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Viore general finite-size scaling hypothesis
has been justified using the renormalization-group theory

Q(t, L) = L° f(§/L),
Using & ~ [t| /"

Q(t,L) = L7g(tL'"")

-rom this we must be able to reproduce infinite-size form:

Q(t,L — oc) ~ [t|"

vhich is the case if g(x) ~x "and 0 = K/V
lest: susceptibility of 2D Ising model (Monte Carlo)

T 1 e

10°

2 10

[ Hrs : 100400

T.=2/In(1+ v2)
v=1,v=T7/4

Normally:

adjust Tc and
exponents so
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Vionte Caro simulations
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Lllonje Caro simulations

Vionte Carlo methods - based on random numbers
Stanislav Ulam’s terminology
- his uncle frequented the Casino in Monte Carlo

Pirsa: 10040047 Page 4/68




Lllonte ‘Caro simulations

Vonte Carlo methods - based on random numbers
Stanislav Ulam’s terminology
- his uncle frequented the Casino in Monte Carlo

Pirsa: 10040047 Page 5/68




Lllonte Caro simulations

Vonte Carlo methods - based on random numbers
Stanislav Ulam'’s terminology
- his uncle frequented the Casino in Monte Carlo
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Random (pseudo random) number generator on the computer
' Less glamorous than roulette tables or cards, but faster...
' >10° random numbers per second
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Lllonte Caro simulations

Vionte Carlo methods - based on random numbers
Stanislav Ulam'’s terminology
- his uncle frequented the Casino in Monte Carlo
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Random (pseudo random) number generator on the computer
' Less glamorous than roulette tables or cards, but faster...
' >10° random numbers per second

Monte Carlo simulations in statistical physics
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' normally refers to importance sampling of configurations (e.g., spins)




Nonte Carlo simulation of the Ising model

'he Metropolis algorithm
Metropolis, Rusenbluth, Rosenbluth, Teller, and Teller, Phys. Rev. 1953]
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Nonte Carlo simulation of the Ising model

'he Metropolis algorithm
Metropolis, Rusenbluth, Rosenbluth, Teller, and Teller, Phys. Rev. 1953]

henerate a series of configurations (Markov chain); C1— Co— C3— C4—...
Cn+1 obtained by modifying (updating) C.,
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Nonte Carlo simulation of the Ising model

'he Metropolis algorithm
Metropolis, Rusenbluth, Rosenbluth, Teller, and Teller, Phys. Rev. 1953]

henerate a series of configurations (Markov chain); C1— C,— C3— Cs—...
Cn+1 Obtained by modifying (updating) C,

® — 0
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Metropolis, Rusenbluth, Rosenbluth, Teller, and Teller, Phys. Rev. 1953]

henerate a series of configurations (Markov chain); C1— Co— C3— C4—...
Cn+1 obtained by modifying (updating) C,,

changes satisfy the detailed-balance principle

{. ang \ 1 ]J}' ”": ]))' s : E(A)/T
/] IZU » A) W(A) W(Ad) =« |

AllE

® — @
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Nonte Carlo simulation of the Ising model

'he Metropolis algorithm
Metropolis, Rusenbluth, Rosenbluth, Teller, and Teller, Phys. Rev. 1953]

Generate a series of configurations (Markov chain); C1— C;— C3— Cs—...
Cn+1 obtained by modifying (updating) C,,
changes satisfy the detailed-balance principle

Paange(A — B)  W(B)
Poance(B — A) ~ W(A)

["’(‘4) - (\ : E(-'I)I'IT

starting from any configuration, such a stochastic process
eads to configurations distributed according to W

¢ the process has to be ergodic

- any configuration reachable in principle ® — O
t it takes some time to reach equilibrium
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Nonte Carlo simulation of the Ising model

'he Metropolis algorithm
Metropolis, Rusenbluth, Rosenbluth, Teller, and Teller, Phys. Rev. 1953]

henerate a series of configurations (Markov chain); C1— C,— C3— Cs—...
Cn+1 obtained by modifying (updating) C,,
changes satisfy the detailed-balance principle
Pehange(A — B) W(B)
Popange(B — A) W(A)

W(A) = e EA/T

starting from any configuration, such a stochastic process
eads to configurations distributed according to W

¢ the process has to be ergodic

- any configuration reachable in principle ® — O
t it takes some time to reach equilibrium
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Nonte Carlo simulation of the Ising model

'he Metropolis algorithm

Metropolis, Rusenbluth, Rosenbluth, Teller, and Teller, Phys. Rev. 1953]

henerate a series of configurations (Markov chain); C1— C,— C3— C4—

Cn+1 obtained by modifying (updating) C,,

changes satisfy the detailed-balance principle
Pehange(A — B) ~ W(B)
Porange(B — A) ~ W(A)

W(A) = e~ BT

starting from any configuration, such a stochastic process 4 ®-
eads to configurations distributed according to W ’ ?_
t the process has to be ergodic

- any configuration reachable in principle ® — O
t it takes some time to reach equilibrium

tlletropolis algorithm for the Ising model. For each update perform:
select a spin i at random; consider flipping it oi = -0i

» compute the ratio R=W(0o4,...-0i,...,On)/W(041,...0i,...,ON)

- for this we need only the spins neighboring i

p generate random number O<r<1; accept flip if r<R (go back to old config else)
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Nlonte Carlo simulation of the Ising model

'he Metropolis algorithm
Metropolis, Rusenbluth, Rosenbluth, Teller, and Teller, Phys. Rev. 1953]

Cn+1 obtained by modifying (updating) C,,
 changes satisfy the detailed-balance principle

])-'il.tn:,t'{-l - B) Wi(B) - ' -E(A)/T
Iiil.tu;c *B b .l:' ”—{-ll l‘ (:1) -

btarting from any configuration, such a stochastic process
eads to configurations distributed according to W

¢ the process has to be ergodic

- any configuration reachable in principle

t it takes some time to reach equilibrium

Generate a series of configurations (Markov chain); C1— Co— C3— Cs—...

000
i i 4

® — 0

-4

tlletropolis algorithm for the Ising model. For each update perform:

select a spin i at random; consider flipping it oi = -0i
» compute the ratio R=W(0o4,...-0i,...,On)/W(041,...0i,...,ON)
- for this we need only the spins neighboring i

P generate random number O<r<1; accept flip if r<R (go back to old config else)

Pi.. (A— B= P P.a...(BILAYP......(BlA)

Page 16768
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NMonte Carlo simulation of the Ising model

'he Metropolis algorithm
Metropolis, Rusenbluth, Rosenbluth, Teller, and Teller, Phys. Rev. 1953]

Generate a series of configurations (Markov chain); C1— C,— C3— Cs—...
Cn+1 Obtained by modifying (updating) C,
changes satisfy the detailed-balance principle

{::h.m;r{-l > B) Wi(B) - ' -E(A)/T
PomgeB— A4) ~ W(A) A=
starting from any configuration, such a stochastic process 99 -
eads to configurations distributed according to W _? ? ?_
¢ the process has to be ergodic
- any configuration reachable in principle ® — O

t it takes some time to reach equilibrium

Plletropolis algorithm for the Ising model. For each update perform:
select a spin i at random; consider flipping it oi = -0i

» compute the ratio R=W(0o4,...-0i,...,On)/W(041,...0i,...,ON)

- for this we need only the spins neighboring i

P generate random number O<r<1; accept flip if r<R (go back to old config else)
Pirsa; 10040047 Page 18168
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1=0 simulations

28x128 lattice
N=16384)

iIne MC sweep is
N random flip

ttempts

c/d = 2.27

irsa: 10040047

T= 4.00
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1=0 simulations

28x128 lattice
N=16384)

iIne MC sweep is
N random flip

ttempts

/J = 2.27

Pirsa: 10040047

T=4.00
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1=0 simulations

28x128 lattice
N=16384)

iIne MC sweep is
N random flip

ttempts

c/J = 2.27

irsa: 10040047

1= 4.00

100
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1= 230 27
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1= 2.00 390
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1= 2.00 1000
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Eymmetry breaking (magnetic phase transition) for h=0

A magnetized state, <m>=0, breaks a symmetry (E invariant under all oi = -0j)
strictly, mathematically we must have <m>=0

symmetry breaking (phase transition) can take place when N—e

how can we understand the symmetry breaking for N large but finite?
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Eymmetry breaking (magnetic phase transition) for h=0

A magnetized state, <m>=0, breaks a symmetry (E invariant under all oi = -0)
 strictly, mathematically we must have <m>=0

symmetry breaking (phase transition) can take place when N—co

how can we understand the symmetry breaking for N large but finite?

[ime series of simulation data; magnetization vs simulation “time” for T<Tc
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= I l] - i i
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configuration number &/N
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tymmetry breaking (magnetic phase transition) for h=0

magnetized state, <m>#0, breaks a symmetry (E invariant under all oi = -0)
 strictly, mathematically we must have <m>=0

symmetry breaking (phase transition) can take place when N—eo
 how can we understand the symmetry breaking for N large but finite?

[ime series of simulation data;: magnetization vs simulation “time” for T<Tc

M/N

M/N

0 SO00 10000 15000
configuration number &/N

'here is a characteristic “reversal” time between m>0 and m<0 configurations

Pirsa: 10040047 Page 29/68

 reversal time diverges for N—eo

- . B = e & B B



t\nother way to look at it: magnetization distribution
probability distrubution (histogram) of m during the simulation
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lE\nother way to look at it: magnetization distribution
P probability distrubution (histogram) of m during the simulation

251 [=16 \1 50} * L=64 ﬁ J

Z.Ut- s T1e2.20 " 4.0 ﬂ 1 N
S 15} e 2 30| m =N 2.
= 10 ~ 20} -

0.5 0] L j \ J

0025 0 o5 1 %7050 o5 1

m sceccsoeMeconne

? single-peak distribution for T>Tc

P double-peak distribution for T<Te s*22*s  sreeee

P peaks become sharper for increasing N

P no probability to fluctuate between m<0 and m>0 peaks for N—eo
- have to go through low-probability m=0 configurations
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Another way to look at it: magnetization distribution
» probability distrubution (histogram) of m during the simulation
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tymmetry breaking (magnetic phase transition) for h=0

magnetized state, <m>z0, breaks a symmetry (E invariant under all oi = -0)
 strictly, mathematically we must have <m>=0

symmetry breaking (phase transition) can take place when N—co

how can we understand the symmetry breaking for N large but finite?

[ime series of simulation data; magnetization vs simulation “time” for T<Tc
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T - T v T

1L.=16

— T/1=2.20
— T/1=2.60

-0.5 0 0.5
m

-

|

b single-peak distribution for T>Tc
» double-peak distribution for T<Tc
» peaks become sharper for increasing N

P no probability to fluctuate between m<0 and m>0 peaks for N—co
- have to go through low-probability m=0 configurations

lﬂ\nother way to look at it: magnetization distribution
P probability distrubution (histogram) of m during the simulation

1

v T

T -

- L

I =
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lﬂ\nother way to look at it: magnetization distribution
P probability distrubution (histogram) of m during the simulation

o qh - L L o T - I 3 hd T bl T - i | -
= L=16 \1 50; * L=t | -
' 1
| — T/=2.20 1 a0} \ : N
| —_— T/J=2.60 | | * :
- | x | 1 T i=1
1.0 2.0 -
> J
0.5 1.0 L j \ J y
0.0~ -

00735 0 0.5 | I 05 0 0.5 I

"' ...I..,"......

? single-peak distribution for T>Tc sesese  sesens

» double-peak distribution for T<Te *=**=* ® eosooee

P peaks become sharper for increasing N

P no probability to fluctuate between m<0 and m>0 peaks for N—eo
- have to go through low-probability m=0 configurations

\Vhy this peak structure? balance between
large number of m=0 configurations with high energy

smablbeumber of |m|=1 configuration with low energy Page 35/68
antraornyv Aoaminatoe at hinht T intarnal anarfaayvy at lesw T




Another way to look at it: magnetization distribution
P probability distrubution (histogram) of m during the simulation
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M/N

M/N

Eymmetry breaking (magnetic phase transition) for h=0

A magnetized state, <m>%0, breaks a symmetry (E invariant under all oi = -0)
 strictly, mathematically we must have <m>=0

symmetry breaking (phase transition) can take place when N—eo
 how can we understand the symmetry breaking for N large but finite?

[ime series of simulation data;: magnetization vs simulation “time” for T<Tc

1.0
0.5
0.0F

4).5

-1.0

1.0
(.5
0.0k
J!SL

1.0k

() SO0
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lE\nother way to look at it: magnetization distribution
P probability distrubution (histogram) of m during the simulation

g ﬁ - : ' r 1 & ' r |
| L=16 \1 50 ’ L=64 * 1
! 1
2.0t . T1s2.20 I 4.0F ﬂ 7 N
| — T/I=2.60 | | | :
= 1.5} i = 3.0f 1 "N Z N
:: | ::- | 4 i 1
1.0 2.0 1
| 1
MIANRWAL
0. 0 ) i
).0 l 05 0 0.5 | 0.0 I D5 0 0.5 I
m il....,".il...
b single-peak distribution for T>Tc sraial Liiild
» double-peak distribution for T<Tc e RAs - S

P peaks become sharper for increasing N
P no probability to fluctuate between m<0 and m>0 peaks for N—co
- have to go through low-probability m=0 configurations
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M/N

M/N

Eymmetry breaking (magnetic phase transition) for h=0

A magnetized state, <m>=0, breaks a symmetry (E invariant under all oi = -0)
strictly, mathematically we must have <m>=0

symmetry breaking (phase transition) can take place when N—c

how can we understand the symmetry breaking for N large but finite?

[ime series of simulation data; magnetization vs simulation “time” for T<Tc
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tymmetry breaking (magnetic phase transition) for h=0

magnetized state, <m>#0, breaks a symmetry (E invariant under all oi = -0i)
strictly, mathematically we must have <m>=0

symmetry breaking (phase transition) can take place when N—eo

how can we understand the symmetry breaking for N large but finite?

[ime series of simulation data; magnetization vs simulation “time” for T<Tc

1.0
0.5

0.0

M/N

DI

-1.0
1.0

(0.5

00 F

M/N

4).5

] [' - i i
() SO00 10000 1 5000
configuration number &/N

[here is a characteristic “reversal” time between m>0 and m<0 configurations
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 reversal time diverges for N—eo

- e & = e 5 B B



t\nother way to look at it: magnetization distribution
probability distrubution (histogram) of m during the simulation

1 q 1 i L v | b o L] L] "

=1 L=16 \1 5.0f * L=64 * :
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- 0.5 0 0.5 | l 0.5 0 0.5 |
," ......"'.t....
» single-peak distribution for T>T.
» double-peak distribution for T<Tc esecee eveces

P peaks become sharper for increasing N
P no probability to fluctuate between m<0 and m>0 peaks for N—co
- have to go through low-probability m=0 configurations
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tmother way to look at it: magnetization distribution
probability distrubution (histogram) of m during the simulation

el y t ] 1 T T v T \
251 [=16 \1 50} ’ L=64 * :
2.0t — T/&2.20 i 4.0t ﬂ

L —_— T/1=2.60 |

= 1.5F = 30F
0.5 1.0 L j \ J
00 "5 0 05 1 %9r—%5 0 05 1

m PUPPAPRPAPS L PP
» single-peak distribution for T>Tc
b double-peak distribution for T<Tc e S S

» peaks become sharper for increasing N
P no probability to fluctuate between m<0 and m>0 peaks for N—co
- have to go through low-probability m=0 configurations
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lﬂ\nother way to look at it: magnetization distribution
P probability distrubution (histogram) of m during the simulation

T, b T T F ¥ T

 peaks become sharper for increasing N
P no probability to fluctuate between m<0 and m>0 peaks for N—co
- have to go through low-probability m=0 configurations

\Vhy this peak structure? balance between
large number of m=0 configurations with high energy

smabbeumber of |m|=1 configuration with low energy
antroaornyv Aoaminatoe at hinkht T intarnnal anarmayvy at lew T

1 1 '~ | |
= n L=16 n . .01 * L=04 * 4
L 1
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1.0 2.0 1
0.5 1.OF L j \ J |
: 1
0. 0.0 ) B
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m o.o.o.”'otoooo
? single-peak distribution for T>Tc
» double-peak distribution for T<Tc e oA
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binder ratios and cumulants
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Einder ratios and cumulants
onsider the dimensionless ratio

1o 4\

(m- )

Ry = —L

—_— )

(mN?)?
We can compute Rz exactly for N—eo
e for T<Te: P(m)—d(m-m*)+d(m+m"*)

m*=|peak m-value|
Rz—’ 1

Pirsa: 10040047
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Einder ratios and cumulants

onsider the dimensionless ratio
(m*)

R-‘g_—

)

LI3° )~
We can compute Rz exactly for N—eo
e for T<Te: P(m)—d(m-m*)+d(m+m"*)
m*=|peak m-value|
R2—1

Pirsa: 10040047

Pim)

e for T>Te: P(m)—exp[-m?/a(N)]
a(N)~N-1
R2—3 (properties of Gaussian integrals)
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Einder ratios and cumulants
onsider the dimensionless ratio

I\ £ 19
(m ")
Ry =

[ O\D
] } o _."I e

We can compute Rz exactly for N—oo
e for T<Tc: P(M)—=d(mM-m*)+d(m+m*) e for T>Te: P(m)—exp[-m?/a(N)]
m*=|peak m-value| a(N)-N-1
R2—1 R2—+3 (properties of Gaussian integrals)
I'he Binder cumulant is defined as (n-component order parameter; n=1 for Ising)

{__3 n+ 1 H],1 | 1. =1,
T2\ 3 3 13) 0, T>T
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Einder ratios and cumulants
onsider the dimensionless ratio
/o4

(m™)

R-_::_

/ I\ D
;,m—;-

We can compute Rz exactly for N—oo
e for T<Te: P(M)—=d(m-m*)+d(m+m*) e for T>Tc: P(m)—exp[-m?/a(N)]

m*=|peak m-value| a(N)~-N-1
R2—1 R2—+3 (properties of Gaussian integrals)
I'he Binder cumulant is defined as (n-component order parameter; n=1 for Ising)

[ 3 fn+1 H[" | 1, <1,
“~ a2\ 3 3 "’) Ly T

1.00

2D Ising model; MC results

08} . 32,64

(.95
| 0.6 [

04F 090 F
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Einder ratios and cumulants
onsider the dimensionless ratio

R-_;:

(m?)

/ O\ D
:LIII’—.J—
L !

We can compute Rz exactly for N—eo
® for T<Te: P(M)—d(m-m*)+d(m+m*) e for T>Te: P(m)—exp[-m?/a(N)]

m*=|peak m-value| a(N)-N-1
R2—1 R2—3 (properties of Gaussian integrals)
I'he Binder cumulant is defined as (n-component order parameter; n=1 for Ising)

[, — 3 [n+1 n o | 1, I <li,
22(3 s ) 10 T'sT

1.00

2D Ising model; MC results

Curves for different
| L normally cross each
1 other close to T¢

e | = |8

0.8} — L=1632.64 ]

>¢ L=8§ 0.95
0.6+ ' )

y Extrapolate crossing

for sizes L and 2L

to infinite size

e converges Taster thar

T

......... -

04F 0.90
: oo [ = J024

(Pirsat 10040047 - [ =]28 256 5]2
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Computing expectation values and their statistical errors

Pefinition: Monte Carlo sweep = N spin-flip attempts
 a natural unit of simulation “time”
 “measure” observables after every (or every n) sweep
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Computing expectation values and their statistical errors

Definition: Monte Carlo sweep = N spin-flip attempts
' a natural unit of simulation “time”
 “measure” observables after every (or every n) sweep
Boltzmann probability accounted for at sampling stage —
N,
= N Zl (2;. N, =number of samples

s the estimate for the true expectation value;
Q — (Q), (N; — o0)

.

Pirsa: 10040047 Page 55/68




Computing expectation values and their statistical errors

Definition: Monte Carlo sweep = N spin-flip attempts
' a natural unit of simulation “time”
 “measure” observables after every (or every n) sweep
Boltzmann probability accounted for at sampling stage —
"
l ~— = .
Q= N Z] (2;. N, = number of samples

s the estimate for the true expectation value;
Q—{(Q), (N,—o00)

-u.,

Statistical errors (error bars): () — () £ o)
t the measurements are not statistically independent
t independent only after a number of sweeps >> autocorrelation time
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Definition: Monte Carlo sweep = N spin-flip attempts
' a natural unit of simulation “time”
 “measure” observables after every (or every n) sweep

Boltzmann probability accounted for at sampling stage —
N,
] . . |
= N E l (2,. N, =number of samples

s the estimate for the true expectation value;
Q—(Q), (N;— 00)

Statistical errors (error bars): () — () L o,
 the measurements are not statistically independent
t independent only after a number of sweeps >> autocorrelation time

Divide the simulation into B “bins”, M sweeps in each bin; Ns=BM
 bin averages: (),. b= 1..... B
B B
| 3
7 = E o -

o=1 {

(QQp — (2]:

Pirsa: 10040047

Computing expectation values and their statistical errors
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Computing expectation values and their statistical errors

Definition: Monte Carlo sweep = N spin-flip attempts
' a natural unit of simulation “time”
 “measure” observables after every (or every n) sweep
Boltzmann probability accounted for at sampling stage —
N,
] 3 . |
= N ZI (2;. N, = number of samples

s the estimate for the true expectation value;
Q—(Q), (N;— o0

-

Ptatistical errors (error bars): ()} = () + 0
the measurements are not statistically independent
} independent only after a number of sweeps >> autocorrelation time

Divide the simulation into B “bins”, M sweeps in each bin; Ns=BM
 bin averages Q,. b=1...., B

Q UZ(), 02 = U|U 1.2(,,--

Pirsa: 10040047 Page 58/68
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utocorrelation functions
characterization of how measurements become statistically independent

(Q(i +1)Q(1)) — (Q)? (< ot/®

Ao(t) .t — 00)
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utocorrelation functions
characterization of how measurements become statistically independent

(Q(i +1)Q(1)) — (Q)~ ( i
. =T . —) a
(Q%) — (Q)4

\ -

_'l(‘.’)(_)‘) — \ f—' X)

he autocorrelation time © grows as T—T. (diverges for N—co, T—=T)
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utocorrelation functions
characterization of how measurements become statistically independent

(Q(2 + fl(J( 1)) — (2.’
(<) — (Q)* ’

he autocorrelation time © grows as T—Tc(diverges for N—e, T—T)
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utocorrelation functions
characterization of how measurements become statistically independent

| (Q>i +1)Q(1)) — (Q)? _
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he autocorrelation time © grows as T—T. (diverges for N—co, T—T,)
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utocorrelation functions
characterization of how measurements become statistically independent

(Q(i +1)Q(1)) — (Q)~
(Q?) — (Q)? |

he autocorrelation time © grows as T—T. (diverges for N—co, T—=T,)
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[his problem can be largely overcome by using cluster algorithms
t for standard Ising, XY, Heisenberg,... -

Pirsa: 1

t but not in all cases, e.g., in the presence of external fields, frustrated systems,...




binder ratios and cumulants
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tymmetry breaking (magnetic phase transition) for h=0

magnetized state, <m>#0, breaks a symmetry (E invariant under all oi = -0)
strictly, mathematically we must have <m>=0

symmetry breaking (phase transition) can take place when N—c

how can we understand the symmetry breaking for N large but finite?

[ime series of simulation data;: magnetization vs simulation “time” for T<Tc
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lﬂ\noth«r-}r way to look at it: magnetization distribution
P probability distrubution (histogram) of m during the simulation

g | q - - ) ' o ! ' Y y '
=1 L=16 A\l 50; * L=64 * 1
2.0t e TiIa2.20 1 40t /\ : N
| —_— T/1=2.60 ' ' | 1
= 1.5} =< =30} { m=g Z 0;
i <} ~ i=1
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m m

» single-peak distribution for T>Tc sesees  sessee

P double-peak distribution for T<Te @ ***2s*  srsees

P peaks become sharper for increasing N

P no probability to fluctuate between m<0 and m>0 peaks for N—co
- have to go through low-probability m=0 configurations
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t\nother way to look at it: magnetization distribution
probability distrubution (histogram) of m during the simulation
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Eymmetry breaking (magnetic phase transition) for h=0

A magnetized state, <m>#0, breaks a symmetry (E invariant under all oi = -0)
strictly, mathematically we must have <m>=0

symmetry breaking (phase transition) can take place when N—e

how can we understand the symmetry breaking for N large but finite?
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