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Abstract: Shared entanglement between sender and receiver can enable more errors to be corrected than with a standard quantum error-correcting
code. This extra error correction can be used either to boost the rate of the code--commonly seen in quantum codes constructed from classical linear
codes--or to increase the error-correcting power of the code (as represented by, for example, the code distance). We will see how adding extra
entanglement to a given quantum code can increase its distance, and discuss the optimization problem in maximizing the effectiveness of a given

amount of added entanglement. We will also briefly examine some applications of entanglement-assistance to particular types of codes, such as
LDPC codes and convolutional codes.
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« The symplectic product © : Z3" x Z3" — Z3" is defined by

(zlz) @ (Z1=)T =z’ +z2!"
e.g. (010/001) @ (101]111) ' =1+4+1=0
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- The sympleciic product © : Z3" x Z3" — Z3" s defined by

(zlz) @ (Z|2)T = 22/ + z2'T
e.g. (010/001) e (101j11 1) =1+1=0

« Ny and N, commute (anti-commute)iff , o 7 =0 (1)
Neotojoo1) =IZX and Ngig1111) =Y XY commute
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- The symplectic product © : Z3" x Z3" — Z3" is defined by

(zlx) @ (Z|2)T ===/ + =2
e.g. (010/001) @ (101]111) ' =1+1=0
* N, and N, commute (anti-commute) iff ,, - ,7 = Q (1)

N(Olﬂ]ﬂﬂl) = F XX E‘ﬂ N(lﬁl.;lll) —— B m

> = An [[n,k]] quantum error correcting code is described by a (n-k) x 2n
parity check matrix H. Ilts rowspace B{H)Eﬂlimh'opu:am:i‘zz

u®vl =0. Yu,v e B(H)




- The sympleciic product © : Z3" x Z3" — Z3" is defined by

(zlz) @ (Z|=)T = 22/ + 22T
e.g. (010/001) @ (101]111) ' =1+1=0

* Ny and N, commute (anti-commute) iff ,, © 7 =0 (1)
Neotojoor) =IZX and Ngy111) =Y XY commute

> -+ An [[n,k]] quantum error correcting code is described by a (n-k) x 2n
parity check matrix H. tEmmeB{H)mmzsotmpmdez

u@vl =0, Vu,v € B(H)
n=5, k=1

11000/00101 Z Z X I X

cap_lErEcairgersal X272 x3

S ¥=lsarro0ear a7 I X Z Z X
0001110100 EFEEZ commuting
'\m
* C=B ={u:u0v' =0, Wwe B} generators
[m BQBJ-{Z}..CJ_QC dual containing code Page 8/68




= The code space E('H?k) 2 7@" is defined as the simuitaneous
+1 eigenspace of the stabilizer operators {Nu u € CJ-}ES

uNI.

« The correctable error set E is defined by: ¥ —E

o  IfE, and E, are in E, then at least one of the two
conditions hold:
1) EE EZ(S) distinct error syndromes

2 EEES degenerate code

D]
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- The code space E(HS®) C HE™ is defined as the simultaneo
+1 eigenspace of the stabilizer operators {N,, : u € CJ-}ES

us

= The correctable error set E is defined by: = ET N'I'_""Df
- If E, and E, are in E, then at least one of the two
conditions hold:
)} E%@Z(S) distinct error syndromes
2} EECS degenerate code
e.g. error u = (00010|/00010) Y error on 4* g-bit
T X1 00000102 0
g X X 01 0 10
601100100 1| @(©o01000010)" |
OO0 0 3 X912 co 1
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» The code space & (’hﬂ‘ﬁ“‘) C H3™ is defined as the simultaneous
+1 eigenspace of the stabilizer operators {Nu € CJ-}ES

e The correctable error set E is defined by: ot —& PN D
e IfE, and E, are in E, then at least one of the two

conditions hold:
1) EJE, EZ(S) distinct error syndromes
B EECS degenerate code

e.g. error » = (00010/00010) Y error on 4" g-bit

1100000101 =
01100/10010 = |2
001100100 1| @(0001000010)" =|
0001110100 1

= Correction involves measuring the “error syndrome (i.e. ihe
simultaneous eigenvector of the stabilizer generators) . H @ afw~
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JSC Viterbi Entanglement-assisted stabilizer formalism

ichool of Engineering

It turns out that we can establish a simple extension of the usual
stabilizer formalism to describe entanglement-assisted codes.
We again establish a "stabilizer” which is a subgroup of the
Pauli group on n gq-bits; but we no longer require this subgroup
to be Abelian. For such a subgroup, we can find a set of
generators which fall into two groups:

Isotropic generators, which commute with all other generators;
and

Symplectic generators, which come in anticommuting pairs; each
pair commutes with all other generators.

The anticommutation of the symplectic generators is resolved by
adding operators on the receiver’s side. This requires pre-
LF;;S@);g shared entanglement.
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JSC Viterbi Entanglement-assisted stabilizer formalism

ichool of Engineering

It turns out that we can establish a simple extension of the usual
stabilizer formalism to describe entanglement-assisted codes.
We again establish a "stabilizer” which is a subgroup of the
Pauli group on n q-bits; but we no longer require this subgroup
to be Abelian. For such a subgroup, we can find a set of
generators which fall into two groups:

Isotropic generators, which commute with all other generators;
and

Symplectic generators, which come in anticommuting pairs; each
pair commutes with all other generators.

The anticommutation of the symplectic generators is resolved by
adding operators on the receiver’s side. This requires pre-
L;isﬁ);g shared entanglement.
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* An [[n,k;c]] EA quantum error correcting code is described by a
(n-k) x 2n parity check matrix H. B = rowspace(H). Again, C = B+

+ Take a general symplectic matrix H. lis rowspace B can be written as

B = iso(B) & symp(B) &0 f=1

:: ¥ . e;, fi ©®uw = 0, otherwise
symplectic pairs € span{e;. f;}

=1

» Canonical example
1.0000/00000 Z ¥ I I T } S
0100000000 ie = o3

= 0 O I 0 OO0 0 0 0 Oj|lex [ K & F 1}

" |Jloooco0o0jco0100||lf | I X I I| Usymp
O 00 I 000000 |e E F-FEZF
OOGUOUOOlDIfz ¥F F F & &

lﬁ iiooag The i.mtw. gﬂmm gm SIMﬂE m ectic Page 16/68
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. 1; 2]] code (Bowen)
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= The correctable error set E is defined by:

If E, and E, are in E, then at least one of the
conditions hold: I}

D) EE &Z(S,.S;))

» The code space € (7@") is defined as the simuitaneous +1
eigenspace of the stabilizer generators

{Nu®I%¢: u € iso(CH)}u | {Ne; ® Z;, N;, ® X}
W =1 L L
n c n e B (4

« Decoding involves measuring the “error syndrome™ (i.e. the
simultaneous eigenvector of the stabilizer generators) ., H © ul
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JSC Viterbi The GF(4) Construction
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» Natural isometry between GF(4) and (22)2

* Any dual containing classical [n.k.d], code can be made into a
[[n,2k—n,d]] QECC

» Now: Any classical [n.,k.,d], code can be made into a [[n,2k-n+c,d;c]]
catalytic QECC for some c

c =rank(H4§f).

» When the classical code attains the Singleton bound n-k = d-1 the
guantum code attains the quantum Singleton bound n-k+c = 2(d-1)

» When the classical code attains the Shannon limit
2—H,(1 - 3p, p,p.p) on a quaternary symmetric channel, the quantum
code attains the Hashing limit 1-H,(1-3p. p.p.p)-

* Modemn classical codes (LDPC, turbo) can now be made quantum
without having to be dual-containing. Page 19168




JSC Viterbi The Canonical Representation

chool of Engineering

A helpful way to think about how resources (ancillas, ebits, gauge
qubits, etc.) are used in error correction is with the canonical
representation. For a standard code this looks like:

[f))®|0)®---02®@

n:k k
This is, essentially, the form of the code before encoding. Each of
these ancillas can hold one bit of info about any errors that occur:

e’ls) ®|sy) ®--[s, ;) ® E, )
i ™ : k

Each of these ancillas corresponds to a single stabilizer generator
that is measured in the correction procedure.
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JSC Viterbi The Entanglement-Assisted Canonical
chool of Engineering mm i

In an entanglement-assisted code, we replace some or all of the
ancillas with ebits.

.)©-[0.)8/0)8-0)8ly)
¢ ke k

These ebits can hold two bits of information about errors, via
superdense coding. So replacing an ancilla with an ebit can
increase the number of correctable errors.

Each ebit corresponds to two generators of the stabilizer--a
symplectic pair. For the unencoded ebits these would take
the form Z| Z and X | X, where the first operator is on Alice’s
side and the second on Bob's.

w,
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JSC Viterbi  The Canonical Representation

choot of Eng =

A helpful way to think about how resources (ancillas, ebits, gauge
qubits, etc.) are used in error correction is with the canonical
representation. For a standard code this looks like:

[f)>®|0)®---02®@

n:k k
This is, essentially, the form of the code before encoding. Each of
these ancillas can hold one bit of info about any errors that occur:

e”ls,) ®|s;) ®-|s,.) ® E,Jy)
L A

=B k

Each of these ancillas corresponds to a single stabilizer generator
that is measured in the correction procedure.

w
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JSC Viterbi  The Entanglement-Assisted Canonical
chool of Engineering Representation

In an entanglement-assisted code, we replace some or all of the
ancillas with ebits.

L<D+>®---|<I)+}®LO)®---|02®|_2
p R k

These ebits can hold two bits of information about errors, via
superdense coding. So replacing an ancilla with an ebit can
increase the number of correctable errors.

Each ebit corresponds to two generators of the stabilizer--a
symplectic pair. For the unencoded ebits these would take
the form Z| Z and X | X, where the first operator is on Alice’s
side and the second on Bob's.

-
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When we constructed an EAQECC from a classical linear code,

we saw that this increased error-correcting power
manifested itself as an increased rate: 2k-n+c.

The canonical representation, however, raises a different
question: what if we replace ancillas by ebits, without
increasing the rate k/n?

Is it possible, thereby, to increase the error-correcting power of
the code--for example, to increase the minimal distance?

Page 24/68




« The correctable error set E is defined by:

If E, and E, are in E, then at least one of the
conditions hold:

D EE & Z((S,.S:)
2) E.E,ES, degenerate code

» The code space £ (7@1') is defined as the simulitanecus +1
eigenspace of the siabilizer generators

{Nu®I%¢: u €iso(CH)}u | {Ne; ® Z;, N;, ® X;}
Eef L =T bbbl Ly
n C n cC B [

= Decoding involves measuring the “error syndrome” {i.e. the
simuitaneous eigenvector of the stabilizer generators) ., H©® ul
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JSC Viterbi  The GF(4) Construction
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» Natural isometry between GF(4) and (22)2

* Any dual containing classical [n.k.d], code can be made into a
[[n,2k—n,d]] QECC

* Now: Any classical [n,k.,d], code can be made into a [[n,2k-n+c,d;c]]
catalytic QECC for some c

c=rank(H4§f).

» When the classical code attains the Singleton bound n-k = d-1 the
guantum code attains the quantum Singleton bound n-k+c = 2(d-1)

» When the classical code attains the Shannon limit
2—H,(1 —3p, p.p.p) on a quaternary symmetric channel, the quantum
code attains the Hashing limit 1-H,(1-3p, p.p.p)-

* Modemn classical codes (LDPC, turbo) can now be made quantum
without having to be dual-containing. Page 26/68




JSC Viterbi The Entanglement-Assisted Canonical
ichool of Engineering mm-

In an entanglement-assisted code, we replace some or all of the
ancillas with ebits.

@,)®---|®,)®(0)®---|0)®|y)
= : : i s:zrr:k—c J T
These ebits can hold two bits of information about errors, via
superdense coding. So replacing an ancilla with an ebit can
increase the number of correctable errors.

Each ebit corresponds to two generators of the stabilizer--a
symplectic pair. For the unencoded ebits these would take
the form Z| Z and X | X, where the first operator is on Alice’s
side and the second on Bob's.
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When we constructed an EAQECC from a classical linear code,

manifested itself as an increased rate: 2k-n+c.

The canonical representation, however, raises a different
question: what if we replace ancillas by ebits, without
increasing the rate k/n?

Is it possible, thereby, to increase the error-correcting power of
the code--for example, to increase the minimal distance?




JSC Viterbi  The Entanglement-Assisted Canonical
chool of Engineering Representation

In an entanglement-assisted code, we replace some or all of the
ancillas with ebits.

.)©-[0.)8/0)8--0)8ly)
¢ st e k

These ebits can hold two bits of information about errors, via
superdense coding. So replacing an ancilla with an ebit can
increase the number of correctable errors.

Each ebit corresponds to two generators of the stabilizer--a
symplectic pair. For the unencoded ebits these would take
the form Z| Z and X | X, where the first operator is on Alice’s
side and the second on Bob’s.
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JSC Viterbi The Canonical Representation

ichool of Engineering

A helpful way to think about how resources (ancillas, ebits, gauge
qubits, etc.) are used in error correction is with the canonical
representation. For a standard code this looks like:

[f)>®|o>®---02®\1p2

n:k k
This is, essentially, the form of the code before encoding. Each of
these ancillas can hold one bit of info about any errors that occur:

e’ls) ®|sy) ®--[s, ;) ® E, )
g i ) k

Each of these ancillas corresponds to a single stabilizer generator
that is measured in the correction procedure.
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JSC Viterbi The Entanglement-Assisted Canonical
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In an entanglement-assisted code, we replace some or all of the
ancillas with ebits.

!_‘I’+>®"'|‘I’+2®lf’>®"'|°2®|_,2
p Py k

These ebits can hold two bits of information about errors, via
superdense coding. So replacing an ancilla with an ebit can
increase the number of correctable errors.

Each ebit corresponds to two generators of the stabilizer--a
symplectic pair. For the unencoded ebits these would take
the form Z| Z and X | X, where the first operator is on Alice’s
side and the second on Bob's.
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When we constructed an EAQECC from a classical linear code,

we saw that this increased error-correcting power
manifested itself as an increased rate: 2k-n+c.

Tt ical hﬁlﬂﬂ, lllﬂm‘. raises a different
question: what if we replace ancillas by ebits, without
increasing the rate k/n?

Is it possible, thereby, to increase the error-correcting power of
the code--for example, to increase the minimal distance?
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In an entanglement-assisted code, we replace some or all of the
ancillas with ebits.

) ©-/0.)@(0)®-0) Sly)
¢ ke k

These ebits can hold two bits of information about errors, via
superdense coding. So replacing an ancilla with an ebit can
increase the number of correctable errors.

Each ebit corresponds to two generators of the stabilizer--a
symplectic pair. For the unencoded ebits these would take
the form Z| Z and X | X, where the first operator is on Alice’s
side and the second on Bob's.
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When we constructed an EAQECC from a classical linear code,

we saw that this increased error-correcting power
manifested itself as an increased rate: 2k-n+c.

The canonical representation, however, raises a different
question: what if we replace ancillas by ebits, without
increasing the rate k/n?

Is it possible, thereby, to increase the error-correcting power of
the code--for example, to increase the minimal distance?
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‘and Brun, in preparation

ichool of Engineering

Consider the code on n qubits with the following generators:
m=5: ZZIIl IFZ0N_ N7l 1Nie

This is just the repetition code, which protects against bit flips.
This code has distance d=1, because it cannot correct even a
single phase flip error.

Suppose now that we replace all the ancillas of this code with
ebits. The new set of generators is:

ZZINl, 7N, 771 INEZ,

IXXXX, XXIII, HIXX, XXXXI.
This code has distance n. Itis an [[n,1,n;n-1]] EAQECC. Note

that our example of a [[3,1,3;2]] code from before lies in this
class of codes!

-
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. 1; 2]] code (Bowen)
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3, k=
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, 1; 2]] code (Bowen)
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JSC Viterbi The Entanglement-Assisted Canonical
chool of Engineering Representation

In an entanglement-assisted code, we replace some or all of the
ancillas with ebits.

) ©-/0.)@(0)®-0) Sly)
P ke k

These ebits can hold two bits of information about errors, via
superdense coding. So replacing an ancilla with an ebit can
increase the number of correctable errors.

Each ebit corresponds to two generators of the stabilizer--a
symplectic pair. For the unencoded ebits these would take
the form Z| Z and X | X, where the first operator is on Alice’s
side and the second on Bob's.
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When we constructed an EAQECC from a classical linear code,

we saw that this increased error-correcting power
manifested itself as an increased rate: 2k-n+c.

The canonical representation, however, raises a different
question: what if we replace ancillas by ebits, without
increasing the rate k/n?

Is it possible, thereby, to increase the error-correcting power of
the code--for example, to increase the minimal distance?




‘and Brun, in preparation

chool of Engineering

Consider the code on n qubits with the following generators:
m=>: ZZINT DZN N7l 12

This is just the repetition code, which protects against bit flips.
This code has distance d=1, because it cannot correct even a
single phase flip error.

Suppose now that we replace all the ancillas of this code with
ebits. The new set of generators is:

ZzHil, IZZIll, [zZ7ZI, HIZZ,

IXXXX, XXIII, XX, XXXXI.
This code has distance n. Itis an [[n,1,n;n-1]] EAQECC. Note

that our example of a [[3,1,3;2]] code from before lies in this
class of codes!
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JSC Viterbi Row operations and the choice of generators

chool of Engi -

For a standard QECC, we can choose any set of generators we
like for the stabilizer. Going from one set to another is like
doing a row operation in the symplectic description:

7
|

771, 17ZZ. XXX — 7ZZI,ZIZ.YXY
ft 1 6 x 0 I r ar 1 @
01 11 0 1 1 0 11 0 1
0 001 1 1) (10 111 1

Different choices of generators describe the same code (though
possibly not the same encoding circuit).
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JSC Viterbi The Entanglement-Assisted Canonical
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In an entanglement-assisted code, we replace some or all of the
ancillas with ebits.

j_<b+)®---|<b+}®]_0)®---|02®u
c ke k

These ebits can hold two bits of information about errors, via
superdense coding. So replacing an ancilla with an ebit can
increase the number of correctable errors.

Each ebit corresponds to two generators of the stabilizer--a
symplectic pair. For the unencoded ebits these would take
the form Z| Z and X | X, where the first operator is on Alice’s
side and the second on Bob's.
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‘and Brun, in preparation
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Consider the code on n qubits with the following generators:
=3 ZZN D70 177 2

This is just the repetition code, which protects against bit flips.
This code has distance d=1, because it cannot correct even a
single phase flip error.

Suppose now that we replace all the ancillas of this code with
ebits. The new set of generators is:

ZZIN, DFZhR, I771; X

IXXXX, XXIII, HIXX, XXXXI.
This code has distance n. Itis an [[n,1,n;n-1]] EAQECC. Note

that our example of a [[3,1,3;2]] code from before lies in this
class of codes!
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JSC Viterbi Row operations and the choice of generators
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For a standard QECC, we can choose any set of generators we
like for the stabilizer. Going from one set to another is like
doing a row operation in the symplectic description:

-
|

771, 1ZZ. XXX — 7ZI,ZIZ.YXY
f1 1 0 1 0\ /1 1 6 1 @
o 1 1 ¢ 1 1 0 1148 1
0 0 o1 1 1) (10 11 11

Different choices of generators describe the same code (though
possibly not the same encoding circuit).
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JSC Viterbi

ool of Enainecs

For an EAQECC, however, one must maintain the commutation
relations. Therefore, row operations on one set of generators
must be matched by complementary row operations on the other.

ZZ1. 177, IXX , XXI — ZZ1 . 717, XIX , XXI

(1 1 00 0 0/ (1 1 00 0 O
011000 |101000
000011 |ooo1 o1
0 00110 0001 10

For a code in which there are no isotropic generators--where every
ancillas has been replaced by an ebit--row operations still do not
change the code. However, if we replace only some of the
ancillas, then the choice of generators can make a big difference.

-
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JSC Viterbi
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For example, if we add one ebit to a standard QECC, that is the
same as adding a symplectic partner for one generator. But
the different ways of doing this are not interchangeable. For
the code we have been considering, we used the standard
generators ZZIII 1Z711 11771 11177, But there are 15 non-
identity elements of the stabilizer group, each of which has a
different symplectic partner:

XXIII, IXXII, XIXII, IIXXI, XOOKXI, IXIXI, XIIXI, ITIXX, XXIXX,
DOCKX, XDOXX, IIXIX, XXXIX, IXIIX, XIIIX

All of these give different codes, with different correctable error
sets. For a large block code, the number of ways of adding c
ebits to the code can be combinatorially large.
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JSC Viterbi Examples of increasing distance with
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We have used numerical searches to see the effect of adding
different amounts of entanglement to a QECC. The following
table started with the [[7,1,3]] quantum BCH code:

s do as =. No combs
E 7 3 | 36 4096

B 5 5 | 31920 64512
4 5 5 | 39522 166656
3 5 4 | 4332 89280
- E 3 14 10416
1 3 - | 2m3 =

: do and ds compare the best [[n,1,do;c]] code to the best
[PiSﬁ;-Q [[n+c,1,ds]] code; No is the number of “optimal” encodings. ™"
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The following table started with the [[9,1,3]] Shor code:

combs

256

65536

330624

4.17x105

278904

4.42x107

17748

9.94x107

132

5.14x107

69777

6.21x10°

201

1.72x10°
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In many ways, codes with maximal entanglement are particularly
simple. In fact, in many ways their properties are exactly like
classical linear codes.

1. These codes are strictly nondegenerate. All error correction is
active--no errors can be passively corrected.

2. They satisfy the bound n-k > d-1.

3. Since the isotropic group is trivial, the logical operators of
these codes are defined unambiguously.

4. This lack of ambiguity means that these codes can be defined
by their logical operators, just as classical linear codes can be
defined by their generator matrix.

s 7
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In general, codes constructed in this way may use a great deal of
entanglement. This means that they would only be useful if
entanglement is essentially free, or at least readily available.
While this is unlikely to be true in most practical situations,
there may be some niche applications where these codes
might prove beneficial.

Another potential application is to large, high-rate block codes.
For these codes, adding a small amount of entanglement
might well improve performance for a moderate cost. The
combinatorial difficulty, however, has restricted us so far to
looking at modest-sized codes.

We are currently exploring algorithms to randomly search for
good codes using a given amount of entangiement.
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cKay, Mitchison and McFadden, 2004; Poulin and Chung, 2008; Hsieh and Brun, 2009; Hsieh, Yen and Hsu, arXiv:0906.5532

JSC Viterbi Entanglement-assisted quantum LDPC codes
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One group of EAQECCs that show great promise are the quantum
LDPC codes (and possibly Turbo codes as well). Classical low-
density parity check codes use sparse check matrices together
with a computationally efficient suboptimal decoder based on
iterative decoding (or message passing). Classically these
codes can approach capacity while still being efficiently
decodable.

However, these iterative decoding algorithms don’t perform as
well if the Tanner Graph of the code has a smallest cycle
(girth) of length 4. This is a problem for quantum codes,
because any quantum code whose symplectic matrix is self-
orthogonal must have girth 4.

Relaxing the need for self-orthogonality, by allowing
entanglement-assistance, allows quantum codes with girth =
6. And there are classes of LDPC codes that achieve this using
only a small, fixed or slowly growing amount of

LP:S@;g entangliement. .
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JSC Viterbi  Entanglement-assisted quantum convolutional

chool of Engineering codes

Convolutional codes, unlike block codes, encode information bits
“on the fly"” as a continuous process, and decode them the
same way. Quantum convolutional codes work the same way,
bringing in a continuous stream of information qubits and
ancillas to the encoder and outputting a string of corrected
qubits from the decoder.

To make such codes entanglement-assisted is straightforward, in
principle--just allow an input stream of ebits as well as
ancillas. But the algebraic description is much more
complicated, with the symplectic check matrices becoming
polynomial or rational-function valued.

=Xz 5 = F 3 1+D D 1 0100
¥ i xr 3 0100 [1+D 1+D 1 D

-,
I_Pi%g Page 54/68
I




j@+)"4
ame 1 !ﬂ} A
) ———

@)™
)

{ 84y
ame 3

oy
s)?

lm recursive but noncatastrophic, impossible for standard QCCs....
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“on the fly"” as a continuous process, and decode them the
same way. Quantum convolutional codes work the same way,
bringing in a continuous stream of information qubits and
ancillas to the encoder and outputting a string of corrected
qubits from the decoder.

To make such codes entanglement-assisted is straightforward, in
principle--just allow an input stream of ebits as well as
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The use of EAQCCs may allow encoders and decoders that are
lm recursive but noncatastrophic, impossible for standard QCCs. ..
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JSC Viterbi  Conclusions -

chool of Engi =

« EAQECCs can be represented in different ways--in terms of
stabilizers, using symplectic matrices, and in the canonical
representation. The interplay between these representations
helps us understand how entanglement can increase error-
correcting power

« In constructing EAQECCs from classical linear codes,
entanglement has the effect of boosting the rate.

« Itis also possible to add entanglement to QECCs without
increasing the rate. This increases the number of errors that can
be corrected, as seen by (for example) the minimal distance.

» Added entanglement can also allow a simplified algebraic
structure.
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JSC Viterbi
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The following table started with the [[9,1,3]] Shor code:

c do ds No combs

8 i 9 7 256 65536

7 ' 7 6 330624 | 4.17x10°
6 ' 7 6 278904 | 4.42x107
5 | 7 6 17748 9.94x107
4 7 5 132 5.14x107
3 : 5 5 69777 6.21x106
2 | 5 5 201 1.72x105

™
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* Natural isometry between GF(4) and (£))?

* Any dual containing classical [n.k.d], code can be made into a
[[n,2k—n,d]] QECC

» Now: Any classical [n.,k.d], code can be made into a [[n,2k-n+c,d;c]]
catalytic QECC for some c

c =mnk(H4I?f).

» When the classical code attains the Singleton bound n-k = d-1 the
guantum code attains the quantum Singleton bound n-k+c = 2(d-1)

» When the classical code attains the Shannon limit
2—H,(1 — 3p, p.p.p) on a quaternary symmetric channel, the quantum
code attains the Hashing limit 1-H,(1-3p. p.p.p)-

* Modern classical codes (LDPC, turbo) can now be made quantum
without having to be dual-containing. Page 64/68
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* Natural isometry between GF(4) and (22)2

* Any dual containing classical [n.k.d], code can be made into a
[[n,2k—n,d]] QECC

* Now: Any classical [n,k.d], code can be made into a [[n,2k-n+c,d;c]]
catalytic QECC for some c

c =rank(H4§f),

» When the classical code attains the Singleton bound n-k = d-1 the
guantum code attains the quantum Singleton bound n-k+c = 2(d-1)

« When the classical code attains the Shannon limit
2—H,(1 - 3p, p.p.p) on a quaternary symmetric channel, the quantum
code attains the Hashing limit 1-H,(1-3p, p.p.p)-

* Modern classical codes (LDPC, turbo) can now be made quantum
without having to be dual-containing. Page 65/68




« The correctable error set E is defined by:

If E, and E, are in E, then at least one of the
conditions hold:

D EE EZ(S,.5:)
2) E.E,ES, degenerate code

» The code space &£ ('fgk) is defined as the simuitaneous +1
eigenspace of the stabilizer generators
€
{Nu®I%¢: u ciso(CH)}u | {Ne; ® Zi, Ni, ® X}
Eyd sty L ket !
n c n cC n [~

= Decoding involves measuring the “error syndrome™ (i.e. the
simultaneous eigenvector of the stabilizer generators) , H® ul
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* Natural isometry between GF(4) and (22)2

* Any dual containing classical [n.k.d], code can be made into a
[[n,2k—n,d]] QECC

* Now: Any classical [n,k.d], code can be made into a [[n,2k-n+c,d;c]]
catalytic QECC for some c

c=rank(H4I?f).

» When the classical code attains the Singleton bound n-k = d-1 the
guantum code attains the quantum Singleton bound n-k+c = 2(d-1)

» When the classical code attains the Shannon limit
2—H,(1 — 3p, p.p.p) on a quaternary symmetric channel, the quantum
code attains the Hashing limit 1-H,(1-3p. p.p.p)-

* Modern classical codes (LDPC, turbo) can now be made quantum
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JSC Viterbi The Entanglement-Assisted Canonical
chool of Engineering Representation

In an entanglement-assisted code, we replace some or all of the
ancillas with ebits.

L<D+>®---|cp+}®]f)>®---|02®|_2
p g k

These ebits can hold two bits of information about errors, via
superdense coding. So replacing an ancilla with an ebit can
increase the number of correctable errors.

Each ebit corresponds to two generators of the stabilizer--a
symplectic pair. For the unencoded ebits these would take
the form Z| Z and X | X, where the first operator is on Alice’s
side and the second on Bob's.
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