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Abstract: We present a holographic description of four-dimensional single-scalar inflationary universes in terms of a three-dimensional quantum
field theory. The holographic description correctly reproduces standard inflationary predictions in their regime of applicability. In the opposite case,
wherein gravity is strongly coupled at early times, we propose a holographic description in terms of perturbative QFT and present models capable of
satisfying the current observational constraints while exhibiting a phenomenology distinct from standard inflation. This provides a qualitatively new
method for generating a nearly scale-invariant spectrum of primordia cosmological perturbations.
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Holography

The notion of holography ['t Hooft 1993] emerged from black hole physics
as an answer to the question: why is the entropy of a black hole
proportional to the area of its horizon rather than its volume?

Holography: Any quantum gravitational system should have a dual de-
scription in terms of a quantum field theory (QFT), without gravity, in

one dimension less.

» Holography became a prominent research direction when precise
holographic dualities were found in string theory.

[Maldacena 1997, Gubser, Klebanov & Polyakov 1998, Witten 1998]
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Holography for Cosmology

» The holographic dualities found in string theory involve
spacetimes with a negative cosmological constant, but

the general argument for holography is applicable to any
theory of gravity.

» In particular, it should apply to our own universe.

» Here we describe how to set up a holographic
framework for inflationary cosmology.

Specifically, we construct a dual description of
four-dimensional inflationary cosmology in terms of a
three-dimensional QF T without gravity.

irsa: 10040020 Page 4/124



Holography for Cosmology

Any proposed holographic framework for cosmology should specify:

1. The precise nature of the dual QFT.

2. How to compute cosmological observables (e.g. the primordial
power spectrum) from the correlation functions of the dual QFT.

Having defined such a duality,

3. Must recover standard inflationary predictions in regime where usual
perturbative quantisation of fluctuations is valid (i.e. weakly coupled
gravity — strongly coupled QFT).
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Holography for Cosmology

Moreover, since holographic dualities are strong/weak coupling dualities:

4. New results should follow by applying the holographic framework in
the opposite regime, where gravity is strongly coupled at early times
and the usual perturbative quantisation of fluctuations breaks down.

In this regime the dual QFT is weakly coupled and we can use
perturbative QF T to make predictions.
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Plan of talk arXiv:1001.2007 & 0907.5542

continuation

time Cosmology = —-=» pseudo-QFT

» Part | Holography for cosmology.

» Part |I: Beyond the weak gravitational description:
holographic phenomenology, results & predictions.
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Cosmological perturbations

We start by reviewing standard inflationary cosmology and the
cosmological observables we would like to compute holographically.

» For simplicity, we discuss single-field 4d inflationary models:

1 - _
S = 25_2_/d4'r‘/_9m — (09)* — 22V (®)].
» We assume a spatially flat background and perturb

ds? = —dt? +a%(t)[6;; + hyj(t. T)]dr*de?,
® = (t)+dp(t.T).
where h,‘j = —2!&‘(2.5)5,3 = - 23,(331((3..1':') = = '}'ij(:..f}.

» ~;; is transverse traceless and we form the gauge-invariant scalar
perturbation { = v + (H/@)de.
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Power spectra

In the inflationary paradigm, cosmological perturbations are assumed to
originate on sub-horizon scales as quantum fluctuations.

» Quantising the perturbations in the usual manner,

CEPCE—D) = ¢®)P.
(it Dt —9) = 2ve(t) Mija.

where I1;;;; is the transverse traceless projection operator while
Cq(t) and ~,4(#) are the mode functions.

» The superhorizon power spectra are then given by

3
AZ(q) = ;?!Cq{ﬂllz.- A7(q) = gh’q(nﬂz-

where v,0) and (40, are the constant late-time values of the mode
functions, with initial conditions set by the Bunch-Davies vacuum.
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Power spectra via response functions

In preparation for our holographic discussion, we rewrite the power
spectrum as follows.

» We define the response functions as

= »_
o' =g, [[g = E vij,

where IT'S and l'[g} are the canonical momenta.
» One can show that

Cel ™% = —2Im[Q(q)], |ve|™* = —4Im[E(qg)],

hence the power spectra may be expressed in terms of the late-time
behaviour of the response functions.

irsa: 10040020 Page 14/124



Power spectra

In the inflationary paradigm, cosmological perturbations are assumed to
originate on sub-horizon scales as quantum fluctuations.

» Quantising the perturbations in the usual manner,
C(EDE—9) = @),
(it Dt —@) = 2lrg(t)PMija,

where I1;;;; is the transverse traceless projection operator while
Cq(t) and ~,4(#) are the mode functions.

» The superhorizon power spectra are then given by

e v i 2 2 b B E 2
AS(‘:f) == 27'_-2 |Cq{ﬂ]| : AT(Q) — 71'2 h'q(ﬂ}l .

where v,9) and (40, are the constant late-time values of the mode
functions, with initial conditions set by the Bunch-Davies vacuum.
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Power spectra via response functions

In preparation for our holographic discussion, we rewrite the power
spectrum as follows.

» We define the response functions as

o< — Qc.

where I1'“) and l'[i;” are the canonical momenta.
» One can show that

Gl ™2 = —2Im[Q(q)], |y, ~2 = —4Im[E(q)],

hence the power spectra may be expressed in terms of the late-time
behaviour of the response functions.
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Domain-wall spacetimes

» ‘Domain-wall’ spacetimes are closely related to cosmological
spacetimes:

ds® = pdz® + a?(z)dz>, D = (2),

where p = +1 for a (Euclidean) DW and n = —1 for cosmology.

» They play a prominent role in holography where they describe
holographic RG flows (i.e. radial evolution of DW « RG flow of dual

QFT).
» The DW action is

S = 2,;; d*z,/g[—R + (8®)* + 22V (®)).
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Domain-wall /cosmology correspondence

» Including perturbations, the equations of motion for DW/C read:

H =afa=—(1/2W(g), ¢=W,, 2’V =(Wy)*—(3/2)W,

0=(+(3H +é/e)( —na~2q’¢, 0=7y +3H%; —na g,

where " =d/dz and e = —H/H>.
» Defining the analytically continued variables

we see that a cosmological solution written in terms of (%, q)
continues to a DW solution expressed in terms of (&, ¢).
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Domain-wall /cosmology correspondence

» This particular bulk continuation was chosen as it has a clear
interpretation in terms of dual QF T variables.

» Qur choice of sign in the continuation of ¢ ensures that the
Bunch-Davies vacuum on the cosmology side maps to a solution

that is regular in the interior of the domain-wall:
¢,y ~exp(—gr) — (,7y~ exp(qr)
where 7 = [ dz/a and the DW interior is 7 — —oc.

» One can define response functions 2 and E for the DW spacetime.
They are related to their cosmological counterparts by the analytic
continuations (—iqg) = Q(q) and E(—iq) = E(q).
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Domain-wall /cosmology correspondence

» Including perturbations, the equations of motion for DW/C read:

H =afa=—(1/2W(g), ¢=W,, 2’V =(W,)*—(3/2)W,

0=(+ (3H +¢é/e)C —na2g°¢, 0=7y +3H:; —na ¢ v

where ' =d/dz and e = —H/H?>.
» Defining the analytically continued variables

we see that a cosmological solution written in terms of (%, ¢q)
continues to a DW solution expressed in terms of (&, g).
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Domain-wall /cosmology correspondence

» This particular bulk continuation was chosen as it has a clear
interpretation in terms of dual QF T variables.

» Qur choice of sign in the continuation of ¢ ensures that the
Bunch-Davies vacuum on the cosmology side maps to a solution

that is regular in the interior of the domain-wall:
¢,y ~exp(—igr) — (,7v~exp(qr)
where 7 = [ dz/a and the DW interior is 7 — —oc.

» One can define response functions 2 and E for the DW spacetime.

They are related to their cosmological counterparts by the analytic
continuations (—ig) = Q(q) and E(—iq) = E(q).
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Domain-wall /cosmology correspondence

» Including perturbations, the equations of motion for DW/C read:

H=afa=—(1/2W(p), ¢=W,, 2V =(W,)*—(3/2W?

0=C+(BH+é/)—na 2%, 0= Yi; +3Hy5 — ﬂﬂ_2q2’¥ij?

where " =d/dz and e = —H/H>.
» Defining the analytically continued variables

we see that a cosmological solution written in terms of (%, q)
continues to a DW solution expressed in terms of (&, ).
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Domain-wall /cosmology correspondence

» This particular bulk continuation was chosen as it has a clear
interpretation in terms of dual QF T variables.

» Qur choice of sign in the continuation of ¢ ensures that the
Bunch-Davies vacuum on the cosmology side maps to a solution
that is regular in the interior of the domain-wall:

¢,y ~exp(—igr) — (,7~ exp(qr)
where 7 = [ dz/a and the DW interior is 7 — —oc.

» One can define response functions 2 and E for the DW spacetime.

They are related to their cosmological counterparts by the analytic
continuations (—iq) = Q(q) and E(—1q) = E(q).
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Domain-wall /cosmology correspondence

» Including perturbations, the equations of motion for DW/C read:

H=a/a=—(1/2W(p), ¢=W,, 22’V =(W,)*—(3/2)W?,

0=C(+ (BH+é/e)—na 2%, 0= Yi; +3HY5 — m_2q27ij:-

where ' =d/dz and e = —H/H>.
» Defining the analytically continued variables

we see that a cosmological solution written in terms of (%, ¢q)
continues to a DW solution expressed in terms of (&, g).
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Domain-wall /cosmology correspondence

» This particular bulk continuation was chosen as it has a clear
interpretation in terms of dual QF T variables.

» Qur choice of sign in the continuation of ¢ ensures that the
Bunch-Davies vacuum on the cosmology side maps to a solution

that is regular in the interior of the domain-wall:
¢,y ~exp(—gr) — (,y~exp(qr)
where 7 = [ dz/a and the DW interior is 7 — —oc.

» One can define response functions 2 and E for the DW spacetime.

They are related to their cosmological counterparts by the analytic
continuations 2(—:q) = (q) and E(—2q) = E(q).
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Domain-wall /cosmology correspondence

» Including perturbations, the equations of motion for DW/C read:

H=a/a=—(1/2W(p), ¢=W,, 22’V =(W,)*—(3/2)W?,

0=C+ (3H +é/e) —na2¢°¢, 0=73; +3HA:;; —na 2q°vj,

where ' =d/dz and e = —H/H>.
» Defining the analytically continued variables

Ez = _"2? q-: _iq*

we see that a cosmological solution written in terms of (%, q)
continues to a DW solution expressed in terms of (&, 7).
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Domain-wall /cosmology correspondence

» This particular bulk continuation was chosen as it has a clear
interpretation in terms of dual QF T variables.

» Qur choice of sign in the continuation of ¢ ensures that the
Bunch-Davies vacuum on the cosmology side maps to a solution

that is regular in the interior of the domain-wall:
¢,y ~exp(—igr) — (,7y~exp(qr)
where 7 = [ dz/a and the DW interior is 7 — —oc.

» One can define response functions 2 and E for the DW spacetime.

They are related to their cosmological counterparts by the analytic
continuations (—iq) = Q(q) and E(—iq) = E(q).
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Holographic RG flows

There are two classes of DW spacetimes whose holographic interpretation
is well understood:

1. Asymptotically AdS solutions: a ~e*, ¢ ~ 0 as z — oc. '

» [ hese describe QF Ts that flow to a CFT in the UV. Under the

DW/C correspondence, they are mapped to asymptotically de Sitter

2. Asymptotically power-law solutions: a ~ (2/29)", ¢ ~ v2rnIn(z/2p)
as z — oc.

» These describe QF T's with a single dimensionful coupling constant,
in the regime where the dimensionality of the coupling constant
drives the dynamics [arXiv:0807.3324]. Under the DW/C

correspondence, they are mapped to asymptotically power-law
inflationary cosmologies.

irsa: 10040020 Page 30/124



Holographic
RG Flow

A
Domain Wally

Cosmaology
correspondence

¥

Casmology

Pirsa: 10040020

Gauge/gravity
duafity

-

>

QFT

A

Analytic
continuation

A4

‘pseudo’-QFT

Page 31/124



Holography: a primer

Our holographic dictionary for cosmology will be based on the standard
holographic dictionary, so we now briefly review standard holography:

» There is a 1-to-1 correspondence between local gauge-invariant
operators of the boundary QFT and bulk supergravity modes:

=> The bulk metric corresponds to the stress-energy tensor 1., of the
boundary theory.

— Bulk scalar fields correspond to boundary scalar operators, e g.
iV, P

» Correlation functions of the dual QF T may be read off from the
asymptotics of the bulk solution. Conversely, given appropriate QFT
data, one can reconstruct the bulk asymptotics.
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Bulk asymptotics

The general asymptotic solution for the 4d bulk metric reads:

ds® = dr® + €* g;;(r. z)dr'dr?,
gij(r'.‘ x) = g(ﬂ}ij(-r) + E_bg{z)ij(;r) + -

4 € 2 gagyii(T) + - ..

» g(0)i;(x) is the metric seen by the dual QFT, and hence acts as the
source for the dual stress tensor T7;.

» The g(ox);;(x) with k < o are locally determined in terms of
g(0yi;(x) via the asymptotic analysis of the field equations.

» g(20)i;(x) is only partially constrained by the asymptotic analysis of
the field equations, and is related to the dual 1-pt function:

1
(T55) = ﬁ(%gfza)ij)-
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Bulk asymptotics

irsa: 10040020

From the bulk asymptotics, we can read off (T3;). Equivalently,
given (T;;), we can reconstruct the bulk asymptotics.

This remains true even in the regime where gravity is strongly
coupled and the description in terms of low-energy fields (such as
the metric) breaks down deep in the interior.

The metric description is still valid asymptotically, however, and
takes the same form as before. Gauge/ gravity duality requires the
value of g(2)i; deriving from stringy dynamics to match that
derived from the dual weakly coupled QFT.
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Bulk asymptotics

The general asymptotic solution for the 4d bulk metric reads:

ds® = dr? + ¥ g;;(r, z)dz"dz?,

gii (T, T) = g(o)ij () + € g@)ii(x) + - - . + € > g2oyij(x) + - -.

» g(0)i;(x) is the metric seen by the dual QFT, and hence acts as the
source for the dual stress tensor T7;.

» The giox);;(x) with k < o are locally determined in terms of
g(0yi;(x) via the asymptotic analysis of the field equations.

» g(20)i;(x) is only partially constrained by the asymptotic analysis of
the field equations, and is related to the dual 1-pt function:

1
(T5) = ﬁ(%gfza)ij)-
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Bulk asymptotics
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From the bulk asymptotics, we can read off (T3;). Equivalently,
given (T;;), we can reconstruct the bulk asymptotics.

This remains true even in the regime where gravity is strongly
coupled and the description in terms of low-energy fields (such as
the metric) breaks down deep in the interior.

The metric description is still valid asymptotically, however, and
takes the same form as before. Gauge/gravity duality requires the
value of g(2)i; deriving from stringy dynamics to match that
derived from the dual weakly coupled QFT.

Page 36/124



Bulk asymptotics

The general asymptotic solution for the 4d bulk metric reads:

ds® = dr? + € g;(r.z)dr'dr?,

gii (T, T) = g(o)ii (z) + € g2)ii () + - - . + € > gaoyi;(T) + - -.

» g(0yi;(x) is the metric seen by the dual QFT, and hence acts as the
source for the dual stress tensor T7;.

» The g(ox);;(x) with k < o are locally determined in terms of
g(0yi;(x) via the asymptotic analysis of the field equations.

» g(20)i;(x) is only partially constrained by the asymptotic analysis of
the field equations, and is related to the dual 1-pt function:

1
(T5) = ﬁ(%g{za)ij)-

irsa: 10040020 Page 37/124



Bulk asymptotics
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From the bulk asymptotics, we can read off (T;;). Equivalently,
given (T;;), we can reconstruct the bulk asymptotics.

This remains true even in the regime where gravity is strongly
coupled and the description in terms of low-energy fields (such as
the metric) breaks down deep in the interior.

The metric description is still valid asymptotically, however, and
takes the same form as before. Gauge/gravity duality requires the
value of g(2,)i; deriving from stringy dynamics to match that
derived from the dual weakly coupled QFT.
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Bulk asymptotics

The general asymptotic solution for the 4d bulk metric reads:

ds® = dr® + € g;;(r, z)dz"dz?,
gii (T, T) = g0y () + € 7 g2)is () + - - . + € T g2oyi; () + - ..

» g(0)i;(x) is the metric seen by the dual QFT, and hence acts as the
source for the dual stress tensor T7;.

» The g3z);;(x) with k < o are locally determined in terms of
g(0yi;(x) via the asymptotic analysis of the field equations.

» g(20)i;(x) is only partially constrained by the asymptotic analysis of
the field equations, and is related to the dual 1-pt function:

1
(T5) = ﬁ(%g{za)ij)-
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Bulk asymptotics

» From the bulk asymptotics, we can read off (T;;). Equivalently,
given (T;;), we can reconstruct the bulk asymptotics.

» This remains true even in the regime where gravity is strongly
coupled and the description in terms of low-energy fields (such as
the metric) breaks down deep in the interior.

» The metric description is still valid asymptotically, however, and
takes the same form as before. Gauge/ gravity duality requires the
value of g(2.)i; deriving from stringy dynamics to match that
derived from the dual weakly coupled QFT.
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Bulk asymptotics

The general asymptotic solution for the 4d bulk metric reads:

ds® = dr® + €™ g;;(r, x)dz"dz?,
gii (1. T) = g(0)ij (T) + € 2 g2)ii(T) + .- . + € 7 gayiz () + - ..

> g(0)i;(x) is the metric seen by the dual QFT, and hence acts as the
source for the dual stress tensor T7;.

» The gox);;(x) with k < o are locally determined in terms of
g(0yi;(x) via the asymptotic analysis of the field equations.

» g(25)i;(x) is only partially constrained by the asymptotic analysis of
the field equations, and is related to the dual 1-pt function:

1
(T55) = ﬁ(%g(%)ij)-
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Bulk asymptotics

The general asymptotic solution for the 4d bulk metric reads:

ds® = dr? + ¥ g;j(r, z)dr'dr?,
gii (1. T) = goyij (z) + € 7 g2)ii (T) + - - . + € 7 gagyii (T) + - .

» g(0)i;(x) is the metric seen by the dual QFT, and hence acts as the
source for the dual stress tensor T;;.

» The goz);;(x) with k < o are locally determined in terms of
g(0yi;(x) via the asymptotic analysis of the field equations.

» g(20)i;(x) is only partially constrained by the asymptotic analysis of
the field equations, and is related to the dual 1-pt function:

1
(T55) = ﬁ(%g{za)ij)-
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Bulk asymptotics

» From the bulk asymptotics, we can read off (T;;). Equivalently,
given (T;;), we can reconstruct the bulk asymptotics.

» This remains true even in the regime where gravity is strongly
coupled and the description in terms of low-energy fields (such as
the metric) breaks down deep in the interior.

» The metric description is still valid asymptotically, however, and
takes the same form as before. Gauge/ gravity duality requires the
value of g(2,)i; deriving from stringy dynamics to match that
derived from the dual weakly coupled QFT.
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Two-point functions

» Higher-point functions may be obtained by differentiating the 1-pt
function w.r.t. the sources and then setting the sources to their
background values,

09(20)i5(T)
e.g.  (T5(x)Tuly)) ~ 59(0)k:(y) s
{(0)—

» To compute 2-pt functions one only needs to solve for the bulk
fluctuations to /inear order.

» On general grounds, the 2-pt function for the stress tensor admits
the decomposition

(T3 (@) Ta(—q)) = AL + B(q)mijmra,

where the transverse and transverse traceless projection operators are

mi; = 0 — @G /q
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Bulk asymptotics

The general asymptotic solution for the 4d bulk metric reads:

ds® = dr® + € g;;(r, z)dz"dz?,
9ii(r. ) = goyi;(x) + E_2r9{2)ij(1') s R, E_z‘"'g(ga),'j(-.r) +—.

» g(0)i;(x) is the metric seen by the dual QFT, and hence acts as the
source for the dual stress tensor T7;.

» The gox);;(x) with k < o are locally determined in terms of
g(0yi;(x) via the asymptotic analysis of the field equations.

» g(20)i;(x) is only partially constrained by the asymptotic analysis of
the field equations, and is related to the dual 1-pt function:

1
(T55) = ﬁ(%g{za)ij)-
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Two-point functions

» Higher-point functions may be obtained by differentiating the 1-pt
function w.r.t. the sources and then setting the sources to their
background values,

09(20)i;(T)

{(0)—

» To compute 2-pt functions one only needs to solve for the bulk
fluctuations to /inear order.

» On general grounds, the 2-pt function for the stress tensor admits
the decomposition

(T3 (@) Te(—q)) = A(@Lije: + B(q)mijmna,

where the transverse and transverse traceless projection operators are

mi; = 05 — %G /T, Mijm = mgemn; — (1/2)m:7m1-
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Holographic analysis

» Employing the radial Hamiltonian formulation of holographic

renormalisation [hep-th\0404176, 0407071], we showed that, for both
asymptotically AdS and asymptotically power-law DW spacetimes,

A(q) =4E0)(q). B(q) = (1/4)Q0)(q)-

» Thus, the 2-pt function (7;;(q)Twi(—q)) may be extracted from the
DW response functions. The subscript indicates taking the term
with appropriate scaling in the asymptotic expansion.
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Two-point functions

» Higher-point functions may be obtained by differentiating the 1-pt
function w.r.t. the sources and then setting the sources to their
background values,

09(20)i; ()
e_g_ <TIJ(I)TH(9))~ 59{01;:(9) g0y =9
{(0)—

» To compute 2-pt functions one only needs to solve for the bulk
fluctuations to /inear order.

» On general grounds, the 2-pt function for the stress tensor admits
the decomposition

(T3 (@) T —q)) = A(@Lije: + B(q)mijmra,

where the transverse and transverse traceless projection operators are
mii = 0i; — @G /T > Wi = miemn; — (1/2) w37z
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Holographic analysis

» Employing the radial Hamiltonian formulation of holographic

renormalisation [hep-th\0404176, 0407071], we showed that, for both
asymptotically AdS and asymptotically power-law DW spacetimes,

A(q) =4E0)(q). B(q) = (1/4)Q0)(q)-

» Thus, the 2-pt function (7;;(q)Twi(—q)) may be extracted from the
DW response functions. The subscript indicates taking the term
with appropriate scaling in the asymptotic expansion.
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Holographic analysis

» Employing the radial Hamiltonian formulation of holographic

renormalisation [hep-th\0404176, 0407071], we showed that, for both
asymptotically AdS and asymptotically power-law DW spacetimes,

A(q) =4E0)(q). B(q) = (1/4)Q0)(q)-

» Thus, the 2-pt function (7;;(q)Tw:(—q)) may be extracted from the
DW response functions. The subscript indicates taking the term
with appropriate scaling in the asymptotic expansion.
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From cosmology to QF T

Continuing &2 = —&2, § = —iq. we find a direct relation between the
cosmological power spectra and the 2-pt functions of the dual QFT:

—24°

2 2l —‘13 2 !
As(g) = Ar(q) = xTimA(—ig)’

16x2ImB(—iq)"

where

(T:(q)Tei(—q)) = A(@)ije + B(q)mijmi.
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From cosmology to QFT

Continuing &2 = —&2, § = —iq. we find a direct relation between the
cosmological power spectra and the 2-pt functions of the dual QFT:

=
ASe) = ermmpr iy AF@=

where

(Ti(q)Tei(—q)) = A(@)ije + B(q)mijmi.
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Holographic analysis

» Employing the radial Hamiltonian formulation of holographic
renormalisation [hep-th\0404176, 0407071], we showed that, for both
asymptotically AdS and asymptotically power-law DW spacetimes,

A(q) =4E0)(q). B(q) = (1/4)Q0)(q)-

» Thus, the 2-pt function (T;;(q)Twi(—q)) may be extracted from the
DW response functions. The subscript indicates taking the term
with appropriate scaling in the asymptotic expansion.
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From cosmology to QFT

Continuing % = —&2, § = —iq. we find a direct relation between the
cosmological power spectra and the 2-pt functions of the dual QFT:

- 7. —q 2 A
Asl0) = teomB(ag AT@ =

(T:(q)Tei(—q)) = A(@)ije + B(q)mijmri.
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From cosmology to QFT

Continuing &2 = —&2, § = —iq. we find a direct relation between the
cosmological power spectra and the 2-pt functions of the dual QFT:

- 9.3
A3e) = mmg OO~ e

where

(Ti(@)Tei(—q)) = A(@)ijer + B(q)mijmi.
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Analytic continuation of QFT

Translating the bulk analytic continuation 52 = —x2%, § = —iq into QFT
language, we find

since N2 x 2, where N is the number of colours in the QFT dual to
the DW spacetime.

» The pseudo-QF T dual to cosmology is thus defined operationally:
we first compute the regular QFT correlators, then perform the
analytic continuation above.

N.B. Since ¢ is not continued, neither is the dimensionful QFT coupling
constant corresponding to deformations by the dual scalar operator.
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Analytic continuation of QFT

Translating the bulk analytic continuation 52 = —x2, § = —iq into QFT
language, we find

since N2 x 2, where N is the number of colours in the QFT dual to
the DW spacetime.

» The pseudo-QF T dual to cosmology is thus defined operationally-
we first compute the regular QFT correlators, then perform the
analytic continuation above.

N.B. Since ¢ is not continued, neither is the dimensionful QFT coupling
constant corresponding to deformations by the dual scalar operator.
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Analytic continuation of QFT

Translating the bulk analytic continuation 52 = —x2, § = —iq into QFT
language, we find

ﬁ‘Z:_N2? q':_iq':

since N2 x &2, where N is the number of colours in the QFT dual to
the DW spacetime.

» The pseudo-QF T dual to cosmology is thus defined operationally:
we first compute the regular QFT correlators, then perform the
analytic continuation above.

N.B. Since ¢ is not continued, neither is the dimensionful QF T coupling
constant corresponding to deformations by the dual scalar operator.
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Part |l
Beyond the weak gravitational description
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Analytic continuation of QFT

Translating the bulk analytic continuation 52 = —x2, § = —iq into QFT
language, we find

NQZ—N2, g = —q,

since N2 x &2, where N is the number of colours in the QFT dual to
the DW spacetime.

» The pseudo-QFT dual to cosmology is thus defined operationally:
we first compute the regular QFT correlators, then perform the
analytic continuation above.

N.B. Since ¢ is not continued, neither is the dimensionful QF T coupling
constant corresponding to deformations by the dual scalar operator.
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Part |l
Beyond the weak gravitational description
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Beyond the weak gravitational description

We inferred above a QFT description of inflationary cosmology using
gauge/gravity duality and analytic continuation.

» So far, all computations have been performed on the gravity side.

For the very early Universe, however, we should also consider the possibility
that the gravitational description might be strongly coupled.

» In this regime the conventional inflationary description fails.
Nevertheless, we may still reconstruct the late-time asymptotic
behaviour of the system holographically via the correlators of the
dual QFT at weak coupling.
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T he new scenario

holographic phase

Primordial perturbations
generated during
holographic phase where
gravitational description is
strongly interacting.

At late times recover usual
weakly interacting gravitational
description and standard
cosmological evolution.

Usual inflationary methods
inapplicable: instead use weakly
interacting dual QFT description.
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Holographic analysis

» Employing the radial Hamiltonian formulation of holographic

renormalisation [hep-th\0404176, 0407071], we showed that, for both
asymptotically AdS and asymptotically power-law DW spacetimes,

A(q) =4E0)(q). B(q) = (1/4)Q0)(q)-

» Thus, the 2-pt function (T;(q)Twi(—q)) may be extracted from the
DW response functions. The subscript indicates taking the term
with appropriate scaling in the asymptotic expansion.
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Bulk asymptotics

The general asymptotic solution for the 4d bulk metric reads:

ds® = dr® + € g;;(r. z)dz"dz?,
gii (T, T) = g(oyi; () + € g@iz(x) + -

-+ € 2 gagyii(T) + - ..

» g(0)i;(x) is the metric seen by the dual QFT, and hence acts as the
source for the dual stress tensor T7;.

» The giox);;(x) with k < o are locally determined in terms of
9(0yi;(x) via the asymptotic analysis of the field equations.

» g(20)i;(x) is only partially constrained by the asymptotic analysis of
the field equations, and is related to the dual 1-pt function:

1
(T5) = ﬁ(%g{za)ij)-
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T he new scenario

hOIO graph:c pnase

Primordial perturbations
generated during
holographic phase where
gravitational description is
strongly interacting.

At late times recover usual
weakly interacting gravitational
description and standard
cosmological evolution.

Usual inflationary methods
inapplicable: instead use weakly
interacting dual QFT description.
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From cosmology to QFT

Continuing &2 = —&2, § = —iq. we find a direct relation between the
cosmological power spectra and the 2-pt functions of the dual QFT:

A% == AZg) = —F
S\ = 16x2ImB(—iq) Y= PImA(—iq)’

(Ti5(q)Tei(—q)) = A(@)ijer + B(q)mijmi.
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Holographic analysis

» Employing the radial Hamiltonian formulation of holographic

renormalisation [hep-th\0404176, 0407071], we showed that, for both
asymptotically AdS and asymptotically power-law DW spacetimes,

A(q) =4E@0)(q). B(q) = (1/4)Q)(q)-

» Thus, the 2-pt function (T;;(q)Twi(—q)) may be extracted from the
DW response functions. The subscript indicates taking the term
with appropriate scaling in the asymptotic expansion.
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Analytic continuation of QFT

Translating the bulk analytic continuation 52 = —x2%, § = —iq into QFT
language, we find

since N2 < &2, where N is the number of colours in the QFT dual to
the DW spacetime.

» The pseudo-QF T dual to cosmology is thus defined operationally:
we first compute the regular QFT correlators, then perform the
analytic continuation above.

N.B. Since ¢ is not continued, neither is the dimensionful QFT coupling
constant corresponding to deformations by the dual scalar operator.
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Part |l
Beyond the weak gravitational description
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Holographic phenomenology for cosmology

» The boundary theory will be a combination of
gauge fields, fermions and scalars, and it should
admit a large N expansion.

» To extract predictions, we must compute (7;,;T%;)
and plug the coefficients A(g) and B(q) into our
holographic formulae for the cosmological power
spectra.

» One can then look for holographic theories that fit
the observations.

irsa: 10040020 Page 83/124



Form of the primordial perturbations

Observationally, the primordial power spectra may be parametrised by an
amplitude and tilt according to

A%(q) = AS(q0) (9/a0)™ V™",  AZ(q) = AZ(q0) (a/q0)""'?.

The WMAP data then yield (for g = 0.002Mpe ')

AZ(go) = (2445 +0.096) x 1072,  ng—1 = —0.040 + 0.013,

i.e., the scalar perturbations have small amplitude and are nearly scale
invariant.

» These two small numbers should appear naturally in any theory that
explains the data.

irsa: 10040020 Page 84/124



Holographic phenomenology for cosmology

» As a starting point one can consider the strong-gravity version of
asymptotically dS and asymptotically power-law cosmologies.

» Here we focus on the latter. These are dual to super-renormalisable
QFTs that depend on a single dimensionful coupling, g3,

» Prototype dual QFT: 3d SU(N) Yang-Mills theory coupled to
adjoint fermions and scalars (both conformally and minimally
coupled).

g%M[detr _FfFflj_l_ (D{pJ)z _(DXK)Z'F'BLWL

e, S
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1-loop calculation

The leading contribution to (T;;T%;) is at 1-loop order. Since T;; has
dimension 3, and g3, does not appear to this order, it follows that

A(q) = CaN?G + O(g%m)-
T.(@ Tul®  B(g) = CeN%g + O(g2y)-

Explicit calculation then reveals:
Ca = Na +Ng+Ny +2N,;)/256, Cp = (Na+Ny)/256.
Using our holographic formulae, the cosmological power spectra are

2 = 1 2 2 = 1 2
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1-loop calculation

» The cosmological power spectra are scale-invariant to leading order.

» This is a consequence of simple dimensional analysis and is
independent of field content!

» The observed amplitude A%(gp) ~ O(10~7) for the scalar power
spectrum implies N ~ O(10%), justifying our use of the large N
limit.

» We can fit the upper bound on the ratio of tensor to scalar power
spectra by tuning the field content of the model:

r—AZ/AZ — 3CE/C,.

A small upper bound on r requires more conformal scalars and
massless fermions and/or fewer gauge fields and minimal scalars.
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1-loop calculation

The leading contribution to (T;;T%;) is at 1-loop order. Since T;; has
dimension 3, and g3, does not appear to this order, it follows that

A(g) = C'Afiﬂfis + O(Q%M)-
T.(@) Tat®  B(g) = CaN’7’ + O(g3in)-

Explicit calculation then reveals:
Ca=Na +Ng+Ny +2Ny;)/256, Cp = (Na+Ny)/256.

Using our holographic formulae, the cosmological power spectra are

1 1
A3(9) = gz + OB, AHa) = 5z + Oleh)-
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1-loop calculation

» The cosmological power spectra are scale-invariant to leading order.

» This is a consequence of simple dimensional analysis and is
independent of field content!

» The observed amplitude A%(gp) ~ O(10~7) for the scalar power
spectrum implies N ~ O(10*), justifying our use of the large N
limit.

» We can fit the upper bound on the ratio of tensor to scalar power
spectra by tuning the field content of the model:

s— AT IS LI,

A small upper bound on r requires more conformal scalars and
massless fermions and/or fewer gauge fields and minimal scalars.
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1-loop calculation

The leading contribution to (T;;T%;) is at 1-loop order. Since T;; has
dimension 3, and g3, does not appear to this order, it follows that

A(g) = CaN*q + O(g3m)-
T.(@ Tt @ B(g) = CeN’7’ + O(gyw)-

Explicit calculation then reveals:
Ca = Na +Ng+Ny +2N,;)/256, Cp = (Na+Ny)/256.
Using our holographic formulae, the cosmological power spectra are

1 1
A39) = gz + OB, @) = =5z +Oleh)-
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1-loop calculation

» The cosmological power spectra are scale-invariant to leading order.

» This is a consequence of simple dimensional analysis and is
independent of field content!

» The observed amplitude A%(gp) ~ O(10~?) for the scalar power
spectrum implies N ~ O(10%), justifying our use of the large N

limit.

» We can fit the upper bound on the ratio of tensor to scalar power
spectra by tuning the field content of the model:

r=A2/A2 = 32Cg/Ca.

A small upper bound on r requires more conformal scalars and
massless fermions and/or fewer gauge fields and minimal scalars.
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1-loop calculation

The leading contribution to (T;;T%;) is at 1-loop order. Since T;; has
dimension 3, and g3, does not appear to this order, it follows that

A(q) = CaN?*q + O(gym)-
Tjla) Tyl-a) B(q) = CgN2g> + O(g2y)-

Explicit calculation then reveals:
Ca=(Na+Ns+Ny +2Ny)/256, Cp = (Na+N;)/256.

Using our holographic formulae, the cosmological power spectra are

1
AYa) = g + OGN, AH@) = Sz + Ol
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1-loop calculation

» The cosmological power spectra are scale-invariant to leading order.

» This is a consequence of simple dimensional analysis and is
independent of field content!

» The observed amplitude A%(gp) ~ O(10~?) for the scalar power
spectrum implies N ~ O(10%), justifying our use of the large N

limit.

» We can fit the upper bound on the ratio of tensor to scalar power
spectra by tuning the field content of the model:

r— AL NS —CR/C,

A small upper bound on r requires more conformal scalars and
massless fermions and/or fewer gauge fields and minimal scalars.
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1-loop calculation

The leading contribution to (T;;T%;) is at 1-loop order. Since T;; has
dimension 3, and g3, does not appear to this order, it follows that

A(q) = CaN?*@ + O(g3m),
Tjta) Tyl-a) B(q) = CgN2§> + O(g2y)-

Explicit calculation then reveals:
Ca=(Na+Ns+Ny +2Ny)/256, Cpg = (Na+N;)/256.

Using our holographic formulae, the cosmological power spectra are

1 1
A3(9) = gz + OFm).  AHa) = 53 +Oleh)-
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1-loop calculation

» The cosmological power spectra are scale-invariant to leading order.

» This is a consequence of simple dimensional analysis and is
independent of field content!

» The observed amplitude A%(gp) ~ O(10~7) for the scalar power
spectrum implies N ~ O(10*), justifying our use of the large N
limit.

» We can fit the upper bound on the ratio of tensor to scalar power
spectra by tuning the field content of the model:

r—AZ /A2 —3CE/C,.

A small upper bound on r requires more conformal scalars and
massless fermions and/or fewer gauge fields and minimal scalars.
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1-loop calculation

The leading contribution to (T;;T%;) is at 1-loop order. Since T;; has
dimension 3, and g3, does not appear to this order, it follows that

A(q) = CaN?*q’ + O(gym)-
T.(@ Tat@  B(g) = CeN’7’ + O(g3in)-

Explicit calculation then reveals:
Ca=Na+Ng+Ny +2N,;)/256, Cp = (Na+Ny)/256.

Using our holographic formulae, the cosmological power spectra are

1
AYa) = o + OGN, AH@) = Sz + Ol
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1-loop calculation

» The cosmological power spectra are scale-invariant to leading order.

» This is a consequence of simple dimensional analysis and is
independent of field content!

» The observed amplitude A%(gp) ~ O(10~7) for the scalar power
spectrum implies N ~ O(10%), justifying our use of the large N

limit.

» We can fit the upper bound on the ratio of tensor to scalar power
spectra by tuning the field content of the model:

r— AT NS — 2 IC,

A small upper bound on r requires more conformal scalars and
massless fermions and/or fewer gauge fields and minimal scalars.
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1-loop calculation

The leading contribution to (T;;T%;) is at 1-loop order. Since T;; has
dimension 3, and g3, does not appear to this order, it follows that

A(q) = CaN?*q’ + O(gym)-
Tt Tyl-a) B(q) = CgN2g + O(g2y)-

Explicit calculation then reveals:
Ca = Na +Ng+Ny +2Ny;)/256, Cp = (Na+Ny)/256.

Using our holographic formulae, the cosmological power spectra are

1
AYa) = g + OGN, AH@) = gz + Olgdw).
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1-loop calculation

» The cosmological power spectra are scale-invariant to leading order.

» This is a consequence of simple dimensional analysis and is
independent of field content!

» The observed amplitude A%(gy) ~ O(10~7) for the scalar power
spectrum implies N ~ O(10%), justifying our use of the large N

limit.

» We can fit the upper bound on the ratio of tensor to scalar power
spectra by tuning the field content of the model:

r=A3 /A2 —3CE/C,.

A small upper bound on r requires more conformal scalars and
massless fermions and/or fewer gauge fields and minimal scalars.
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2-loop corrections

2-loop corrections to (T;;T};) engender small deviations from scale
invariance:

A(q) = CaAN?@[1 + Dagle In(g/qo) + O(gg))
B(g3) = CgN?3[1 + DggZs In(q/do) + O(g’s)]

where the dimensionless effective coupling

2 2 \T / —
get = 9yMmV/q.

ns(g)—1 = —DpggZs + O(g92g). nr(q) = —Dagls + O(g9s)-

» From WMAP, ns—1 ~ O(1072) at g = 0.002Mpc*
= g2 ~ O(1072), justifying our perturbative treatment of the QFT.
» Sign of spectral index requires full 2-loop calculation and is likely to
be model dependent.
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The spectral indices are pre-
dicted to run:

a; = dn,/ding
= _("3_1)+0(9:E)-

» This predicted running is
qualitatively different from
slow-roll inflation where
as/(ns—1) is of first order
in slow roll.

» Consistent with WMAP
data [arXiv:0803.0547].
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2-loop corrections

2-loop corrections to (T;;T};) engender small deviations from scale
invariance:

A(g) = CaAN?g@’[1 + DagZs n(g/qo) + O(gg)]
B(q) = CgN?q’[1 + DpgZ: n(q/qo) + O(g2s)]

where the dimensionless effective coupling

2 2 <
get = 9ym NV /q.

ns(qg)—1 = —DpgZs + O(g2g). nr(q) = —Dagls + O(g92s)-

» From WMAP, ns—1 ~ O(1072) at gy = 0.002Mpec '
= g ~ O(107?), justifying our perturbative treatment of the QFT.
» Sign of spectral index requires full 2-loop calculation and is likely to
be model dependent.
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The spectral indices are pre-
dicted to run:

a; = dn,/dIng
— —(ﬂ,—l)—l-()(gé[).

» This predicted running is
qualitatively different from
slow-roll inflation where
a,/(ns—1) is of first order
in slow roll.

» Consistent with WMAP
data [arXiv:0803.0547].
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2-loop corrections

2-loop corrections to (T;;T};) engender small deviations from scale
invariance:

A(g) = CaN?@’[1 + Dagls n(g/qo) + O(gg)]
B(q) = CgN?*q’[1 + DpgZs n(q/qo) + O(gls)]

where the dimensionless effective coupling

2 2 =
Geff — gYMiV/Q'

ns(q)—1 = —DpgZs + O(9k). nr(q) = —Dagls + O(g92s)-

» From WMAP, ns—1 ~ O(1072) at g = 0.002Mpec*
= gog ~ O(107?), justifying our perturbative treatment of the QFT.

» Sign of spectral index requires full 2-loop calculation and is likely to
be model dependent.
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The spectral indices are pre-
dicted to run:

a; = dn,/dIng
== _("3_1)4‘0(9:&)-

» This predicted running is
qualitatively different from
slow-roll inflation where
ag/(ns—1) is of first order
in slow roll.

» Consistent with WMAP
data [arXiv:0803.0547].
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Non-Gaussianities

Once N, g3, and the field content have been fixed, all remaining cosmo-
logical observables, including non-Gaussianities, may be directly computed.

» Programme currently underway to extract holographic predictions
for non-Gaussianity.

» Should provide stringent test of holographic models.

» An order of magnitude estimate suggests that holographic models
predict fyr is independent of N to leading order.
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Conclusions arXiv:0907 5542 1001.2007

» Presented holographic description of inflationary cosmology in terms
of a 3-dimensional dual QFT.

» Reproduces standard inflationary predictions in their regime of
applicability.

» In opposite regime, where gravitational description is strongly
coupled, we may use weakly coupled dual QFT to make predictions.

» Easy to find models that satisfy current observational constraints,
yet make distinct predictions from standard inflation.

» In particular, find new and simple mechanism for obtaining near
scale-invariant spectrum.
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Outlook

» Forthcoming observations (e.g. Planck) should dramatically tighten
observational constraints on many key cosmological parameters.

Planck sky coverage
as of 15 Dec 2000.

» Might provide the first observational evidence for the holographic
nature of our universe! J
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1-loop calculation

The leading contribution to (T;;T%;) is at 1-loop order. Since T;; has
dimension 3, and g3, does not appear to this order, it follows that

A(q) = CaN?*q + O(gym)-
Tita) Tyl-a) B(q) = CeN2g + O(g2)-

Explicit calculation then reveals:
Ca = Na +Ng+Ny +2N,;)/256, Cp = (Na +Ny)/256.

Using our holographic formulae, the cosmological power spectra are

1 1
A3(9) = gz + OB, @) = S5z + Oleh)-
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1-loop calculation

» The cosmological power spectra are scale-invariant to leading order.

» This is a consequence of simple dimensional analysis and is
independent of field content!

» The observed amplitude A%(gp) ~ O(10~7) for the scalar power

spectrum implies N ~ O(10%), justifying our use of the large N
limit.

» We can fit the upper bound on the ratio of tensor to scalar power
spectra by tuning the field content of the model:

r— A AT — 3lC

A small upper bound on r requires more conformal scalars and
massless fermions and/or fewer gauge fields and minimal scalars.
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2-loop corrections

2-loop corrections to (T;;T;;) engender small deviations from scale
invariance:

A(g) = CaN?@[1 + Dagls In(q/q0) + O(glg)]
B(g) = CgN?3[1 + DpgZ: In(q/do) + O(g’s)]

where the dimensionless effective coupling

2 2 T [ —
get = 9yMmN/q.

ns(qg)—1 = —DpggZs + O(g2g). nr(q) = —Dagls + O(g92s)-

» From WMAP, ns—1 ~ O(1072) at go = 0.002Mpec*
= g-g ~ O(107?), justifying our perturbative treatment of the QFT.

» Sign of spectral index requires full 2-loop calculation and is likely to
be model dependent.
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Holographic phenomenology for cosmology

» As a starting point one can consider the strong-gravity version of
asymptotically dS and asymptotically power-law cosmologies.

» Here we focus on the latter. These are dual to super-renormalisable
QFTs that depend on a single dimensionful coupling, g3,

» Prototype dual QFT: 3d SU(N) Yang-Mills theory coupled to
adjoint fermions and scalars (both conformally and minimally
coupled).

g%rujds'rtr _FIFIIJ_I_ (D{PJ)Z —(DXK)2+1ELWL

= 2 AMIMEMEM-GQM!; o2 MM PﬁLaLEQM¢£I¢§E]
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1-loop calculation

The leading contribution to (T;;T%;) is at 1-loop order. Since T;; has
dimension 3, and g3, does not appear to this order, it follows that

A(q) = CaN?*q’ + O(gvm)-
T(@ Tat@  B(g) = CaN’7’ + O(gin)-

Explicit calculation then reveals:
Ca=Na+Ng+Ny +2Ny;)/256, Cp = (Na+Ny)/256.
Using our holographic formulae, the cosmological power spectra are

1 1
A3(9) = gz + OB, @) = S5z +Oleh)-
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1-loop calculation

» The cosmological power spectra are scale-invariant to leading order.

» This is a consequence of simple dimensional analysis and is
independent of field content!

» The observed amplitude A%(gp) ~ O(10~7) for the scalar power
spectrum implies N ~ O(10%), justifying our use of the large N

limit.

» We can fit the upper bound on the ratio of tensor to scalar power
spectra by tuning the field content of the model:

r— AT NS — 2L,

A small upper bound on r requires more conformal scalars and
massless fermions and/or fewer gauge fields and minimal scalars.
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2-loop corrections

2-loop corrections to (T;;T;;) engender small deviations from scale
invariance:

A(g) = CAN?@[1 + DagZs In(g/qo) + O(gle)]
B(3) = CgN?@*[1 + DpgZ: In(g/do) + O(g’s)]

where the dimensionless effective coupling

2 2 <~
get = 9yMmV /4.

ns(q)—1 = —DggZe + O(g2g)-

nr(q) = —Dagle + O(g2g)-

» From WMAP, ns—1 ~ O(1072) at go = 0.002Mpec—*
= g2 ~ O(107?), justifying our perturbative treatment of the QFT.

» Sign of spectral index requires full 2-loop calculation and is likely to
be model dependent.
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1-loop calculation

The leading contribution to (T;;T%;) is at 1-loop order. Since T;; has
dimension 3, and g3, does not appear to this order, it follows that

A(q) = CaN*g’ + O(gym)-
T(@ Tat@  B(g) = CeN’7’ + Olgin)-

Explicit calculation then reveals:
Ca=Na +Ng+Ny +2N,;)/256, Cp = (Na+Ny)/256.

Using our holographic formulae, the cosmological power spectra are

1 1
A3(9) = pmgayz + OB, AHa) = S5z + Oleh)-
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Holographic phenomenology for cosmology

» As a starting point one can consider the strong-gravity version of
asymptotically dS and asymptotically power-law cosmologies.

» Here we focus on the latter. These are dual to super-renormalisable
QFTs that depend on a single dimensionful coupling, ¢+,

» Prototype dual QFT: 3d SU(N) Yang-Mills theory coupled to
adjoint fermions and scalars (both conformally and minimally
coupled).

e g?rufdsxtr _FIFII‘.J_I_ (D(PJ)z —(DXK)Z‘*'lELWL
+ Aty Moy, BV DM BM PN F‘ML Lg@M‘ﬁ’ii’#gz]
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1-loop calculation

The leading contribution to (T;;T%;) is at 1-loop order. Since T;; has
dimension 3, and g3, does not appear to this order, it follows that

A(g) = CaN*G + O(g¥%m)-
T.(@ Tal®  B(g) = CeN%g + O(g2y)-

Explicit calculation then reveals:
Ca=Na +Ng+Ny +2N,)/256, Cp = (Na+Ny)/256.

Using our holographic formulae, the cosmological power spectra are

1 1
A3(9) = gz + OB, AHa) = gz +Oleh)-
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Holographic phenomenology for cosmology

» As a starting point one can consider the strong-gravity version of
asymptotically dS and asymptotically power-law cosmologies.

» Here we focus on the latter. These are dual to super-renormalisable
QFTs that depend on a single dimensionful coupling, ¢+,

» Prototype dual QFT: 3d SU(N) Yang-Mills theory coupled to
adjoint fermions and scalars (both conformally and minimally
coupled).

. g?erdsItr _FIFIIJ_I_ (D{p.f)z —(DXK)2+§5LWL
+ Anty Mo are 3, DM RM2M @M o 28 | ML “i’?]
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1-loop calculation

The leading contribution to (T;;T%;) is at 1-loop order. Since T;; has
dimension 3, and g3, does not appear to this order, it follows that

A(g) = CaN?g" + O(g3m)-
T.(@) Tal®  B(g) = CeN?g + O(g3y)-

Explicit calculation then reveals:
Ca=Na +Ng+Ny +2Ny)/256, Cp = (Na+Ngy)/256.

Using our holographic formulae, the cosmological power spectra are

1 1
A3(9) = gagyz + 0. AH@) = 35 + Oleh).
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Holographic phenomenology for cosmology

» As a starting point one can consider the strong-gravity version of
asymptotically dS and asymptotically power-law cosmologies.

» Here we focus on the latter. These are dual to super-renormalisable
QFTs that depend on a single dimensionful coupling, ¢+,

» Prototype dual QFT: 3d SU(N) Yang-Mills theory coupled to
adjoint fermions and scalars (both conformally and minimally
coupled).

g%-M]ds'rtr _FIFIIJ_I_ (D{p.f)z _(DXK)Z'F'ELML

+ Anp Mo ara ag, @M DM2MPMe o ST @Myl "1’_52]
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1-loop calculation

The leading contribution to (T;;T%;) is at 1-loop order. Since T;; has
dimension 3, and g3, does not appear to this order, it follows that

A(q) = CaN?*@ + O(g3m),
Tj(@ Tt®  B(g) = CaN’g’ + O(g3n)-

Explicit calculation then reveals:
Ca = Na +Ng+Ny +2Ny)/256, Cp = (Na+Ny)/256.

Using our holographic formulae, the cosmological power spectra are

1 1
A39) = gz + OB, @) = S5 + Oleh)-
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2-loop corrections

2-loop corrections to (T;;T;;) engender small deviations from scale
invariance:

A(q) = CaAN?@[1 + Dagls In(g/qo) + O(gg))
B(g) = CgN?3[1 + DggZs In(q/do) + O(g’s)]

where the dimensionless effective coupling

2 2 T [ —
get = 9ym N /4.

ns(qg)—1 = —DpggZs + O(92). nr(q) = —Dagls + O(g92s)-

» From WMAP, ns—1 ~ O(1072) at gy = 0.002Mpe "
= g-& ~ O(107?), justifying our perturbative treatment of the QFT.

» Sign of spectral index requires full 2-loop calculation and is likely to
be model dependent.
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2-loop corrections

2-loop corrections to (T;;T;;) engender small deviations from scale
invariance:

A(g) = CaAN?@[1 + Dagls n(g/qo) + O(glg)]
B(g) = CgN?3[1 + DggZs In(q/do) + O(g’s)]

where the dimensionless effective coupling

2 2 \T / —
get = 9yMm NV /4.

ns(q)—1 = —DpggZs + O(92). nr(q) = —Dagls + O(g9ls)-

» From WMAP, ns—1 ~ O(1072) at g = 0.002Mpec*
= gog ~ O(107?), justifying our perturbative treatment of the QFT.

» Sign of spectral index requires full 2-loop calculation and is likely to
be model dependent.
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