Title: Quantum Spin Simulations (PHYS 7380) - Lecture 5

Date: Apr 09, 2010 11:00 AM

URL: http://pirsa.org/10040047

Abstract:

Pirsa: 10040047 Page 1/68

More general finite-size scaling hypothesis

has been justified using the renormalization-group theory

$$Q(t, L) = L^{\sigma} f(\xi/L),$$

Jsing $\xi \sim |t|^{-1/\nu} \rightarrow$

$$Q(t, L) = L^{\sigma} g(tL^{1/\nu})$$

From this we must be able to reproduce infinite-size form:

$$Q(t, L \to \infty) \sim |t|^{-\kappa}$$

which is the case if $g(x) \sim x^{-\kappa}$ and $\sigma = \kappa/
u$

Test: susceptibility of 2D Ising model (Monte Carlo)

$$T_c = 2/\ln(1+\sqrt{2})$$

 $\nu = 1, \gamma = 7/4$

Normally: adjust Tc and exponents so that the wata

Pirsa: 10040047 Page 3/68

Nonte Carlo methods - based on random numbers Stanislav Ulam's terminology

- his uncle frequented the Casino in Monte Carlo

Pirsa: 10040047 Page 4/68

Nonte Carlo methods - based on random numbers Stanislav Ulam's terminology

- his uncle frequented the Casino in Monte Carlo

Pirsa: 10040047 Page 5/68

Nonte Carlo methods - based on random numbers Stanislav Ulam's terminology

- his uncle frequented the Casino in Monte Carlo

Random (pseudo random) number generator on the computer Less glamorous than roulette tables or cards, but faster...

>109 random numbers per second

Monte Carlo methods - based on random numbers

- Stanislav Ulam's terminology
 - his uncle frequented the Casino in Monte Carlo

Random (pseudo random) number generator on the computer Less glamorous than roulette tables or cards, but faster...

>109 random numbers per second

Monte Carlo simulations in statistical physics

normally refers to importance sampling of configurations (e.g., spins)

he Metropolis algorithm

Metropolis, Rusenbluth, Rosenbluth, Teller, and Teller, Phys. Rev. 1953]

Pirsa: 10040047 Page 8/68

he Metropolis algorithm

Metropolis, Rusenbluth, Rosenbluth, Teller, and Teller, Phys. Rev. 1953]

Generate a series of configurations (Markov chain); $C_1 \rightarrow C_2 \rightarrow C_3 \rightarrow C_4 \rightarrow ...$

C_{n+1} obtained by modifying (updating) C_n

Pirsa: 10040047 Page 9/68

he Metropolis algorithm

Metropolis, Rusenbluth, Rosenbluth, Teller, and Teller, Phys. Rev. 1953]

Generate a series of configurations (Markov chain); $C_1 \rightarrow C_2 \rightarrow C_3 \rightarrow C_4 \rightarrow ...$

C_{n+1} obtained by modifying (updating) C_n

Pirsa: 10040047 Page 10/68

he Metropolis algorithm

Metropolis, Rusenbluth, Rosenbluth, Teller, and Teller, Phys. Rev. 1953]

Generate a series of configurations (Markov chain); $C_1 \rightarrow C_2 \rightarrow C_3 \rightarrow C_4 \rightarrow ...$

C_{n+1} obtained by modifying (updating) C_n

changes satisfy the detailed-balance principle

$$\frac{P_{\text{change}}(A \to B)}{P_{\text{change}}(B \to A)} = \frac{W(B)}{W(A)} \qquad W(A) = e^{-E(A)/T}$$

he Metropolis algorithm

Metropolis, Rusenbluth, Rosenbluth, Teller, and Teller, Phys. Rev. 1953]

Generate a series of configurations (Markov chain); $C_1 \rightarrow C_2 \rightarrow C_3 \rightarrow C_4 \rightarrow ...$

C_{n+1} obtained by modifying (updating) C_n

changes satisfy the detailed-balance principle

$$\frac{P_{\text{change}}(A \to B)}{P_{\text{change}}(B \to A)} = \frac{W(B)}{W(A)} \qquad W(A) = e^{-E(A)/T}$$

Starting from any configuration, such a stochastic process eads to configurations distributed according to W

- the process has to be ergodic
 - any configuration reachable in principle
- it takes some time to reach equilibrium

he Metropolis algorithm

Metropolis, Rusenbluth, Rosenbluth, Teller, and Teller, Phys. Rev. 1953]

Generate a series of configurations (Markov chain); $C_1 \rightarrow C_2 \rightarrow C_3 \rightarrow C_4 \rightarrow ...$

C_{n+1} obtained by modifying (updating) C_n

changes satisfy the detailed-balance principle

$$\frac{P_{\text{change}}(A \to B)}{P_{\text{change}}(B \to A)} = \frac{W(B)}{W(A)} \qquad W(A) = e^{-E(A)/T}$$

Starting from any configuration, such a stochastic process eads to configurations distributed according to W

- the process has to be ergodic
 - any configuration reachable in principle
- it takes some time to reach equilibrium

he Metropolis algorithm

Metropolis, Rusenbluth, Rosenbluth, Teller, and Teller, Phys. Rev. 1953]

Generate a series of configurations (Markov chain); $C_1 \rightarrow C_2 \rightarrow C_3 \rightarrow C_4 \rightarrow ...$

C_{n+1} obtained by modifying (updating) C_n

changes satisfy the detailed-balance principle

$$\frac{P_{\text{change}}(A \to B)}{P_{\text{change}}(B \to A)} = \frac{W(B)}{W(A)} \qquad W(A) = e^{-E(A)/T}$$

Starting from any configuration, such a stochastic process eads to configurations distributed according to W

- the process has to be ergodic
 - any configuration reachable in principle
- it takes some time to reach equilibrium

Metropolis algorithm for the Ising model. For each update perform:

- select a spin i at random; consider flipping it σ_i → -σ_i
- compute the ratio $R=W(\sigma_1,...-\sigma_i,...,\sigma_N)/W(\sigma_1,...\sigma_i,...,\sigma_N)$
 - for this we need only the spins neighboring i
- generate random number 0<r≤1; accept flip if r<R (go back to old config else)

he Metropolis algorithm

Metropolis, Rusenbluth, Rosenbluth, Teller, and Teller, Phys. Rev. 1953]

Generate a series of configurations (Markov chain); $C_1 \rightarrow C_2 \rightarrow C_3 \rightarrow C_4 \rightarrow ...$

C_{n+1} obtained by modifying (updating) C_n

changes satisfy the detailed-balance principle

$$\frac{P_{\text{change}}(A \to B)}{P_{\text{change}}(B \to A)} = \frac{W(B)}{W(A)} \qquad W(A) = e^{-E(A)/T}$$

Starting from any configuration, such a stochastic process eads to configurations distributed according to W

- the process has to be ergodic
 - any configuration reachable in principle
- it takes some time to reach equilibrium

Metropolis algorithm for the Ising model. For each update perform:

- select a spin i at random; consider flipping it σ_i → -σ_i
- compute the ratio $R=W(\sigma_1,...-\sigma_i,...,\sigma_N)/W(\sigma_1,...\sigma_i,...,\sigma_N)$
 - for this we need only the spins neighboring i
- generate random number 0<r≤1; accept flip if r<R (go back to old config else)

ige 16/68

$$P_{\text{change}}(A \to B) = P_{\text{select}}(B|A)P_{\text{accept}}(B|A)$$

he Metropolis algorithm

Metropolis, Rusenbluth, Rosenbluth, Teller, and Teller, Phys. Rev. 1953]

Generate a series of configurations (Markov chain); $C_1 \rightarrow C_2 \rightarrow C_3 \rightarrow C_4 \rightarrow ...$

C_{n+1} obtained by modifying (updating) C_n

changes satisfy the detailed-balance principle

$$\frac{P_{\text{change}}(A \to B)}{P_{\text{change}}(B \to A)} = \frac{W(B)}{W(A)} \qquad W(A) = e^{-E(A)/T}$$

Starting from any configuration, such a stochastic process eads to configurations distributed according to W

- the process has to be ergodic
 - any configuration reachable in principle
- it takes some time to reach equilibrium

Metropolis algorithm for the Ising model. For each update perform:

- select a spin i at random; consider flipping it σ_i → -σ_i
- compute the ratio R=W(σ₁,...,σ_i,...,σ_N)/W(σ₁,...σ_i,...,σ_N)
 - for this we need only the spins neighboring i
- generate random number 0<r≤1; accept flip if r<R (go back to old config else)

ige 18/68

$$P_{\text{change}}(A \to B) = P_{\text{select}}(B|A)P_{\text{accept}}(B|A)$$

=0 simulations

28×128 lattice N=16384)

ne MC sweep is I random flip ttempts

c/J ≈ 2.27

=0 simulations

28×128 lattice N=16384)

ne MC sweep is I random flip ttempts

c/J ≈ 2.27

=0 simulations

28×128 lattice N=16384)

ne MC sweep is I random flip ttempts

c/J ≈ 2.27

A magnetized state, <m>≠0, breaks a symmetry (E invariant under all $\sigma_i \rightarrow -\sigma_i$) strictly, mathematically we must have <m>=0 symmetry breaking (phase transition) can take place when N→∞ how can we understand the symmetry breaking for N large but finite?

Pirsa: 10040047 Page 27/68

A magnetized state, <m>≠0, breaks a symmetry (E invariant under all $\sigma_i \rightarrow -\sigma_i$) strictly, mathematically we must have <m>=0 symmetry breaking (phase transition) can take place when N→∞ how can we understand the symmetry breaking for N large but finite?

ime series of simulation data; magnetization vs simulation "time" for T<Tc

A magnetized state, <m>≠0, breaks a symmetry (E invariant under all $\sigma_i \rightarrow -\sigma_i$) strictly, mathematically we must have <m>=0 symmetry breaking (phase transition) can take place when N→∞ how can we understand the symmetry breaking for N large but finite?

ime series of simulation data; magnetization vs simulation "time" for T<Tc

here is a characteristic "reversal" time between m>0 and m<0 configurations
Pirsa: 10040047
reversal time diverges for N→∞

probability distrubution (histogram) of m during the simulation

Pirsa: 10040047 Page 30/68

probability distrubution (histogram) of m during the simulation

$$\mathbf{m} = \frac{1}{N} \sum_{i=1}^{N} \sigma$$

- peaks become sharper for increasing N
- no probability to fluctuate between m<0 and m>0 peaks for N→∞
- have to go through low-probability m≈0 configurations

probability distrubution (histogram) of m during the simulation

Pirsa: 10040047 Page 32/68

A magnetized state, <m>≠0, breaks a symmetry (E invariant under all $\sigma_i \rightarrow -\sigma_i$) strictly, mathematically we must have <m>=0 symmetry breaking (phase transition) can take place when N→∞ how can we understand the symmetry breaking for N large but finite?

ime series of simulation data; magnetization vs simulation "time" for T<Tc

probability distrubution (histogram) of m during the simulation

$$\mathbf{m} = \frac{1}{N} \sum_{i=1}^{N} \sigma_i$$

- peaks become sharper for increasing N
- no probability to fluctuate between m<0 and m>0 peaks for N→∞
- have to go through low-probability m≈0 configurations

probability distrubution (histogram) of m during the simulation

$$\mathbf{m} = \frac{1}{N} \sum_{i=1}^{N} \sigma_i$$

- peaks become sharper for increasing N
- no probability to fluctuate between m<0 and m>0 peaks for N→∞
- have to go through low-probability m≈0 configurations

Why this peak structure? balance between large number of m≈0 configurations with high energy small mumber of months at high T internal energy at low. The strong dominates at hight T internal energy at low. The strong dominates at hight T internal energy at low.

Page 35/68

probability distrubution (histogram) of m during the simulation

Pirsa: 10040047 Page 36/68

symmetry breaking (magnetic phase transition) for h=0

A magnetized state, <m>≠0, breaks a symmetry (E invariant under all $\sigma_i \rightarrow -\sigma_i$) strictly, mathematically we must have <m>=0 symmetry breaking (phase transition) can take place when N→∞ how can we understand the symmetry breaking for N large but finite?

ime series of simulation data; magnetization vs simulation "time" for T<Tc

probability distrubution (histogram) of m during the simulation

$$\mathbf{m} = \frac{1}{N} \sum_{i=1}^{N} \sigma$$

- peaks become sharper for increasing N
- no probability to fluctuate between m<0 and m>0 peaks for N→∞
- have to go through low-probability m≈0 configurations

symmetry breaking (magnetic phase transition) for h=0

A magnetized state, <m>≠0, breaks a symmetry (E invariant under all $\sigma_i \rightarrow -\sigma_i$) strictly, mathematically we must have <m>=0 symmetry breaking (phase transition) can take place when N→∞ how can we understand the symmetry breaking for N large but finite?

ime series of simulation data; magnetization vs simulation "time" for T<Tc

symmetry breaking (magnetic phase transition) for h=0

A magnetized state, <m>≠0, breaks a symmetry (E invariant under all $\sigma_i \rightarrow -\sigma_i$) strictly, mathematically we must have <m>=0 symmetry breaking (phase transition) can take place when N→∞ how can we understand the symmetry breaking for N large but finite?

ime series of simulation data; magnetization vs simulation "time" for T<Tc

here is a characteristic "reversal" time between m>0 and m<0 configurations
Pirsa: 10040047
reversal time diverges for N→∞

probability distrubution (histogram) of m during the simulation

$$\mathbf{m} = \frac{1}{N} \sum_{i=1}^{N} \sigma_i$$

peaks become sharper for increasing N

- no probability to fluctuate between m<0 and m>0 peaks for N→∞
- have to go through low-probability m≈0 configurations

Pirsa: 10040047

Page 42/68

(m)

Pirsa: 10040047

Page 45/68

probability distrubution (histogram) of m during the simulation

- peaks become sharper for increasing N
- no probability to fluctuate between m<0 and m>0 peaks for N→∞
- have to go through low-probability m≈0 configurations

probability distrubution (histogram) of m during the simulation

$$\mathbf{m} = \frac{1}{N} \sum_{i=1}^{N} \sigma_i$$

- double-peak distribution for T<Tc
- peaks become sharper for increasing N
- no probability to fluctuate between m<0 and m>0 peaks for N→∞
- have to go through low-probability m≈0 configurations

Vhy this peak structure? balance between large number of m≈0 configurations with high energy SPirsa: 2004-0047 umber of |m|≈1 configuration with low energy entropy dominates at hight T internal energy at low T

Pirsa: 10040047 Page 48/68

Consider the dimensionless ratio

$$R_2 = \frac{\langle m^4 \rangle}{\langle m^2 \rangle^2}$$

We can compute R₂ exactly for N→∞

for T<T_c: P(m)→δ(m-m*)+δ(m+m*)
 m*=|peak m-value|

$$R_2 \rightarrow 1$$

Pirsa: 10040047 Page 49/68

Consider the dimensionless ratio

$$R_2 = \frac{\langle m^4 \rangle}{\langle m^2 \rangle^2}$$

We can compute R₂ exactly for N→∞

for T<T_c: P(m)→δ(m-m*)+δ(m+m*)
 m*=|peak m-value|

$$R_2 \rightarrow 1$$

for T>T_c: P(m)→exp[-m²/a(N)]
 a(N)~N⁻¹

R₂→3 (properties of Gaussian integrals)

Consider the dimensionless ratio

$$R_2 = \frac{\langle m^4 \rangle}{\langle m^2 \rangle^2}$$

We can compute R₂ exactly for N→∞

for T<T_c: P(m)→δ(m-m*)+δ(m+m*)
 m*=|peak m-value|

$$R_2 \rightarrow 1$$

for T>T_c: P(m)→exp[-m²/a(N)]
 a(N)~N⁻¹

R₂→3 (properties of Gaussian integrals)

The **Binder cumulant** is defined as (n-component order parameter; n=1 for Ising)

$$U_2 = \frac{3}{2} \left(\frac{n+1}{3} - \frac{n}{3} R_2 \right) \to \begin{cases} 1, & T < T_c \\ 0, & T > T_c \end{cases}$$

Consider the dimensionless ratio

$$R_2 = \frac{\langle m^4 \rangle}{\langle m^2 \rangle^2}$$

We can compute R₂ exactly for N→∞

for T<T_c: P(m)→δ(m-m*)+δ(m+m*)
 m*=|peak m-value|

 $R_2 \rightarrow 1$

 for T>T_c: P(m)→exp[-m²/a(N)] a(N)~N⁻¹

R₂→3 (properties of Gaussian integrals)

The **Binder cumulant** is defined as (n-component order parameter; n=1 for Ising)

$$U_2 = \frac{3}{2} \left(\frac{n+1}{3} - \frac{n}{3} R_2 \right) \to \begin{cases} 1, & T < T_c \\ 0, & T > T_c \end{cases}$$

2D Ising model; MC results

Page 52/68

Consider the dimensionless ratio

$$R_2 = \frac{\langle m^4 \rangle}{\langle m^2 \rangle^2}$$

We can compute R₂ exactly for N→∞

for T<T_c: P(m)→δ(m-m*)+δ(m+m*)
 m*=|peak m-value|

 $R_2 \rightarrow 1$

for T>T_c: P(m)→exp[-m²/a(N)]
 a(N)~N⁻¹

R₂→3 (properties of Gaussian integrals)

The **Binder cumulant** is defined as (n-component order parameter; n=1 for Ising)

$$U_2 = \frac{3}{2} \left(\frac{n+1}{3} - \frac{n}{3} R_2 \right) \to \begin{cases} 1, & T < T_c \\ 0, & T > T_c \end{cases}$$

2D Ising model; MC results

Curves for different L normally cross each other close to T_c

Extrapolate crossing for sizes L and 2L to infinite size

• converges faster than

Definition: Monte Carlo sweep = N spin-flip attempts

a natural unit of simulation "time"

"measure" observables after every (or every n) sweep

Pirsa: 10040047 Page 54/68

Definition: Monte Carlo sweep = N spin-flip attempts

- a natural unit of simulation "time"
- "measure" observables after every (or every n) sweep
- Boltzmann probability accounted for at sampling stage →

$$\bar{Q} = \frac{1}{N_s} \sum_{i=1}^{N_s} Q_i, \quad N_s = \text{number of samples}$$

s the estimate for the true expectation value;

$$\bar{Q} \to \langle Q \rangle, \quad (N_s \to \infty)$$

Definition: Monte Carlo sweep = N spin-flip attempts

- a natural unit of simulation "time"
- "measure" observables after every (or every n) sweep
- Boltzmann probability accounted for at sampling stage →

$$\bar{Q} = \frac{1}{N_s} \sum_{i=1}^{N_s} Q_i, \quad N_s = \text{number of samples}$$

s the estimate for the true expectation value;

$$\bar{Q} \to \langle Q \rangle, \quad (N_s \to \infty)$$

Statistical errors (error bars): $\langle Q \rangle = \bar{Q} \pm \sigma_Q$

- the measurements are not statistically independent
- independent only after a number of sweeps >> autocorrelation time

Definition: Monte Carlo sweep = N spin-flip attempts

- a natural unit of simulation "time"
- "measure" observables after every (or every n) sweep
- Boltzmann probability accounted for at sampling stage →

$$\bar{Q} = \frac{1}{N_s} \sum_{i=1}^{N_s} Q_i, \quad N_s = \text{number of samples}$$

s the estimate for the true expectation value;

$$\bar{Q} \to \langle Q \rangle, \quad (N_s \to \infty)$$

Statistical errors (error bars): $\langle Q angle = ar Q \pm \sigma_Q$

- the measurements are not statistically independent
- independent only after a number of sweeps >> autocorrelation time
- Divide the simulation into B "bins", M sweeps in each bin; N_s=BM

bin averages:
$$\bar{Q}_b, b = 1, \dots, B$$

$$\bar{Q} = \frac{1}{B} \sum_{b=1}^{B} \bar{Q}_b, \qquad \sigma_Q^2 = \frac{1}{B(B-1)} \sum_{b=1}^{B} (\bar{Q}_b - \bar{Q})^2$$

Definition: Monte Carlo sweep = N spin-flip attempts

- a natural unit of simulation "time"
- "measure" observables after every (or every n) sweep
- Boltzmann probability accounted for at sampling stage →

$$\bar{Q} = \frac{1}{N_s} \sum_{i=1}^{N_s} Q_i, \quad N_s = \text{number of samples}$$

s the estimate for the true expectation value;

$$\bar{Q} \to \langle Q \rangle, \quad (N_s \to \infty)$$

Statistical errors (error bars): $\langle Q angle = ar Q \pm \sigma_Q$

- the measurements are not statistically independent
- independent only after a number of sweeps >> autocorrelation time
- Divide the simulation into B "bins", M sweeps in each bin; N_s=BM
- bin averages: $\bar{Q}_b, b = 1, \dots, B$

$$\bar{Q} = \frac{1}{B} \sum_{b=1}^{B} \bar{Q}_b, \qquad \sigma_Q^2 = \frac{1}{B(B-1)} \sum_{b=1}^{B} (\bar{Q}_b - \bar{Q})^2$$

Pirsa: 10040047

Page 58/68

f M is sufficiently large (>> autocorrelation time) the average and error are

characterization of how measurements become statistically independent

$$A_Q(t) = \frac{\langle Q(i+t)Q(i)\rangle - \langle Q\rangle^2}{\langle Q^2\rangle - \langle Q\rangle^2}, \quad (\to e^{-t/\Theta}, \ t \to \infty)$$

Pirsa: 10040047 Page 59/68

characterization of how measurements become statistically independent

$$A_Q(t) = \frac{\langle Q(i+t)Q(i)\rangle - \langle Q\rangle^2}{\langle Q^2\rangle - \langle Q\rangle^2}, \quad (\to e^{-t/\Theta}, \ t \to \infty)$$

he autocorrelation time Θ grows as $T \rightarrow T_c$ (diverges for $N \rightarrow \infty$, $T \rightarrow T_c$)

Pirsa: 10040047 Page 60/68

characterization of how measurements become statistically independent

$$A_Q(t) = \frac{\langle Q(i+t)Q(i)\rangle - \langle Q\rangle^2}{\langle Q^2\rangle - \langle Q\rangle^2}, \quad (\to e^{-t/\Theta}, \ t \to \infty)$$

he autocorrelation time Θ grows as $T \rightarrow T_c$ (diverges for $N \rightarrow \infty$, $T \rightarrow T_c$)

Pirsa: 10040047 Page 61/68

characterization of how measurements become statistically independent

$$A_Q(t) = \frac{\langle Q(i+t)Q(i)\rangle - \langle Q\rangle^2}{\langle Q^2\rangle - \langle Q\rangle^2}, \quad (\to e^{-t/\Theta}, \ t \to \infty)$$

he autocorrelation time Θ grows as $T \rightarrow T_c$ (diverges for $N \rightarrow \infty$, $T \rightarrow T_c$)

Pirsa: 10040047 Page 62/68

characterization of how measurements become statistically independent

$$A_Q(t) = \frac{\langle Q(i+t)Q(i)\rangle - \langle Q\rangle^2}{\langle Q^2\rangle - \langle Q\rangle^2}, \quad (\to e^{-t/\Theta}, \ t \to \infty)$$

he autocorrelation time Θ grows as $T \rightarrow T_c$ (diverges for $N \rightarrow \infty$, $T \rightarrow T_c$)

This problem can be largely overcome by using cluster algorithms for standard Ising, XY, Heisenberg,...

but not in all cases, e.g., in the presence of external fields, frustrated systems,...

Pirsa: 10040047 Page 64/68

symmetry breaking (magnetic phase transition) for h=0

A magnetized state, <m>≠0, breaks a symmetry (E invariant under all $\sigma_i \rightarrow -\sigma_i$) strictly, mathematically we must have <m>=0 symmetry breaking (phase transition) can take place when N→∞ how can we understand the symmetry breaking for N large but finite?

ime series of simulation data; magnetization vs simulation "time" for T<Tc

Pirsa: 10040047 Page 65/68

probability distrubution (histogram) of m during the simulation

$$\mathbf{m} = \frac{1}{N} \sum_{i=1}^{N} \sigma_i$$

- peaks become sharper for increasing N
- no probability to fluctuate between m<0 and m>0 peaks for N→∞
- have to go through low-probability m≈0 configurations

probability distrubution (histogram) of m during the simulation

Pirsa: 10040047 Page 67/68

symmetry breaking (magnetic phase transition) for h=0

A magnetized state, <m>≠0, breaks a symmetry (E invariant under all $\sigma_i \rightarrow -\sigma_i$) strictly, mathematically we must have <m>=0 symmetry breaking (phase transition) can take place when N→∞ how can we understand the symmetry breaking for N large but finite?

Pirsa: 10040047 Page 68/68