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Reminder: why we need AMR, and properties of the
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solutions that dictate the particular
IS adequate

Berger & Oliger style AMR

= |deal for hyperbolic wavelike equations, and certain classes of
problems in GR

= extensions for coupled hyperbolic/elliptic systems

. example: critical phenomena in gravitational collapse

PAMR/AMRD

= nfrastructure for implementing B&O AMR on clusters (using
MPI)
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AMR

Adaptive Mesh Refinement is a technique to make the solution of discrete
PDEs more efficient for certain classes of problem

= there is a wide range of relevant length scales in the Froblem, yet the smallest
length scales are relatively isolated and not volume filling

=« not known a-priori where the small length scales will develop, or it will be too
difficult/cumbersome to construct a non-uniform mesh to efficiently resolve the
small length scales

=« computationally too expensive to solve the problem on a single uniform mesh

AMR allows for solution of such classes of problems by covering the domain
with a mesh hierarchy, where high resolution meshes are only added where
needed to resolve small length scale features

= NOTE: AMR is not a technigue to increase the accuracy of a solution; in fact, the
AMR solution can never be more accurate than a unigrid solution with resolution
corresponding to that of the finest AMR mesh

« furthermore, AMR generically creates unwanted high-frequency solution
components (“noise”) at refinement boundaries, and though this can be controlled
animade small, it is usually quite challenging to get very high accuracy solutions
with AMR

= Think of AMR as a tool to getan answer to a computationally challenging problem
in the first place; worry about the 7 digit later
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Why would AMR be beneficial in GR?

In most astrophysical scenarios where GR is important and numerical

solution is needed, in particular binary compact object mergers and
ravitational collapse, there is a clean hierarchy of a modest range of metric
ength scales that need to be resolved

- compactobjlect radius > near field zone (10’s of gravitational radii) -» far field zone (100's
gravitational radii)

in the strong-field regime small length-scales are isolated (one or two
compact objects) and not volume filling

= however not always the case in GR, e.g. generic cosmological singularities
in the strong-field regime temporal scales are commensurate with spatial

scales; i.e. rapid tem‘aoral variation of the metric is typically confined to
correspondingly small spatial length scales

the equations are non-linear, and in many cases we will not a-prior7 know
where/when refinement will be needed

maximum causal speed of propagation (1 !)

in the weak-field regime gravitational wave propagation is the feature of
Interest

= this wi//be volume fillina and thouah the temporal scale for variations is alwave the same



Implications for an AMR algorithm

The preceding properties suggest

= it is notimportant to have sophisticated grid structures that can efficiently track
features with complicated shapes; rather simple “aligned box-in-box” type strategies
will be adequate

= it /s however important for the algorithm to provide a mechanism to automatically
generated the hierarchy as evolution proceeds (i.e. “"adaptive™)

= it /simportant to use an algorithm that maintains the same CFL factor everywhere in
the domain; i.e. need time-subcycling

= AMR by itself, regardless of how sophisticated the algorithm, will 7ot help in tracking
gravitational wave emission out to large radii with high accuracy ... other technolog?r
will be needed to overcome this if it becomes an issue (though in a binary black hole
merger the shortest GW wavelength ~ 5 gravitational radii --- not too small):

. changing the spatial coordinates to more efficiently represent the wave structure; e.g.
spherica tﬁmlar coordinates, as the angular structure in the wave will not change by much
far Iftr]joml e source, and could efficiently be represented with a relatively small set of
multipoles

» changing the slicing to be asympotically null, to “quickly” propagate the waves to large
radii from the source

In all then, a simplified version of the original Berger and Oliger AMR algorithm (JCP 53,
1984) is ideal for our purposes

s thouah some modifications needed if ellintic eauations are solved durina evolution



Berger and Oliger AMR

= (simplified and extendedg Beraer and Oliger AMR, as implemented in
MRD [Pretorius & Choptuik, JCP 218,2006]

= computational domain covered by a hierarchy of independent uniform
rectangularmeshes, where higher resolution child meshes are aligned
with and entirely contained within coarser resolution parent meshes

Level 1 gnd

mesh hierarchy on
computational domain

memory map of grids in hierarchy

« original algorithm allowed for child meshes to be rotated relative to the



Berger and Oliger AMR

= recursive time stepping algorithm, so refinements occur in space and
time (example in a few slides)

» a single wnigrid time step is taken on a parent level before p, (temporal
refinement ratio) wnigrid time steps are taken on the child level

= this ordering is crucial to set boundary conditions for interior equations,
in particular the elliptics

. though alternative strategies are possible for purely hyperbolic
sTstems with explicit time integration, or certain classes of linear
ell

iptic PDEs driven by conserved sources [Lehner et al, CQG 23
(2006) S421-S446]

= allows the AMR technolt:éﬁy to be implemented independently of the
particulars or details of the numerics used to solve them, and
conversely shields the user from AMR implementation details

« after p, steps on the child grid, when the parent and child are in sync again,
solution from the child region is /njected into the overlapping region of the
parent level, so that the most accurate solution available at a point is
propagated to all levels of the hierarchy containing that point

aives near-O(N) (ootimal) solution of the PDE<
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Berger and Oliger AMR

= recursive time stepping algorithm, so refinements occur in space and
time (example in a few slides)

» a single wnigrid time step is taken on a parent level before p, (temporal
refinement ratio) wnigrid time steps are taken on the child level

= this ordering is crucial/ to set boundary conditions for interior equations,
in particular the elliptics

. though alternative strategies are possible for purely hyperbolic
stems with explicit time integration, or certain classes of linear
iptic PDEs driven by conserved sources [Lehner et al, CQG 23

clp
(2006) S421-5446]

= allows the AMR technoltzéﬁy to be implemented independently of the
particulars or details of the numerics used to solve them, and
conversely shields the user from AMR implementation details

. after p, steps on the child grid, when the parent and child are in sync again,
solution from the child region is /njected into the overlapping region of awe
parent level, so that the most accurate solution available at a point is
propagated to all levels of the hierarchy containing that point

. aives near-O(N) (onotimal) solution of the PDFs



Berger and Oliger AMR

= need to alter the algorithm to incorporate elliptic PDEs

for hyperbolic equations, a poorly resolved interior region of a coarse level
will not adversely affect the solution on the parts of the level that are locally
of the finest resolution, as the “junk” from the under-resolved region does
not have more than 1 time step to propagate to the exterior before it is
replaced with finer grid solutions

the above does not hold for elliptic equations. To deal with elliptics, in a
nutshell, modify the algorithm as follows:

= when descending the tree in the recursive time-stepping algorithm,
evolve hyperbolics one step, using an extrapolated solution of the
variables satisfied by elliptic equations

« getting stable extrapolation is a bit tricky

= when ascending the tree, post injection, solve the elliptics over the
entire sub-hierarchy that is in sync with the given coarse level
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B&0O AMR Example
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B&0O AMR Example
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B&0O AMR Example
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Optimistically, what kind of speedup can we expect?

Imagine

d+ 1 dimensional evolution
the coarsest level has N points
2:1 spatial and temporal refinement ratio

L. levels of refinement, with /=/ the coarsest level,
and /=L the finest

take WV steps on the coarsest level; hence will need
N2-1) on the level /

linear filling factor of 2

the total run-time is proportional to the total
number of grid points in space and time (i.e. an
optimal evolution scheme is used), and the
overhead in the AMR algorithm is negligible

compare to a unigrid run at the resolution of the
finest AMR level

=1

1:' 'NIGRID > Zcf{L—l )—1
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PAMR/AMRD

PAMR (parallel adaptive mesh refinement)
manages distributed B&O style grid hierarchies

« AMRD (adaptive mesh refinement driv9r2
implements the just-described version of B&O
AMR, utilizing PAMR for hierarchy management

« User codes designed as (in-principle) standalone
untlﬁrid/sarlal numerical solvers, and supply AMRD
with a series of “hook functions” to incorporate
them into the B&O algorithm

= Reasons for this separation of functionality

« from the point of view of a user writin? a code to numerically solve a particular system of PDEs,
AMR and parallel distribution are largely extraneous details

= all the user should be aware of is the possibility that the code cou/dbe runina
ggraﬂel/adaptwe environment, _mea_mn? %d boundaries could either be at the physical
undaries of the problem, or interior fo the domain

= In the latter case the user leaves the boundaries alone

= The AMR driver does not need to know the details of how grids will be distributed in parallel, nor
what equations the user will be solving on those grids
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A few final remarks

e For the Einstein equations, time taken to evaluate expressions dominates
over other tasks, which helps guide coding priorities

e 'locality’ of the data less of an issue in load-balancing a parallel code (strategies
designed to guarantee locality, such as space filling curves, may even have a
negative impact on the performance)

e algorithmic tasks (truncation error estimation, regridding, interpolation, injection,
etc.) are essentially “free”

e Solving elliptic equations solved using FAS multigrid is optimal and /ast

e at worst a constant factor of 2-3 times slower per equation compared to a typical
hyperbolic equation

o for example, 2D axisymetric gravitational collapse code solves 4 (3) hyperbolic
equations and 3 (4) elliptic equations per time step; profiling indicated roughly
25-45% of the time is spent solving hyperbolics, 50-70% solving elliptics, with
the remainder (usually ~ 5-10%) spent on miscellaneous functions in a typical
simulation

» Code, including reference manuals and a couple of examples, can be
downloaded from Matt Choptuik’s web-page (google "Matt Choptuik”, or
see links from my web-page)




