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Abstract: For the past century, there has been much discussion and debate about the equations of motion satisfied by a classical point charge when
the effects of its own electromagnetic field are taken into account. Derivations by Abraham (1903), Lorentz (1904), Dirac (1938) and others suggest
that the &quot;self-force& quot; (or &quot;radiation reaction force&quot;) on a point charge is given in the non-relativistic limit by a term
proportional to the time derivative of the acceleration of the charge. However, the resulting equations of motion then become third order in time, and
they admit highly unphysical & quot;runaway& quot; solutions. During the past century, there also has been much discussion and debate about the
interpretation of these equations of motion and the conditions that can/should be imposed to eliminate the runaway behavior. We argue that the
above difficulties stem from that fact that the usua notion of a point charge is mathematically ill defined. However, a mathematically rigorous
notion of a point charge arises in a perturbative description of a body if one considers a limit wherein not only the size of a body but its charge and
mass go to zero in an asymptotically self-similar manner. We show how the Abraham-Lorentz-Dirac self-force then arises in a perturbative
description of the body's motion, but does not give rise to runaway behavior. As a biproduct of this work, we also rigorously derive dipole forces
and resolve some paradoxes of elementary physics, such as how a magnetic dipole placed in a non-uniform magnetic field can gain kinetic energy
despite the fact that the magnetic field can & quot;do no work& quot; on the body.
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The Basic Issue

An accelerating point charge radiates electromagnetic

energy and momentum. Therefore. there must be some
“back reaction” force on the charge associated with this
radiation. This can be understood as resulting from the
effects of the point charge’s own electromagnetic field on
itself. However. the electromagnetic field of a point
charge is singular at the charge itself. and its
self-electromagnetic energy is infinite, so it is not obvious
how to do a proper self-force or energy conservation
argument. For more than a century. there has been much

discussion and debate about this issue.
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Our Motivation for This Work

There is considerable current interest in general relativity
in finding the motion of a “small” body, taking into
account its self-force effects. For example, one would like
to be able to predict the motion of, say, a ~ 1M black
hole (or neutron star. or white dwarf) in a close orbit

around a ~ 10° M, at the center of a galaxy. Such a

black hole will inspiral into the large black hole as it
emits gravitational radiation. This radiation will be
detectable by LISA (if this project goes forward) even at
cosmological distances. Accurate predictions of the
motion will be needed to accurately predict the

waveforms of the gravitational waves.

Pirsa: 10040030 Page 4/147



The electromagnetic self-force problem is simpler than

the gravitational self-force problem and thus provides a
good testing ground for ideas needed for the gravitational

case.
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Classical Electrodvnamics as Taught in Courses

At least 95% of what is taught in electrodynamics
courses at all levels focuses on the following two separate
problems: (i) Given a distribution of charges and /or
currents, find the electric and magnetic fields (i.e., solve
Maxwell’s equations with given source terms). (ii) Given
the electric and magnetic fields, find the motion of a
point charge (possibly with an electric and/or magnetic
dipole moment) by solving the Lorentz force equation
(possibly with additional dipole force terms).

Since Maxwell's equations are linear. it makes perfectly

good mathematical sense to allow distributional sources.
such as a point charge (i.e., a 3-dimensional d-function,
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non-zero only on a timelike worldline). Indeed. the

general solution for continuous sources can be found by

“superposition” of the solution obtained for
4-dimensional d-function sources (i.e.. the Green's
function). so even if one is interested in continuous
sources. it is extremely useful to consider Maxwell's
equations for distributional sources.

There are no mathematical difficulties in solving for the
motion of a point charge in a given electromagnetic field
(although. as we shall see, the dipole force terms given in

many texts are incomplete!).

Thus. for most of what is done in courses in

electromagnetism. one could take the view that
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electrodvnamics is formulated at a fundamental level in
terms of point charges. This is normally done in
elementary electrodynamics courses. Continuous charge
distributions could be viewed as a limit of manv small
point charges.

However, the situation changes dramatically when one
tries to consistently solve problems (i) and (ii)
simultaneously (as occurs in the last chapter of Jackson).
The coupled system of Maxwell's equations and the
motion of charges is nonlinear., and point charges simply
don’t make mathematical sense! The difficulties
associated with the fact that the field of a point charge is

singular at the location of the charge and that the point
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charge has infinite self-energy—which can be ignored
when solving (i) or (ii) separately—cannot be ignored in

the coupled Maxwell-motion problem. This kind

situation is very familiar to people who work in general

relativity: Einstein’s equation is nonlinear, and the

notion of a “point mass”™ makes no sense.
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How Has the Self-Force Problem Been Analvzed?

One approach—starting with Abraham (1903) and
Lorentz (1904)—is to consider a finite-sized body for
which the coupled Maxwell-motion problem is well
defined. A simple model for a charged body. such as a
rigid shell, is usually considered. One then makes
approximations corresponding to a small size of the body
and derives equations of motion. Among the problems
with this approach are: (1) Rigid motion is not consistent
with special relativity for a body undergoing non-uniform

acceleration. (2) It is far from obvious that the motion of

the body is independent of the matter model. (3) Since

one can't take the limit of zero size without introducing
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infinite self-energy and other problems, it isn’t obvious

what the range of validity of the approximations are.

Another approach—starting with Dirac (1938)—is to
work with a point charge and analyze conservation of
energy-momentum in a small “worldtube” surrounding

the point charge. One encounters singular expressions in

this approach, but these can be regularized /renormalized.

However, although these regularizations are relatively
natural looking, it is far from obvious that they are
correct. Also, if a point charge really had finite total
energy as assumed here, it would really have to have

infinitely negative “bare mass”.

Both approaches lead to a “radiation reaction” or
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“self-force”, known as the Abraham-Lorentz-Dirac (ALD)

force. which. in the non-relativistic limit. takes the form

> 2 _da
P
3q dt

—_

This results in serious difficulties. The equation F = ma
is now third order in time, so to specify initial conditions,
one needs to give not only the initial position and
velocity but also the initial acceleration. Worse vet. even
with no external field. this equation admits “runaway”
solutions. where the pi.r:-iifi'.ill of the i..'httl"__’.h'* OTOWS
exponentially with time. The issue of how

exclude/eliminate this runaway behavior has been

debated extensively during the past century.
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Another Strange Feature of the ALD Force

As is well known. a uniformly accelerating charge radiates

energy to infinity. However, a uniformly accelerating

charge does not have any associated ALD force.
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“self-force”, known as the Abraham-Lorentz-Dirac (ALD)
force. which. in the non-relativistic limit. takes the form
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This results in serious difficulties. The equation F = ma
is now third order in time, so to specify initial conditions,
one needs to give not only the initial position and
velocity but also the initial acceleration. Worse vet, even
with no external field. this equation admits “runaway”
solutions, where the position of the charge grows
exponentially with time. The issue of how
exclude/eliminate this runaway behavior has been

debated extensively during the past century.

Pirsa: 10040030 Page 16/147



Another Strange Feature of the ALD Force

As is well known. a uniformly accelerating charge radiates

energy to infinity. However. a uniformly accelerating

charge does not have any associated ALD force.
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If it doesn't take any extra work to keep a charge in
uniformly acceleration, doesn’'t one get the radiated
energy “for free”?7 In fact, it is not difficult to show that
if the charge begins and ends in inertial motion, then the

total work done overcoming the ALD force is equal to the

total energy radiated. However, it might seem that

energy is only conserved “on average” and that one can
get local violations of conservation of energy. This is
difficult to analyze on account of the infinte self-energy of

a point charge.
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Our Approach

We will use only Maxwell's equations and (exact. loc:

conservation of energy and momentum. In this way, we

can be certain that any general results we derive are

independent of the composition of the body. and that

energy and momentum are always exactly conserved.

Maxwell's equations:

VP, —4xl
ViuFug =0
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Our Approach

We will use only Maxwell's equa and (exact, local

conservation of energy and momentum. In this way, we

can be certain that any general results we derive are

independent of the composition of the body, and that

energy and momentum are always exactly conserved.

Maxwell's equations:
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Conservation of energy and momentum:

” — M EM
. — 8 1, i

Stress energy tensor of the electromagnetic field:

1 1
EM __ a : 3
pr =S IypuE_x.jF

4_ JLCE L’
i
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The Key Idea of Our Approach

If we do not take a limit of zero size for the body. we will

have to consider the internal dyvnamics of the body. The
motion will be complicated and will depend on the details
of the composition of the body. No simple, universal

equations can arise. However, if we take the usual point
particle limit (zero size at fixed charge and mass). we will
encounter the serious problems associated with a singular
electromagnetic field and infinite self-energy that have
plagued analyses for the past century.

Our approach: Consider a modified point particle limit.
wherein the body shrinks to zero size in an

asyvmptotically self-similar manner. so that not only the
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size of the body goes to zero, but its charge and mass also
go to zero in proportion to its size. Note that the body
disappears completely at A = 0, but, like the Cheshire
Cat in Alice in Wonderland. its “smile” (i.e, the worldline

that the body shrinks down to) remains behind. This

“smile” provides the leading order description of motion:

bv working perturbatively off the “smile”, we obtain the

self-force (and dipole) corrections to motion.
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How the Charge Densitv Scales

We want the body to shrink down to a worldline, . given
by ' = 2*(t). In the usual point particle limit. the total
charge would remain fixed as we shrink the body down. If
we want the body to keep its shape exactly as it shrinks
down, we would want to consider a one-parameter family

of charge distributions. p(\;t.z*) that behaves like

| . B —Z()
o(X;t, ') = X3p(t, \ : )

with p as smooth function of all of its arguments.

Instead. we want the charge distribution to go to zero
proportionally to the size of the body as A — 0. We also
only demand that it retain its shape asymptotically as

Pirsa: 10040030 Page 25/147



A — 0. Thus, we require

. = i 2
P\ At xy—2 - P\ § T S
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Precise Statement of How Our Charged

Body Shrinks to Zero Size

We consider a one-parameter family
{Fl..(N), JH(A), T!Lf‘!‘:( A); of solutions to Maxwell's
equations and conservation of total stress-energyv such

that

JE(\ t, ) = X205\ ¢, [2F — 2 (D)]/N)

M ! —2 3 = 1 /
Tpp‘ (./\.. t- 4 ) — f\ T‘u;_;(z\* t ..‘1 — & [f]_ f\)

with J* and 7,, smooth.
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A — 0. Thus, we require

? = < 2
p(A:t.x') = A “p(A;t, ——)
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Precise Statement of How Our Charged

Body Shrinks to Zero Size

We consider a one-parameter family

{ELu(A), JE(A), T;L‘:(,\_)} of solutions to Maxwell's
equations and conservation of total stress-energy such
that

JE(ME,x5) = A2 (0t [2F — Z(D)]/N)

M ; —2 [l =3 1/
T,ulf('/\" t- < } /\ prl/\- t !‘J_ — [t}‘ /\)

with J¥* and 7, smooth.
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e We have F,,, = FJ" + F;7. where F7* is the retarded
solution of Maxwell's equations with source J*(A\)

and F7;" is a homogeneous solution of Maxwell’s

equation that is jointly smooth function of A and the
spacetime point.

We want to know (1) What are the possible worldlines
2'(t) and (2) What are the perturbative corrections to

2*(t) that arise from self-field and finite size effects?
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Precise Statement of How Our Charged

Body Shrinks to Zero Size

We consider a one-parameter family
{F..(\), JE(A), T;L‘:( A)t of solutions to Maxwell's
equations and conservation of total stress-energy such

that

JE(A %) = A20%( ¢, [2F — 2 (D)]/N)

T™ (A t,2°) = 22Tt |2 — 2 (O3

with J* and 7, smooth.
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e We have F,, = FZ' + F;’. where F’ is the retarded

solution of Maxwell's equations with source J*(\)
and F7;° is a homogeneous solution of Maxwell’s
equation that is jointly smooth function of A and the
spacetime point.

We want to know (1) What are the possible worldlines

2*(t) and (2) What are the perturbative corrections to

2*(t) that arise from self-field and finite size effects?
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Two Key Properties of F

We have

Pt 2 =X "F.(A L]

where F' is a smooth function of its arguments. Thus.

F7; also behaves in an asymptotically self-similar

manner near the worldline as A\ — 0.

Define 3 = \/r, where r = /) [z* — 2(%)]2. We have

A —B*F..(t.B.7.0,0)

17

where F,, is smooth in all of its arguments at
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Precise Statement of How Our Charged

Body Shrinks to Zero Size

We consider a one-parameter family
{F..(A), JE(A), Tif( A)t of solutions to Maxwell's
equations and conservation of total stress-energy such

that
[ ]

JE(A t, ') = A2 0R( ¢, [2F — 2 (D)]/A)

17r

TM (M t,2°) = 22T, (\ ¢t |2 — 2 (O)}/N)

v

with J¥* and 7,, smooth.
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Two Key Properties of FJ;

We have

F=(\8,2°) = X TELL (A 8, [2 — 2°(8)] /)

where F' is a smooth function of its arguments. Thus,

F7; also behaves in an asymptotically self-similar

manner near the worldline as A — 0.

Define 3 = A\/r, where r = /> [z* — zi()]2. We have

AFT=t — .j_jfﬁp(t- 3.1, 0. o)

[y

where F,, is smooth in all of its arguments at
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r = 3 = 0. This means that we can approximate F ;" by

F (t,71,0,0) = - ‘ 7\) (F o JulE; O, )
This gives a “far zone” expansion of F[;°. valid near
r = 0. Alternatively, defining ¥ = r/\, and £ = (£t — t5) /.
we can rewrite this as a “near-zone  expansion
N M 1
AUFR(E7.0.0) =) | Y (M) =55 (Fun)nm(to+)E. 6, 0)

n=>0 m=0

which is valid at large 7.
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The “Near-Zone’ and “Far-Zone” Limits
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= 0. This means that we can approximate F;° by

N M

:_3 Z Z r” (:‘) : (Foo)nm(t, 0, 9)

n=—0 m=0

This gives a “far zone” expansion of F[°. valid near

r = 0. Alternatively, defining ¥ = r /A, and £ = (t — t5) /A
we can rewrite this as a “near-zone’ expansion

N

A Er0d—) Z{ AF)" ———(Fouw)nm(to+AE. 8, 0)

n=>0 m=0

which is valid at large 7.
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The “Near-Zone  and “Far-Zone’ Limits
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r = 3 = 0. This means that we can approximate F; by

A\ ™
1 () (F o a2 )
-

This gives a “far zone” expansion of F;°. valid near

n=>40 m=0

r = 0. Alternatively, defining ¥ = r/\, and £ = (£ — t5) /.
we can rewrite this as a “near-zone expansion

N

XIRrEr.e =) Z( AF)" ———(Fuw ) nm(to+AE, 6, 0)

n=>0 m=0

which is valid at large 7.
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“Far Zone” Limit and Unperturbed Motion

Let A — O at fixed z#. Then J#(A,t,x*) can be expanded
in a distributional series. We find that
JYE = Timy_o J#*()) = 0 and

9
Je = Lim _(
A—0 OA

JHA) =T @) — =)
Comnservation of J# then vields
JWE — qutd(z* —

Similarly,

T = TM(@)6(z" — Z(2)) -
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r = 3 = 0. This means that we can approximate F;° by

N M

;\3 Z Z P (’:‘) E (]—"m,)nm{l‘.('}. Q)

n=0 m=0
This gives a “far zone” expansion of F[;°. valid near
r = 0. Alternatively, defining ¥ = r/\, and £ = (¢t — t5) /.
we can rewrite this as a “near-zone~ expansion

N

,\_IF“[I 0. 0) _ZZ ey ———(Fow )nm(to+AE, 6, 0)

n=>0 m=0

which is valid at large 7.
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e We have F,, = F" + F;;. where F;’ is the retarded

solution of Maxwell's equations with source J*(A\)

and F3;" is a homogeneous solution of Maxwell’s

equation that is jointly smooth function of A and the
spacetime point.

We want to know (1) What are the possible worldlines
2*(t) and (2) What are the perturbative corrections to

2*(t) that arise from self-field and finite size effects?
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Two Key Properties of F

We have

A f

FX (A t,2%) = X Fu (At [2° — 22 ()] /N) ,

where F' is a smooth function of its arguments. Thus,

F7; also behaves in an asymptotically self-similar

manner near the worldline as A\ — 0.

Define 3 = A\ /r, where r = /) [z* — 2(t)]2. We have

AP — g F (L Ar 64

pv

where F,, is smooth in all of its arguments at
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Precise Statement of How Our Charged

Body Shrinks to Zero Size

We consider a one-parameter family
{Fun(A), JH(A), T;If( A)} of solutions to Maxwell's
equations and conservation of total stress-energy such

that

JH(AE,T°) = X200 8, [2F — 2 (D)]/N)

M ! —2r r i i 1 7
Tjup(./\.. t.. I } — .r\ THI;(/\- f—. :‘J_ - [t)_# /\)

with J* and 7, smooth.
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e We have F,, = F3"+ F;’. where F7" is the retarded

solution of Maxwell's equations with source J*(A\)

and F;* is a homogeneous solution of Maxwell’s

equation that is jointly smooth function of A and the
spacetime point.
We want to know (1) What are the possible worldlines
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2*(t) that arise from self-field and finite size effects?
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Two Key Properties of F

We have

F= (A t,2') = A TELL (A 8, [ — 2°(2)]

&

[A)

where F' is a smooth function of its arguments. Thus,

F7; also behaves in an asymptotically self-similar

manner near the worldline as A\ — 0.

Define 3 = \/r. where r = \/ > [x* — zi(t)]>. We have

AP = F (&, 0.r.0¢6)

pv

where F,, is smooth in all of its arguments at
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r = 3 = 0. This means that we can approximate F 7’ by

N M

;\_(3 Z Z Pl (?) : '[_.-F,uu-}nm”'y‘ @)

n=—0 m=0

This gives a “far zone” expansion of F[;°. valid near
r = 0. Alternatively, defining ¥ = r /A, and £ = (¢t — t5) /.
we can rewrite this as a “near-zone’ expansion

N

X adi—) Z: AF)" ———(Fuw ) nm(to+AE. 8, 0)

n=0 m=0

which is valid at large 7.
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Precise Statement of How Our Charged

Body Shrinks to Zero Size

We consider a one-parameter family
{Fl..(A), JE(A), TL'E(,\} t of solutions to Maxwell’s
equations and conservation of total stress-energy such

that

JH(AE,2°) = X200 8, [2F — 2 (B)]/N)

M TE=mw e
Tjup[./\.. t..i } —_ .r\ T‘u;_;(/\..f. '-J_ - [t}_}_." f\)

with J* and 7,, smooth.

Page 49/147



Pirsa: 10040030

Precise Statement of How Our Charged

Body Shrinks to Zero Size

We consider a one-parameter family
{Fl..(A), JE(A), Ti‘:(,\)} of solutions to Maxwell's
equations and conservation of total stress-energy such

that

JH(A %) = X200 8, [2F — 2 (0)]/N)

1[ L —_E r I ...2 = T /
T#p (./\.. t.. < } — .z\ T#p( /\- t LJ' = [t)_ f\)

with J* and 7, smooth.
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Two Key Properties of F

We have

A

F= (A 8,2 = A TELL (A 8, [2 — 2 (8)]/N)

where F' is a smooth function of its arguments. Thus.

F7; also behaves in an asymptotically self-similar

manner near the worldline as A — 0.

Define 3 = \/r. where r = V’Z:‘I‘i — zi(t)]2. We have

AP —FF (£ 0.7.0.0

[y

where F,, is smooth in all of its arguments at
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8 = 0. This means that we can approximate F 7" by

N M

r\ b o T (:‘)m (F e Jumlt, 0, 6)

n=—0 m=0

This gives a “far zone” expansion of F[;°. valid near

r = 0. Alternatively, defining # =r/\. and £ = (£t — ty) /.
we can rewrite this as a “near-zone’ expansion

N M
e - Z Z = , =
/\ I_F;IL}{I- I'HO} —_— {/\r} —‘q_{fﬁlf}rlrrl{_fu_f’\t-ﬂ- l'__-))

Flm+2
n=>0 m=0

which is valid at large 7.
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“Far Zone” Limit and Unperturbed Motion

Let A — O at fixed z#. Then J#(A\,t,x*) can be expanded
in a distributional series. We find that
JYE = limy_o J¥*()) = 0 and

5
JWe = Em _( A =

A—0 A

Comnservation of J# then vields
JWHE — qutd(z’

Similarly,

MM = TM(1)5(2* — 2'(2)) -
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If we write.

EM _ pext Cross self
{ — et = 3 = o et

787 L v [T

then, remarkably, we find

Define 7,,,, = Yﬁj + T=. Conservation of total stress

[T 2

energy then vields
dr

(1) e I I |
. (t) = mu,u,o(z" — 2°(t))— ,

dt

7, == r pext _F i -
mu’V,u, = qu’F (A =0,t,2'(1)) .
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A\ ™
) (F i )nmli, 6, @)
=

This gives a “far zone” expansion of F[;°. valid near

r = 0. Alternatively, defining ¥ = r /A, and £ = (t — tg) /A,

we can rewrite this as a “near-zone’ expansion

N
\_IF;? T, 0,0) = Z Z f“m 2) {.—F,uv}run{fu \590)

n=>0 m=0

which is valid at large 7.
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If we write.

TE_U E T::J 5 Ttrr:;-:':' £ T:‘-eii ;

737 L [T 7

then, remarkably, we find

Define 7,, = T;;{ + T Conservation of total stress

v

energy then vields
TI 1) - 1 1 '{T
— MNEr — 2 —
up (£) = MU, U, 0(2 2 :rnfﬁ .

mVn,.—gf F_(A=—0812(1).
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If we write.

TEJI = T:;t s Ttrrc-:':' - T:‘-eli ‘

[Ty v [TV 7

then, remarkably, we find

Define T,, = TM + T (Conservation of total stress

el Y
energy then yvields
dr

T\ (1) = mu,u. (' — 2*(t))— .
o — dt

mu V., —@f F_(A=0.1,2'(1)) .
l’_ﬁ.
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novine

a Lorentz force trajectory of the external field. Note that

the electromagnetic self-energy of the body contributes to

1tS mass.
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If we write.

TE_U = T:;t s Tcr‘j;::;:' g T:‘-eii :

v 7% [TV

then, remarkably, we find

Define 7, = TM + T==. Conservation of total stress

72

energy then vields

f-{.—-—-

{1) = I I/ \ 5
/ (L) = mu,,u.olxr —z(t))— .

- S dt

mu Vou,.—@f P (A=012(1).
|
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moving on

a Lorentz force trajectory of the external field. Note that

the electromagnetic self-energy of the body contributes to

1ts mass.
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“Near Zone” Limit and Perturbed Motion

As A — 0, the body shrinks down to the worldline 4
defined by z* = 2*(t), which satisfies the Lorentz force
equation. However, at any A > 0, the body is of finite
size. so in order to find the “correction” to ~ at finite A.
we would need to have a notion of the “center of mass
worldline™ v(A) of the body to represent its motion. This

is highly nontrivial since “electromagnetic self-energy”

must be included. but one does not want to include
electromagnetic radiation that was emitted in the past.
Fortunately. this can be done straightforwardly to the
order needed to obtain first-order perturbed motion.

It is convenient to work in Fermi normal coordinates
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1858 = 14

a Lorentz force trajectory of the external field. Note that

the electromagnetic self-energy of the body contributes to

1tsS mass.
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If we write.

¥ S CTross self
IE,I:TPI_'_TI *Tli,

i Jrisy i

then. remarkably. we find

Define 7, = Ti‘f + T:j,“. Conservation of total stress

energy then vields

rf'."
T'Y(t) = mu,u,0(x* — 2*(t))— .
= g dt

1 =3 v rext S =3
mu’V,u, =qu'F, (A =0,t,2'(t)) .
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Two Key Properties of F

We have

Pty =N "F (A1

where F' is a smooth function of its arguments. Thus.

F7; also behaves in an asymptotically self-similar

manner near the worldline as A\ — 0.

Define 3 = A/r, where r = /> [z* — 2(%)]2. We have

A= —0°F._(t,B,7.0,¢0)

77

where F,, is smooth in all of its arguments at
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Precise Statement of How Our Charged

Body Shrinks to Zero Size

We consider a one-parameter family
{F..(A), JH(A), T;‘L‘:(,\)f of solutions to Maxwell's
equations and conservation of total stress-energy such

that

JE(N.t. %)

M ! —2rF F_3 = x4
Ty[!("/\" t.. Xr } .r\ Tpp[/\-f. -.}_ - [IL}_ f\)

with J¥ and 7,, smooth.
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[1ass IMoviiig o1l

a Lorentz force trajectorv of the external field. Note that

the electromagnetic self-energy of the body contributes to

1tS mass.
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“Near Zone” Limit and Perturbed Motion

As A — 0, the body shrinks down to the worldline 4
defined by z* = 2*(t), which satisfies the Lorentz force

equation. However, at any A > 0, the body is of finite

size. so in order to find the “correction™ to v at finite A,
we would need to have a notion of the “center of mass
worldline” v(A) of the body to represent its motion. This
is highly nontrivial since “electromagnetic self-energy”
must be included. but one does not want to include
electromagnetic radiation that was emitted in the past.
Fortunately. this can be done straightforwardly to the

order needed to obtain first-order perturbed motion.

It is convenient to work in Fermi normal coordinates
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A — 0. Thus, we require

; —F ~ 'I‘J -
p(A:t.z') = A “p(A; &, ——)
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Our Approach

We will use only Maxwell s equations and (exact, local
conservation of energy and momentum. In this way, we
can be certain that any general results we derive are
independent of the composition of the body, and that
energy and momentum are always exactly conserved.

Maxwell's equations:

N, —Awl
ViuFrp =0
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Conservation of energy and momentum:

: : M EM
i _—0 T,m.- — Tu:* z - Tm,

HiL

Stress energy tensor of the electromagnetic field:

1 1
EM a
T,uv = Fﬁﬂ}—u = Igﬂl’

F gF™"
_L-.—
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How the Charge Densitv Scales

We want the body to shrink down to a worldline, v, given
by ' = 2*(t). In the usual point particle limit. the total
charge would remain fixed as we shrink the body down. If
we want the body to keep its shape exactly as it shrinks
down, we would want to consider a one-parameter family
of charge distributions. p(\;t.z*) that behaves like

plX:t =*) — X5t

with p as smooth function of all of its arguments.
Instead. we want the charge distribution to go to zero
proportionally to the size of the body as A — 0. We also
only demand that it retain its shape asymptotically as
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Precise Statement of How Our Charged

Body Shrinks to Zero Size

We consider a one-parameter family
{F..(A), JE(A), TL':‘I‘:(/\} t of solutions to Maxwell's
equations and conservation of total stress-energy such

that

JH( L, ) = A2J% (A ¢, [2F — 2 (D]/N)

M Y —2 r [ .2 el T /
T”p (z\. t.. e } .r\ T.HU{ x\- f "J_ A [f}_a x\)

with J# and 7, smooth.
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“Far Zone” Limit and Unperturbed Motion

Let A — O at fixed z#. Then J*#(A,t,x*) can be expanded
in a distributional series. We find that
JOB = limy_o J*()\) = 0 and

J¢=—an d

—J¥ () = TJ*(t)o(z" —
A—0 A\

Comnservation of J# then vields
JWe — qu‘urj{i‘f —

Similarly,

T =T (t)d(z" — 2¥(t)) -

pv
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If we write.

EM _ grext Cross self
FEM _ pek | o, et

[TE a1 v

then. remarkably. we find

|

Define 7, = T;I{r + T:‘j,“. Conservation of total stress

energy then vields
dr
(1) \ e~ 1 1 \
5.' . -
L, (t) = mu,u,d(z" — 2 :H!—f# :

mu'V,u, =—qu’' F. (A=0,%,2'(t)) .
: M
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“Near Zone” Limit and Perturbed Motion

As A — 0, the body shrinks down to the worldline 4
defined by z* = 2*(t), which satisfies the Lorentz force
equation. However, at any A > 0, the body is of finite
size. so in order to find the “correction” to v at finite A,
we would need to have a notion of the “center of mass
worldline™ v(A) of the body to represent its motion. This
is highly nontrivial since “electromagnetic self-energy”
must be included. but one does not want to include

electromagnetic radiation that was emitted in the past.
Fortunately. this can be done straightforwardly to the

order needed to obtain first-order perturbed motion.

It is convenient to work in Fermi normal coordinates
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based on the worldline v(\)—so z'(\.t) = 0. To take the
near-zone limit. we let A\ — 0 at fixed #* rather than at
fixed z#. where t = (t — tg)/A. ¥* = x*/\. We also rescale

the fields as follows:

gpv f\_jg,uu

Tt = 23

M M
e

F,

pu

: o

The rescaled fields then approach well defined, finite
limits as A — 0. At A = 0. the rescaled fields are

stationary.
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Center of Mass

Define
T =1 T,

mZ

define the zeroth order near-zone mass by

— . l_]'l
m(tg) = m d

and define the zeroth order near zone center of mass by

1 ‘ —{) :
\. [(fu] _— ]—I_']!_f j‘i‘!"i.a. x
m

The perturbed motion is defined |
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Other Body Parameters

Spill tensor:

Spin vector:

Perturbed mass:

Im(ty) =
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Charge:

g= [ IPsz
5qg =05 / JHdY,

Perturbed charge:

Electromagnetic dipole tensor:

Q" (tg) = / JOnz

Electric dipole moment:

IUE — (QUI
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Magnetic dipole moment:
-

L
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Derivation of Motion

Strategy: We write down the equations arising from

conservation of total stress-energy and conservation of
charge-current at Oth, 1st, and 2nd order in the near-zone

expansion. We multiply these relations by various powers

of 7' and inteerate over space to svstematicallv obtain all
- | = ~

relationships holding for the body parameters defined

above.

e At Oth order, we obtain various relationships. such as
the antisymmetry of the spatial components of the

spin and electromagnetic dipole tensors.

Pirsa: 10040030 Page 81/147



Magnetic dipole moment:

pi =
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Other Body Parameters

Spin tensor:

Spin vector:

Perturbed mass:

dm(ty)
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Center of Mass

Define

T = T

mZ e

define the zeroth order near-zone mass by

m(ty) = / Too &%

and define the zeroth order near zone center of mass by

1 1 ‘ =) :
= ) —i 13
.\. ;:_\[ { fl-} ] — E ’Z—UU .IJ Ff i

T . - 1 ) - y
‘bed motion is defined |
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Charge:

g = / JOOB

5q =10 / JHdE,
3

Perturbed charge:

Electromagnetic dipole tensor:

(_.“?'uj[ r'_j ) = / j 1] ;i‘f,_,?

Electric dipole moment:

p" — Q*“

Pirsa: 10040030

Page 85/147



Magnetic dipole moment:

Pirsa: 10040030 Page 86/147



Derivation of Motion

Strategy: We write down the equations arising from

conservation of total stress-energy and conservation of
charge-current at Oth, 1st, and 2nd order in the near-zone

expansion. We multiply these relations by various powers

of * and integrate over space to systematically obtain all

relationships holding for the body parameters defined

above.

e At Oth order, we obtain various relationships. such as
the antisymmetry of the spatial components of the

spin and electromagnetic dipole tensors.
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Other Body Parameters

Spin tensor:

Spin vector:

Perturbed mass:

;_';_I]“ r|_j IJ —
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Center of Mass

Define
=
TJ’-“—’ — T;_.[IJ

T 7

define the zeroth order near-zone mass by

u. 3 =
m(tg) _/ aa @ 3

and define the zeroth order near zone center of mass by

Xenlta) — T3 d
- m/ —

_"ufl J.'-'"L '__«-L|11 TT_'[|.
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Magnetic dipole moment:
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Derivation of Motion

Strategy: We write down the equations arising from

conservation of total stress-energy and conservation of
charge-current at Oth, 1st, and 2nd order in the near-zone

expansion. We multiply these relations by various powers

of * and integrate over space to systematically obtain all

relationships holding for the body parameters defined

above.

e At Oth order, we obtain various relationships. such as
the antisymmetry of the spatial components of the

spin and electromagnetic dipole tensors.
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At 1st order, we obtain other relationships including
d : d = . p T
m=0, —S;,=—Q' . F; , ma,—=qFy

r]f!] f.{fﬁ - . J g f

e At 2nd order. we obtain
9 :
- = \ - ax = ex ol
mda,; —(dm)a; + (0q)F5." + qo F5 + 37 6 +

E(?‘“Ih FFF‘{t £ d (f?‘} e - L )()J Fp\t)

L’ | e U
F r_h‘u .

o

== —O pv 5 uFﬂxt = F (QPUEISI)

Note that there is no evolution equation for Q*”.
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Perturbed Equations of Motion in Covariant Form

Define
om = oém — u;}uLOb‘lF‘““ +

Then. we have

2 o 1)
S T ex b < 9
"J qfnﬂd_ —_ fj _J'IF:T__}_:EI }I b] == (gﬂd E E li‘] l'{ ) { E —f‘!h

dr

rif‘

+ 2u®Q", sFae) }

d_"'Sub = —2(g% + u®u,.) (¢°; + u bug) Q. Fge — 2a°Scjatt

r_I E
D D
ab ext b ext [c
d—_fJ'f?I — —E(_) .‘f—""F = _l(.).; F;}R (1
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Non-Relativistic Form of Perturbed Force

1;V B’
)

The first term is the usual ALD force. which we have
now derived as a ]}Pl‘ﬁlﬂj}:ﬂti‘»‘t—'* correction to Lorentz force
motion. The other terms are corrections due to the finite
size of the body. The second term could be incorporated
into the definition of dm. The remaining two terms on

the first line are the standard electric and magnetic dipole

forces. The terms on the second line are associated with

“hidden momentum”, i.e., the failure of p* to equal mv’'.
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The quantities on the right side of the perturbed

equations of motion are to be evaluated on the zeroth

order solution. Thus. the perturbed equations of motion

rder 1n time and admit No runawav
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Self-Consistent Motion

The equations we have just derived should provide a
good description of the perturbative corrections to the
Lorentz force, provided, of course. that they are locally
small. However, even if the perturbative corrections are
locally small. the effects they have on solutions will build
up over time, and a perturbative description based on
perturbing off of a single, fixed Lorentz force trajectory
will be a poor approximation at late times. Can one
improve upon the purely perturbative description given
here so as to obtain a much better global in time

description of motion? Note that going to any finite

order in perturbation theory will not really help!
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Non-Relativistic Form of Perturbed Force

)@+ p; VE* + u, VB

(5 x @+ jgx E+ 7 x g)

The first term is the usual ALD force. which we have
now derived as a perturbative correction to Lorentz force
motion. The other terms are corrections due to the finite
size of the body. The second term could be incorporated
into the definition of 4m. The remaining two terms on
the first line are the standard electric and magnetic dipole
forces. The terms on the second line are associated with
“hidden momentum”, i.e.. the failure of p* to equal mv’.
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Self-Consistent Motion

The equations we have just derived should provide a
good description of the perturbative corrections to the
Lorentz force, provided, of course. that they are locally
small. However, even if the perturbative corrections are
locally small. the effects they have on solutions will build
up over time, and a perturbative description based on
perturbing off of a single. fixed Lorentz force trajectory
will be a poor approximation at late times. Can one
improve upon the purely perturbative description given
here so as to obtain a much better global in time
description of motion? Note that going to any finite

order in perturbation theory will not really help!
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Non-Relativistic Form of Perturbed Force

Bi

+(p- E)a+p,VE

.V
d /- = i
= (5 X G+ jE X B+ P X B)

dt

The first term is the usual ALD force. which we have
now derived as a pprmrlsmr_iw correction to Lorentz force
motion. The other terms are corrections due to the finite
size of the body. The second term could be incorporated
into the definition of dm. The remaining two terms on
the first line are the standard electric and magnetic dipole
forces. The terms on the second line are associated with

“hidden momentum”, i.e.. the failure of p* to equal mv'.
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Self-Consistent Motion

The equations we have just derived should provide a
good description of the perturbative corrections to the
Lorentz force, provided. of course. that they are locally
small. However, even if the perturbative corrections are
locally small, the effects they have on solutions will build
up over time, and a perturbative description based on
perturbing off of a single, fixed Lorentz force trajectory
will be a poor approximation at late times. Can one
improve upon the purely perturbative description given
here so as to obtain a much better global in time

description of motion? Note that going to any finite

order in perturbation theory will not really help!
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To improve the description of motion so that it remains
accurate at late times. we would like to invent a self
consistent perturbative equation that corrects the Lorentz
force trajectory “as one goes along.” In physics, people
do this kind of thing all the time. usually without
noticing. It should be OK to do this provided that the
new equation satisfies the following properties: (1) It
should have a well posed initial value formulation. (2) It
should have the same number of degrees of freedom as the
first order perturbative system. so that a correspondence

can be made between initial data for the self-consistent

perturbative equation and the first order perturbative

system. (3) For corresponding initial data, the solutions
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Self-Consistent Motion

The equations we have just derived should provide a
good description of the perturbative corrections to the
Lorentz force, provided, of course, that they are locally
small. However, even if the perturbative corrections are
locally small. the effects they have on solutions will build
up over time, and a perturbative description based on
perturbing off of a single, fixed Lorentz force trajectory
will be a poor approximation at late times. Can one
improve upon the purely perturbative description given
here so as to obtain a much better global in time

description of motion? Note that going to any finite

order in perturbation theory will not really help!
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To improve the description of motion so that it remains
accurate at late times, we would like to invent a self
consistent perturbative equation that corrects the Lorentz
force trajectory “as one goes along.” In physics, people
do this kind of thing all the time. usually without
noticing. It should be OK to do this provided that the
new equation satisfies the following properties: (1) It
should have a well posed initial value formulation. (2) It
should have the same number of degrees of freedom as the
first order perturbative system, so that a correspondence

can be made between initial data for the self-consistent

perturbative equation and the first order perturbative

system. (3) For corresponding initial data, the solutions
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to the self-consistent perturbative equation should be
close to the corresponding solutions of the first order
perturbative system over the time interval for which the

first order perturbative description should be accurate.

I do not know of any reason why, for any given system.
there need exist a self-consistent perturbative equation
satisfying these criteria. In cases where a self-consistent

perturbative equation satisfying these criteria does exist,

[ would not expect it to be unique.

The obvious thing to try is to combine the Oth and 1st
order equations into a single equation that is then treated
as though it were “exact.” However, in the present case,
we get (in the non-relativistic approximation and
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To improve the description of motion so that it remains
accurate at late times. we would like to invent a self
consistent perturbative equation that corrects the Lorentz
force trajectory “as one goes along.” In physics, people
do this kind of thing all the time, usually without
noticing. It should be OK to do this provided that the
new equation satisfies the following properties: (1) It
should have a well posed initial value formulation. (2) It
should have the same number of degrees of freedom as the
first order perturbative system. so that a correspondence

can be made between initial data for the self-consistent

perturbative equation and the first order perturbative

svstem. (3) For corresponding initial data, the solutions

Pirsa: 10040030
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to the self-consistent perturbative equation should be
close to the corresponding solutions of the first order
perturbative system over the time interval for which the

first order perturbative description should be accurate.

I do not know of any reason why, for any given system.
there need exist a self-consistent perturbative equation
satisfying these criteria. In cases where a self-consistent

perturbative equation satisfying these criteria does exist.

I would not expect it to be unique.

The obvious thing to try is to combine the Oth and 1st
order equations into a single equation that is then treated
as though it were “exact.” However, in the present case,
we get (in the non-relativistic approximation and
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To improve the description of motion so that it remains
accurate at late times. we would like to invent a self
consistent perturbative equation that corrects the Lorentz
force trajectory “as one goes along.” In physics, people
do this kind of thing all the time. usually without
noticing. It should be OK to do this provided that the
new equation satisfies the following properties: (1) It

should have a well posed initial value formulation. (2) It

should have the same number of degrees of freedom as the

first order perturbative system. so that a correspondence
can be made between initial data for the self-consistent
perturbative equation and the first order perturbative
svstem. (3) For corresponding initial data, the solutions
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to the self-consistent perturbative equation should be
close to the corresponding solutions of the first order
perturbative system over the time interval for which the

first order perturbative description should be accurate.

I do not know of any reason why, for any given system,
there need exist a self-consistent perturbative equation
satisfying these criteria. In cases where a self-consistent
perturbative equation satisfyving these criteria does exist,
I would not expect it to be unique.

The obvious thing to try is to combine the Oth and 1st

order equations into a single equation that is then treated

as though it were “exact.” However, in the present case,

we get (in the non-relativistic approximation and
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neglecting dipole terms):

= = 2 ,da
ma = q (E— U X B) + -
. C

However, this is clearly unacceptable. since it changes
the differential order of the system and introduces
spurious solutions. A perfectly good alternative is to take

this equation but replace da/dt and @ on the right side by
(g/m)[E + U x B]. This “reduced order” version of the

ALD equation should give an accurate description of the

motion of a “point charge”.
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An application of Our Results to Freshman Physics

Release a magnetic dipole fi from rest in the non-uniform

field B of a magnet. For appropriate choice of alignment
of the dipole, the force u;V B* will be non-zero, so the

dipole will start to move. Its kinetic energy will therefore
increase. Normally, one accounts for this increase in
kinetic energy by a compensating loss in “magnetic dipole
interaction energy” —ji - B. However. this explanation
cannot be correct: A magnetic field can “do no work™ on
a body, so the energy of the body itself (not counting any
interaction energy with the external field) cannot change.

Where does the kinetic energy of the body come from?
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Non-Relativistic Form of Perturbed Force

-(p- E)a+p,VE' + u;VB'

T : :
+—(§xa+ix E+px B)
dt

The first term is the usual ALD force. which we have
now derived as a perturbative correction to Lorentz force
motion. The other terms are corrections due to the finite
size of the body. The second term could be incorporated
into the definition of dm. The remaining two terms on
the first line are the standard electric and magnetic dipole
forces. The terms on the second line are associated with

“hidden momentum”, i.e., the failure of p* to equal mv*.
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Perturbed Equations of Motion in Covariant Form

Define

om = om — UbUchETt

Then. we have

2 ot
—q —ay

S ~r : b
r—’_rnﬂtl =1 qFPﬁ g2 (_gﬂb & Sa } {3 - =
. €L

= P e Soe e
+ VP — (a°Ss + 2u'Q W Fg) }

= —2(g". +u"u.) (g°; + uug) Q% FE:T — 28 S

D 3.4 #
= QU3 —1Q}F,
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Two Key Properties of F;

We have

s =X F.(At ™ @)/,

where F' is a smooth function of its arguments. Thus,

F7’ also behaves in an asymptotically self-similar

manner near the worldline as A\ — 0.

Define 3 = A\ /r, where r = /) [z* — 2(%)]2. We have
AP = Fu(t,B,1,0,¢)

where F,, is smooth in all of its arguments at
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e We have F,, = FZ'+ F;’. where F;’ is the retarded

solution of Maxwell's equations with source J*(A\)

and F7;" is a homogeneous solution of Maxwell’s

equation that is jointly smooth function of A and the
spacetime point.
We want to know (1) What are the possible worldlines

z*(t) and (2) What are the perturbative corrections to

2*(t) that arise from self-field and finite size effects?
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Two Key Properties of F;

We have

A J

F= (A 8,2°) = AN TELL (A 8, [2 — 25 (8)] /)

where F' is a smooth function of its arguments. Thus,

F}7; also behaves in an asymptotically self-similar

manner near the worldline as A\ — 0.

Define 3 = A\ /r, where r = /) [z* — 2(t)]2. We have

X — T8

where F,, is smooth in all of its arguments at
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Precise Statement of How Our Charged

Body Shrinks to Zero Size

We consider a one-parameter family
{F..(A), JE(A), TJ‘L‘:( A)t of solutions to Maxwell's
equations and conservation of total stress-energy such

that

JE(\ t, ) = X202 (A t, [2F — 2 (D)]/N)

M 3\ _ \—27 3 " T /
T#y (./\.. t.. J_ } = f\ T#E_;{ /\- t ‘.}_ T [t}‘.' f\)

with J* and fpv smooth.
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Two Key Properties of F;

We have

F:it(’\- t *ré ) = f\_lF‘uL:{_ /\- f.. :J_'I =

where F' is a smooth function of its arguments. Thus,

F7 also behaves in an asymptotically self-similar

manner near the worldline as A\ — 0.

Define 3 = A\/r, where r = /> [z — zi(t)]2. We have
AP —FF i Ar 0 )

where F,, is smooth in all of its arguments at
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Magnetic dipole moment:

|

i = — €@
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Perturbed Equations of Motion in Covariant Form

Define
om = dom — u;}uLOb“Fe“ i

Then. we have

—— D
dma,] = d[qF " [’1 (gab + u u’) {3”‘{ —ay

dr
D

SR _Q dTbFP\*
dr

(a°S4 + 2u’Q° sl

f__!fn

ext

=2 _ 1 wul (g% + ubuy) 9 2 2

D
=— __Qub = ext == —l(_) bFr}tu 1®
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Non-Relativistic Form of Perturbed Force

—

(b X &+ b X E+ﬁ\-: E)

T
The first term is the usual ALD force, which we have
now derived as a perturbative correction to Lorentz force
motion. The other terms are corrections due to the finite
size of the body. The second term could be incorporated
into the definition of dm. The remaining two terms on
the first line are the standard electric and magnetic dipole

forces. The terms on the second line are associated with

“hidden momentum”, i.e., the failure of p* to equal mv*.
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Magnetic dipole moment:

1

i = —€; Y0 e
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based on the worldline v(\)—so 2'(\.t) = 0. To take the
near-zone limit. we let A\ — 0 at fixed #* rather than at
fixed z#. where t = (t — tg)/A. T* = x*/A. We also rescale

the fields as follows:

g,'.;u ’)‘ _29;1U
Y o

P M
¢ el xes

F,

L

e —1
= = =

The rescaled fields then approach well defined, finite
limits as A — 0. At A = 0, the rescaled fields are

stationary.
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If we write.

TE M Te:{t =3 Tt:ro:'~ Twli

v LiL iy AL

then, remarkably, we find

!
f

Tt = fim 7!

R — | i

Define 7, = T;j + T:f,“. Conservation of total stress

energy then vields

(1) = dr
I — i =13 .

dt
mu” 'V, u

H

= qu’ F;“I A—81 th)) .

Pirsa: 10040030
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“Far Zone” Limit and Unperturbed Motion

Let A — O at fixed z#. Then J#(\,t,x*) can be expanded
in a distributional series. We find that
JOB = limy_ o J*()\) = 0 and

_}- — ]_1 _] ./\\ j ! j “I_-! LI“I - % ! |

JWB — qutd(z’

Similarly,

T, =T (D)é(z* — (1)) -

pv

Pirsa: 10040030 Page 125/147



= 0. This means that we can approximate F° by

N M m
F;it[T- r.0.0) = =3 E E r" (r) {f’#u)nm(t.g. @)

n=>0 m=0

This gives a “far zone” expansion of F[;°. valid near

r = 0. Alternatively, defining ¥ = r/\, and £ = (¢t — 5) /A,
we can rewrite this as a “near-zone expansion

N M
= Z Z 1 ==
/\_IFTF"'E{I'_ F. H. f_:l"} — {x\F}nF{fﬂy},””{_fg_,—\r. H. O]

av
n=0 m=0

which is valid at large 7.
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Two Key Properties of F

We have

F (A t,2°) = X "FL.(At 2 — 2@/ ,

where F' is a smooth function of its arguments. Thus,

F7; also behaves in an asymptotically self-similar

manner near the worldline as A\ — 0.

Define 3 = A\/r, where r = /> [z — 2(t)]2. We have

AP —P°F  (t.0.7.0.¢)

[T 7

where F,, is smooth in all of its arguments at
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A — 0. Thus., we require

| e T
p(A:t. ') = A “p(A;t, ———
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“self-force”, known as the Abraham-Lorentz-Dirac (ALD)
force. which. in the non-relativistic limit. takes the form

—_—

This results in serious difficulties. The equation F = ma
is now third order in time, so to specify initial conditions,
one needs to give not only the initial position and
velocity but also the initial acceleration. Worse vet. even
with no external field. this equation admits “runaway”
solutions, where the position of the charge grows
exponentially with time. The issue of how
exclude/eliminate this runaway behavior has been

debated extensively during the past century.
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Another Strange Feature of the ALD Force

As is well known. a uniformly accelerating charge radiates

energy to infinity. However. a uniformly accelerating

charge does not have any associated ALD force.
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Precise Statement of How Our Charged

Body Shrinks to Zero Size

We consider a one-parameter family

{Fl..(N), JH(A), T;‘J(,\ )} of solutions to Maxwell's
equations and conservation of total stress-energy such
that

JE(t, 25 = A2 0P () ¢, [2F — 25 ()]/A)

114

M ; L -2 r .2 = ¥
L, (Atx") = A Tt x° —2°(1)]/A)

with J#* and 7, smooth.
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Two Key Properties of FJ

We have

F=t (A 8,2') = A TELL (A 8, [28 — 28 (2)] /)

where F' is a smooth function of its arguments. Thus,

F7; also behaves in an asymptotically self-similar

manner near the worldline as A — 0.

Define 3 = A\/r, where r = /> [x* — 2*(%)]2. We have

AP —FF (. 0.r.0.6

[Ty 7

where F,, is smooth in all of its arguments at
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8 = 0. This means that we can approximate FJ° by

N M

2337 (5) it

n=0 m=0
This gives a “far zone” expansion of F;*, valid near
r = 0. Alternatively, defining ¥ = r /A, and £ = (¢t — t5) /A,
we can rewrite this as a "near-zone expansion

N M
- et /1 —= —\ T2 ]' . 2 {1 \
A IE#L{f.F.H_CH = E E (AT) ;:;jﬁf{jiuﬂnnﬂfu——Af.H.O}

n=>0 m=0

which is valid at large 7.
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Center of Mass

Define
=
Tj_‘l_f = TILLE P

7

define the zeroth order near-zone mass by

m(tg) :/ *;f' &>z

and define the zeroth order near zone center of mass by

Xoulla) ——/ T\ zd

perturbed motion is defined by tl

.:.;r
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Other Body Parameters

Spill censor:

SF =0

Spin vector:

Perturbed mass:

Im(ty) =
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Magnetic dipole moment:

LL;
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At 1st order, we obtain other relationships including

d rf
= s—0 . : —_O* F=t =S
diy ff“ Q Flu e 1L o,

e At 2nd order. we obtain

2
= == = : ==——s < 9,
mda,; —(0m)a; + (0q)F5" + godF5" + 37 @i +

_(Qplr F:ﬂ'\_t i (f?‘} —,

or )

“J It 0] ;

dtg
ext d iU rext
= —o R (O

: T U
(_) U 4

Note that there is no evolution equation for Q*”.
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Perturbed Equations of Motion in Covariant Form

Define
dm = odm — upu’ Ob‘IFE“ +

Then. we have

2 21
== = E Z ,
fJ_FT?(Ia' ) "-[Fb H (ngd s uaub_} {.)) Fuh

B
*EQLdTbE&‘ = (a°Sa + 2u°Q° hEir}}

c) (Jf T U H,f) Q Fmﬂ e 2[1‘1_5:__:‘3 U:E-f

o — Q. Fa

Pirsa: 10040030 Page 138/147



Pirsa: 10040030

Non-Relativistic Form of Perturbed Force

The first term is the usual ALD force. which we have

now derived as a 1.}91‘T.11r}:mrirp C rl‘l’i—"t'l‘it':ll toO LUI‘PIHZ force

motion. The other terms are corrections due to the finite
size of the body. The second term could be incorporated
into the definition of dm. The remaining two terms on
the first line are the standard electric and magnetic dipole

forces. The terms on the second line are associated with

“hidden momentum”, i.e., the failure of p* to equal mv'.
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Perturbed Equations of Motion in Covariant

Define

dm = dm — upu® ()'5"‘1-_"”"Lt +

Then. we have

2 =1
— - = = 9
d[ma,] = d[gFu’] + (g,° + u,u®) {3 “—ay,

dr

D
——Q’”TE,F“? - (a°Sy + 2u’Q° hF‘“")}

= s
r_{r-

D o
— ——()“bf—FF“ —4Q PF*alu™
— aT -
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.+ utu,) (g% + ubug) Q° F5 — 2a°S,

a -5_
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If we write.

TEJI = Te:{t 4 Jeross T:‘-eif
e == 3

s v [T 7

then, remarkably, we find

'

Define 1, = T;‘j + T=". Conservation of total stress

[T

energy then vields

rf',"
T'Y(t) = mu,u,é(x* — 2*(t))— .
= ' e dt

mu V,u,. =@ F_ (A=0.1,2(1)) .
j_n.
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size of the body goes to zero, but its charge and mass also
go to zero in proportion to its size. Note that the body
disappears completely at A = 0, but, like the Cheshire
Cat in Alice in Wonderland. its “smile” (i.e. the worldline

that the body shrinks down to) remains behind. This

“smile” provides the leading order description of motion:

by working perturbatively off the “smile”, we obtain the

self-force (and dipole) corrections to motion.
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Another Strange Feature of the ALD Force

As is well known. a uniformly accelerating charge radiates

energy to infinity. However. a uniformly accelerating

charge does not have any associated ALD force.
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The “Near-Zone’ and “Far-Zone” Limits

Conservation of J# then vields

ri'-“

JWHE — quté(x* — 2 (t))
dt

Similarly,

T, =T (t)é(=z' —Z(t)) -

v
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At 1st order, we obtain other relationships including

d d
—m =0, = —QQ FP“ - ma: —aF=*
dtg rff” Q f 1L 0,

e At 2nd order. we obtain

9
= f o = =3 § E ext el
moa, —(0m)a; + (0q)F5" + gd F5." + T &t

2 & F“t—i—i(ﬂﬁ

s )()J l’?_-‘“)
- . dtg A
L* + ext d ) ext
— 1omag Pt — 2 (QUOF)
2 7,

vV Uu
to

Note that there is no evolution equation for Q*”.
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The guantities on the right side of the perturbed

equations of motion are to be evaluated on the zeroth

order solution. Thus. the perturbed equations of motion

cond order in time and admit no

Pirsa: 10040030 Page 146/147



Pirsa: 10040030

Non-Relativistic Form of Perturbed Force

: (

The first term is the usual ALD force, which we have
now derived as a perturbative correction to Lorentz force
motion. The other terms are corrections due to the finite
size of the body. The second term could be incorporated
into the definition of dm. The remaining two terms on
the first line are the standard electric and magnetic dipole

forces. The terms on the second line are associated with

“hidden momentum”, i.e., the failure of p* to equal mv'.
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