘rm . ‘ "
‘Ijk(r) - \/_\roy(k) ; m(r) : // g 0

k = k1by + kabo \\ .\b7/

v(k) vanishesat (k1.ko) = (m, ) -

e Wannier functions are obtained by inverse
Fourier transform:

1 |
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Hamiltonian in VWWannier basis

T
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E (mym,|V|imgmy )b, bl b b
m;.m->.mMm3.IMy

Matrix elements are finite in thermodynamic limit
and short-range ~ 1/r°

However, no obvious symmetries apart from the
symmetry of triangular lattice, thus a lot of
different nonzero matrix elements.

In this form, the Hamiltonian is useless.

But there is a hidden symmetry.
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Magnetic Bloch states and the
Abrikosov vortex lattice

Z(_l)rr:1+rrag(,m(r) = 0

m

® |t follows from the Perelomov identity that the zeros
of W, (r)form a triangular lattice with one flux

quantum per unit cell.

1 5 .
® Zeros are located att rpp = ' + = (a; +a) +¢°zxk

® Thus magnetic Bloch states correspond to Abrikosov
vortex lattices, with the first BZ momentum labeling
different vortex lattice positions.

® Ground states of interacting bosons in LLL at large
filling factors thus correspond to condensation into
e voBloch states with a particular momentum. Page 1224



Hamiltonian in VWannier basis

¥ —
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Z (myms|V|mymy )b b b _ b

m; m-> Imy ImMsjs
m;.m->. 3. IMy

Matrix elements are finite in thermodynamic limit
and short-range ~ 1/r°

However, no obvious symmetries apart from the
symmetry of triangular lattice, thus a lot of
different nonzero matrix elements.

In this form, the Hamiltonian is useless.

But there is a hidden symmetry.
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Magnetic Bloch states and the
Abrikosov vortex lattice

S (~1)™+ e (r) = 0

m

® |t follows from the Perelomov identity that the zeros
of W, (r)form a triangular lattice with one flux

quantum per unit cell.

1 PN
® Zeros are located att rpp = 'm + = (a; +a2) +6°z2 xk

® Thus magnetic Bloch states correspond to Abrikosov
vortex lattices, with the first BZ momentum labeling
different vortex lattice positions.

® Ground states of interacting bosons in LLL at large
filling factors thus correspond to condensation into
noBloch states with a particular momentum. Pege 1424



Abrikosov lattice in Wannier basis

H = Yy (mymo|Vimsmy)bl, bl b, b

/"N M-> My M3y
m; .ImM-» . I3 I0

s 1 o
B — b fzk-rm
m \/;\.-G g K¢

Abrikosov lattice = condensate at a single momentum =
uniform phase winding in Wannier representation

k = kib; + kob>

Periodic boundary conditions: £k 5, =

’21.2 are phase winding numbers

Abrikosov lattice states in Wannier rep. are
rdabeied by phase winding numbers with respect
to triansular lattice basis directions




Phase fluctuations

Since all states with uniform phase gradients are degenerate, the
long-wavelength phase action can’t depend on gradient of the phase:

S ~ /d'rdr (9:0)% + (V?6)?]
This means that the dispersion of phase fluctuations is quadratic,

instead of linear:

W q ~ q2 Sinova, Hanna, MacDonald

Doesn’t necessarily mean that system is not superfluid: vortices may
still be localized and superfluid stiffness finite
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Center-of-mass conservation

. ) - i b
e Absence of the (V#)“term in the phase action is a consequence of an
emergent conservation law: conservation of the center of mass of the bosons

H=Y k+qk+q|Vkk+qg+q)b, biabiiqrq i
k.q.q'

® All Bloch functions are related to each other by magnetic translations:
= 1. P
Wy (r) = et ez TP, (r — €22 x k)

e |t follows that the interaction matrix element is independent of K, as
long as Umklapp processes can be neglected, i.e. when q and q’ are small.

® Can describe vortex liquids with long correlation length:

E> L
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Center-of-mass conservation

H= Y k+ak+q[Vkk+q+a)b. obi:qbiqrqbi

k.q.q'

;o Z mlmul !m;ml) bT

ms2 lTLLlII;

(mims|Vim3my) = f(m; — my,ms — my4)0m, +mo.m;+m,

Wannier-basis Hamiltonian has emergent
- center-of-mass conservation



Ring-exchange model on
triangular lattice

——I\me ,’n o L ) Zn —I—ZV S N T

mm’

N - K

Shortest-range ring-exchange +
repulsive interactions on triangular
lattice = bosons in the LLL




Sanity check
H=-K me e O U Zn —|—Zlmm:nmnm

‘ v > 1

H = —K cos(fm

1

Classical ground state at positive K: uniform phase gradients along
basis directions, magnitude of gradient not fixed = Abrikosov lattice

Balents & Paramekanti, 2003
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Half-filled Landau level
v =1/2 Laughlin liquid ¥(z1....2x) = [J(2i — z)% 3 Z: =0

BE=-KY 5 58 S_S_ rv-y 585
p

(mm’)

K = 0: classical Ising model on triangular lattice,
ground state has extensive degeneracy

Ground state for K < V is a gapped spin liquid with 4-fold degeneracy on a torus
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Kalmeyer-Laughlin liquid

HB=-KY 9 St S-S -tV "y S5,
(<

(mm/)

G

H is time-reversal invariant, thus 4-fold degeneracy on torus

(a)

But Laughlin liquid is only 2-fold degenerate

0

Resolution: spontaneous time-reversal breaking,
(b) degeneracy between the two pairs of states lifted by
otherwise irrelevant COM-nonconserving terms in H
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Conclusions

® |nteracting bosons in the LLL map onto a time-
reversal invariant model of bosons on triangular
lattice with ring-exchange and repulsive interactions.

e At filling factors at which the bosons in the LLL

exhibit FQHE, the ground state of the equivalent
model on triangular lattice is a featureless Mott

insulator with topological order.
® Bose metal states at odd-denominator fractions’

® All assertions can be checked by QMC on large
system sizes, since there is no sign problem (unlike if
one directly simulates charged bosons in magnetic
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Kalmeyer-Laughlin liquid

B=——K¥Y S_US- 9 G V¥ S
(=

H is time-reversal invariant, thus 4-fold degeneracy on torus

But Laughlin liquid is only 2-fold degenerate

0 {5

Resolution: spontaneous time-reversal breaking,
(b) degeneracy between the two pairs of states lifted by

otherwise irrelevant COM-nonconserving terms in H
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