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Abstract: A quantum theory of gravity implies a quantum theory of geometries. To
this end we will introduce different phases spaces and choices for the

space of discretized geometries. These are derived through a canonical

analysis of smplicity constraints - which are central for spin foam

models - and gluing constraints. We will discuss implications for

spin foam models and map out how to obtain a path integral

guantization starting from a canonical quantization.
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Spinfoams:
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Spin Foams and Plebanski action
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l o v e topological secror

* consider partition function based on BF (and Holst)
ecentral problem: impose simplicity constraints

* Barrett-Crane model ['98] : without Holst term (will be important later)
*‘master constraint method’ [ Engle. Pereira. Rovelli + Livine "07]
ecoherent state method [Freidel. Krasnov "07, Livine. Speziale '07, Conrady, Hnybida '10]
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Questions:

Aim:

Pirsa: 10030115

Spin Foams and Plebanski action

* relation to Dirac quantization?
esecondary simplicity constraints (Faddeev Popov determinant)? [Alexandrov '08]
erelation to LQG phase space’

erelation to Regge phase space [ length Regge calculus Regge ‘61,
area-angle Regge calculus BD, Speziale ‘08, phase space Bahr, BD 09, BD. Hoehn 09]

e analysis of discrete primary and secondary simplicity constraints: Dirac brackets
sCcontinuum [Buffencir. Henneaux. Noui. Roche ‘04, Krasnov. Alexandrov '08]

espin foam amplitudes from canonical quantization [Alexandrov "07. to do]
ewill find a few surprises
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Discrete phase space

ediscretize 3d spatial hypersurface via a triangulation: [Waelbroeck. Zapara "93]

i/} labels tetrahedra
{2J| labels triangles

{/Jk1 labels edges

eassociate to triangles (dual edges) 1{//]

M SO(4) holonomies
bivectors (SO(4) algebra)

esplit into dual and anti-selfdual parts:

E.—PE P2B —
= 1] x

| e

Inad | =
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Symplectic Structure

P 20 - i ~ARD 1
(B, M2 —— ' g2yt
4 -L__ll'. [ o L]_ | .__Il'n

(AL AGR) =0
A B
JLE."_,I': 'Ef_,: ¢ } =

_U'J’E == rHﬁ'J‘

B = —MPEE

*(Gauss constraints: closure for tetrahedra

gi = Z Ei;
3
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Gauge invariant phase space

[Diterich. Ryan "08]

ereduce first by Gauss constraints - prevents any (time) gauge fixing

Aije = Eije - Eijs
s E‘-’.'._;-T : Eiﬁtf
COS Qi+ -— — -
Vi E‘E_,r'f ’ EE_;’T E:’A‘—l- ’ EJE'—I-
i *\_E.M‘— ) [J[ii—*\'_f’n’—]
COs5 H;;{‘_Hf .=

VNijk= - Nijk+ Njir+ - Njux

A _ ABC B =C
-\.'_,l'ff'. = C t Es_; t Erﬁ.':

ofor 4-simplex 60 variables
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squared areas

3d dihedral angles

4d dihedral angles
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Simplicity constraints

diagonal simplicity dij = €eEjj - £y Aj,. = A
Cross Slmptht)’ 1'“3'.",' = I"_E-,Ji. - E.r.ﬂ COs f_'f".-'_,-'.ﬂ - — o= r_',l;_j-;, T
edge simplicity €;; = eky; - M Ey cosWipjir = cosbigji—

self-dual geometry = antiself-dual geometry

Theorem: [BD. Ryan '08]

For non-vanishing 3d-volume and non-parallel 4d normals for neighboring tetrahedra
one can reconstruct consistent tetrad assignments to edges on constraint hypersurface.
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Gauge invariant phase space

[Diterich. Ryan "08]

ereduce first by Gauss constraints - prevents any (time) gauge fixing

A = P

= Y fia

- E

= squared areas

Ef*.r'_;'f . E-"ﬁvf
'\, ET’--J'.T ‘ Ef-_;'_T Efk—l— - _Eg;,._l_

COS Qjjk+ = 3d dihedral angles

3\_.5_;',{.‘_— ’ (J [J'_jf*\'__j e )
cos t7; k.jl+ -— 4d dihedral angles

V '“\'*?_ gl *'-\"_E ¥l }"F jal—1"~ —\F ] ==

A _ ABC B =C
N 1kt C t Ef_; t Ef..f.':

ofor 4-simplex 60 variables
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Simplicity constraints

diagonal simplicity d;j = ekij - Eij Ajj. = Ajj
Cross 5|mPI|C[tY f.-e"_,l' — "-'Ei_;' . E.'r'.ﬂ' OS5 f._-:'_lu-;.'ll!,l:_ — {05 f,.?';_j'g-_
edge simplicity €.; =€k, - My Ey costipjiy = cosbipji—

self-dual geometry = antiself-dual geometry

Theorem: [BD. Ryan '08]

For non-vanishing 3d-volume and non-parallel 4d normals for neighboring tetrahedra
one can reconstruct consistent tetrad assignments to edges on constraint hypersurface.
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Reduction |

Dirac matrix for a 4-simplex

{ds.es} is diagonal with entries Ml =S |\ - |

vanishes for parallel normals —> X, ~sin# .

vanishes on gravitational sector
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Discrete phase space

sdiscretize 3d spatial hypersurface via a triangulation:

i/} labels tetrahedra
{2/} labels triangles

Lk} labels edges

eassociate to triangles (dual edges) 1{//]

M SO(4) holonomies

Eij bivectors (SO(4) algebra)

esplit into dual and anti-selfdual parts:

(B iy
Pirsa: 10030115 .

: I, . :
EJ'L — P__EBE;E: PJ‘L =3 [.H"J‘B —|—(_'JLB'

[Waelbroeck. Zapam "93]
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Spinfoams:

Pirsa: 10030115

Spin Foams and Plebanski action

" _ | 1 _ _
[E.A] = / [ b e Wl L W e W S
J M T T T ‘[
SO(4) ‘BF term Holst term.. | simplicity constraints
Barbero-lmmirzi ensure
parameter
f; K [ + = ¢ A graviatonal sector
o l - £ g topological secror

* consider partition function based on BF (and Holst)
ecentral problem: impose simplicity constraints

* Barrett-Crane model ['98] : without Holst term (will be important later)
*‘master constraint method’ [ Engle. Pereira. Rovelli + Livine "07]
ecoherent state method [Freidel. Krasnov "07, Livine, Speziale '07, Conrady, Hnybida '10]
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Discrete phase space

ediscretize 3d spatial hypersurface via a triangulation: [Waelbroeck. Zapara "93]

/! labels tetrahedra
{2J| labels triangles

Lk} labels edges

eassociate to triangles (dual edges) 1{/J]
MG SO(4) holonomies
bivectors (SO(4) algebra)

esplit into dual and anti-selfdual parts:

e
EL, =P E By — "7 ™)
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Symplectic Structure

e Yeor 1 ABD 3 DO
(B M0 — " ¢ 7'M
4 -!__ll'n [ & o L]_ I L g

{JI.'}E JI: l'Elf =0

(B, BB} = ——

*(Gauss constraints: closure for tetrahedra

n—3 b
J
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Ej; = —MPEG
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[ §
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Reduction |

Dirac matrix for a 4-simplex

{ds.es} is diagonal with entries 2 [0 | k=7

vanishes for parallel normals —> X, ~sin# .

vanishes on gravitational sector
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Simplicity constraints

diagonal simplicity dij = ek - E;; e =1
Cross sn-np“Clt); (E.I' —= F-E-.fj' : E”L COs f_'?,-'_‘-'h:— — o= r-’lf_j.""-'—
edge simplicity €;;j = eky - M Ey cos 614 cos g1

self-dual geometry = antiself-dual geometry

Theorem: [BD. Ryan '08]

For non-vanishing 3d-volume and non-parallel 4d normals for neighboring tetrahedra
one can reconstruct consistent tetrad assignments to edges on constraint hypersurface.

| o A _1
= &l AT
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Reduction |

Dirac matrix for a 4-simplex

{ds.es}  is diagonal with entries k=S e =4 |

vanishes for parallel normals —> X, ~sin#, ..

vanishes on gravitational sector
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Reduction |

Dirac matrix for a 4-simplex X = 0 {es.est {es.es]

& 1% 1 ]_ F T3 | \
; ! P 3 i 1) I - it E) i ,r.,[-
{ds.es} s diagonal with entries = R TR (_“ ek —] s+ -]

vanishes for parallel normals —> X, ~sin#, ..

vanishes on gravitational sector

. . il - L ey
{es.es} is band diagonal with entries O = —5— [Vemer —Yari=) —— Vg ¥k ]

Pirsa: 10030115 vanishes for degenerazes3d-vol

\.r-ﬁnlr-lnnn.- - nrﬂ\.nfﬂfrnnﬂl Pl T el =



g 3 e W . *|leads to first class subalgebra of cross
e | ¥ - simplicity for infinite Immirzi Parameter

(without Holst term)
[Engle, Pereira ‘08 ]

. S *3lso Dirac matrix not invertible in this case
vanishes on gravitational sector
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Reduction |

Dirac matrix for a 4-simplex

{ds.es} is diagonal with entries 2 [\ A /|

vanishes for parallel normals —> X, ~sinf, ..

vanishes on gravitational sector
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Reduction |

Dirac matrix for a 4-simplex

{ds.es} s diagonal with entries WE=Smog (e M

vanishes for parallel normals —> X, ~sin#, .

vanishes on gravitational sector

{es.es} is band diagonal with entries =5

Pirsa: 10030115 vanishes for degenerazerd-vol
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in full beauty ...
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Dirac brackets |

areas conjugated to extrinsic curvature

W A cos o5 /Ay Agcos o = Vi 3d angles do not commute, singular
without Holst term

Also the other brackets can be computed.
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in full beauty ...
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Dirac brackets |

(fogdi = {f.9} —{ [-®a} X2} {®5.9)

areas conjugated to extrinsic curvature

1V A ik cos O /Ay Aacos 0t = SV 3d angles do not commute, singular
without Holst term

Also the other brackets can be computed.
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Match to LQG phase space

Reduction from Plebanski. LQG Phase space.
v i 4 1.4 == > " il 3 E
) . {Er M \/
\ Aij- P .
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Match to LQG phase space

Reduction from Plebanski. LQG Phase space.
{R 1. 4. cos \ 1.4 cos l_:T — B ) r'lf:
) > {EE. MM = 5N
[/ 2i;. 0 '

But (because reduced conjugated variable is not a
connection anymore) one introduces the Ashtekar
(Barbero-Immirzi) connection

M~expA a; =E Lok

Al _\_“KPH_H /
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Match to LQG phase space

Reduction from Plebanski. LQG Phase space.
{Rl-lc'u:k ‘ul 1, cos :—:E — Er K —.r'lf:
) o (ES ALY =5 "M
: \ -_l 2 I . .

But (because reduced conjugated variable is not a
connection anymore) one introduces the Ashtekar
(Barbero-Immirzi) connection

M ~ecxp A 4 = ok

N = X ~H /

Complete agreement with (discrete) LQG phase space.
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Match to LQG phase space

Reduction from Plebanski. LQG Phase space.
v i A },;4 s > B R E
) . {EE.AM \/
v i P .
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Match to LQG phase space

Reduction from Plebanski.

Pirsa: 10030115

LQG Phase space.

2 o (EL MY =5 M

But (because reduced conjugated variable is not a
connection anymore) one introduces the Ashtekar
(Barbero-Immirzi) connection

A ~ exp¥
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Match to LQG phase space

Reduction from Plebanski. LQG Phase space.
{R Y. A cos \ | :—__.T. > E E’: 5 "E
2 (EY A ~ e\
(/A0 - 1

But (because reduced conjugated variable is not a
connection anymore) one introduces the Ashtekar
(Barbero-Immirzi) connection

M ~ exp A A —E ok

b exXp ~H /

Complete agreement with (discrete) LQG phase space.
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But ...
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Both phase spaces larger than Regge phase space!

reduced (l) Plebanski, LQG Regge on a simplex [BD. Ryan 08]

20 variables=10 length, 10 conjugated

30 variables= [0 areas, 10 3d angles,
momenta

|0 4d angles

But we should have had obtained consistent tetrad assignment to the edges.
At least for ‘generic configurations’.
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What is missing?

Situation resembles Area-angle Regge calculus [BD. Speziale 08]:
areas and 3d angles angles are free variables.

There we needed to add gluing constraints. These
ensure that two triangles shared by two tetrahedra,
have not only the same area but also the same shape!

COS ikl — COS Gkl

“Twisted geometries’ [Freidel. Speziale '10] from the full LQG phase space, do not satisfy gluing.
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Do we have to worry?

* seem to come from degenerate configurations, general problem of first order formal.?

*‘configuration space analysis’: obtain exactly 5 additional degrees of freedom if 4d
volume is zero [Conrady. Freidel "08]

eturn up in asymptotic analysis [Barrett. Fairbairn Hellmann et al "08]
vector geometries or BF contribution

eextrinsic curvature (phase for coherent state) cannot be determined

difficult to impaose: second class (plus first class for bigger triangulations)

Area-angle Regge calculus: need the gluing constraints to obtain correct dynamics of GR.
Otherwise all the areas are free variables: leads to flat geometries.
Gluing constraints impose (non-local) restrictions on spins.

Are the gluing constraints preserved by the dynamics?
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What is missing?

Situation resembles Area-angle Regge calculus [BD. Speziale 08]:
areas and 3d angles angles are free variables.

There we needed to add gluing constraints. These
ensure that two triangles shared by two tetrahedra,
have not only the same area but also the same shape!

COS ¥4kl — COS ikl

“Twisted geometries’ [Freidel. Speziale '10] from the full LQG phase space, do not satisfy gluing.
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Do we have to worry?

* seem to come from degenerate configurations, general problem of first order formal.?

*‘configuration space analysis’: obtain exactly 5 additional degrees of freedom if 4d
volume is zero [Conrady. Freidel '08]

eturn up in asymptotic analysis [Barretrt. Fairbairn Hellmann et al "08]
vector geometries or BF contribution

eextrinsic curvature (phase for coherent state) cannot be determined

edifficult to impose: second class (plus first class for bigger triangulations)

Area-angle Regge calculus: need the gluing constraints to obtain correct dynamics of GR.
Otherwise all the areas are free variables: leads to flat geometries.
Gluing constraints impose (non-local) restrictions on spins.

Are the gluing constraints preserved by the dynamics?
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Different formulations for gluing constraints

2d angles

COS ¥y = COS (kK]

2d angles computed

for the same triangle

in the two different
tetrahedra agree.
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Different formulations for gluing constraints

2d angles

COS Y jkl =— COS ik

2d angles computed

for the same triangle

in the two different
tetrahedra agree.

Pirsa: 10030115

3d angles and areas

3d angles completely

fixed as functions of
areas. Further

constraints between
areas for bigger
triangulations.

Easiest to compute
Dirac matrix.

Area constraints first
class. Need further
constraints!
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Different formulations for gluing constraints

2d angles

COS ;i jkl = COS Qvjik

2d angles computed

for the same triangle

in the two different
tetrahedra agree.

Pirsa: 10030115

3d angles and areas

(), e cxrs r_'.l..__. i _—1_

3d angles completely

fixed as functions of
areas. Further

constraints between
areas for bigger
triangulations.

Easiest to compute
Dirac matrix.

Area constraints first

class. Need further
constraints!

cosb;;; = cost;

4d angles

t)rman

4d angles computed
for the same triangle
in different ways
agree.
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Reduction Il (for simplex)

‘l'_j,'_,,fl — I_JJ.'J;I-‘_. = rJIJhg1 [ _}_:. .
| | ' *two constraints per tetrahedron

*Dirac matrix block diagonal with 2x2 blocks
*area commutes with gluing constraints

*

{ \”I H.:;J.Iu'f }-j =l

eBarbero-Immirzi parameter disappears
*‘non-commutativity of spatial geometry’ disappears

(parametrized by Barbero-Immirzi parameter)
ematch to Regge phase space
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Reduction Il (bigger)

*additional nonlocal constraints between areas
eare first class, therefore further constraints required (eample with two simplices [BD.Ryan'08] )
*than complete match to Regge phase space: length and conjugated variables

eon this phase space one can impose Hamiltonian and Diffeomorphism (pseudo) constraints or
Pachner moves
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Yijk = Ojjk

Pirsa: 10030115

=

Pijhk (1)

Reduction Il (for simplex)

*two constraints per tetrahedron
*Dirac matrix block diagonal with 2x2 blocks
*area commutes with gluing constraints

WA Bijrrr2 = 1

eBarbero-Immirzi parameter disappears
*‘non-commutativity of spatial geometry’ disappears

(parametrized by Barbero-Immirzi parameter)
ematch to Regge phase space
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Summary

first analysis of simplicity constraints in discrete setting

esurprises: degenerate sector seems to play big role

*Holst term seems to be essential

* QG phase space is not the space of simplicial geometries, but much bigger
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Qutlook

ereduction with gauge variables

*understand embedding of SU(2) variables into SO(4)

*reconsider quantization of a simplex (dynamics known) and derive spin foam amplitude
*go to bigger triangulation ...

*do gluing conditions propagate? [consider three simplices]
*more careful analysis [as Sergej complains] : irregular constraint system requires to consider degenerate

points separately.
*understand additional constraints for bigger triangulations on dihedral angles
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Qutlook

ereduction with gauge variables

*understand embedding of SU(2) variables into SO(4)

*reconsider quantization of a simplex (dynamics known) and derive spin foam amplitude
*go to bigger triangulation ...

*do gluing conditions propagate? [consider three simplices]
*more careful analysis [as Sergej complains] : irregular constraint system requires to consider degenerate

points separately.
eunderstand additional constraints for bigger triangulations on dihedral angles
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Non-commutative flux representation for LQG

[Baratin, BD, Orit, Tambornine: to appear really really soon]

|dea:

* take ‘non-commutative Fourier transform’ on SU(2) [Freidel, Livine ‘05, Freidel, Majid '06, Joung, Mourad, Noui '08]
*and apply to every edge in graph: triads act by non-commutative star multiplicatino

*make this transformation cylindrically consistent

*so that one can take the continuum limit

*Geometrical interpretation of resulting space? Spectral triple construction?
*Non-geometric part?
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A sketch

e / ule) Py esirerion Maps (even) function on the group SU(2) to a
| T certain class of functions on R"3.
Plane waves eq(x)
(e,(x) * ey )(x) = eyqr(x) define non-commutative multiplication for x variables.
(E' f)(x) = (' » f-' i) Flux operators act as non-commutative multiplication.
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A sketch

Map extends as unitary map to full
(continuum) Hilbert space of LQG.

Immediate geometrical interpretation of
Gauss law.

Pirsa: 10030115

ab.ar
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Qutlook

*Does this provide better understanding of quantum geometries’
srelation to non-commutative geometry’

*semiclassical states in x-space

eexpansion of non-commutative product: large j expansion?
*implementation of simplicity constraints [Baratin, Oriti]
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Do we have to worry?

* seem to come from degenerate configurations, general problem of first order formal.?

*'configuration space analysis’: obtain exactly 5 additional degrees of freedom if 4d
volume is zero [Conrady. Freidel "08]

eturn up in asymptotic analysis [Barrett. Fairbairn Hellmann et al "08]
vector geometries or BF contribution

eextrinsic curvature (phase for coherent state) cannot be determined

edifficult to impaose: second class (plus first class for bigger triangulations)

Area-angle Regge calculus: need the gluing constraints to obtain correct dynamics of GR.
Otherwise all the areas are free variables: leads to flat geometries.
Gluing constraints impose (non-local) restrictions on spins.

Are the gluing constraints preserved by the dynamics?
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Dirac brackets |

(fo9hr = {F. g} —{ [-®a} X} {@s. 9]

areas conjugated to extrinsic curvature

WV A cos 0. /Ay cos o = SV 3d angles do not commute, singular
without Holst term

Also the other brackets can be computed.
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Match to LQG phase space

Reduction from Plebanski. LQG Phase space.
(/A A5k €08 035, /A Agg cos 031} = Vi > (E'.E]) =~e"™E"
2 o (ELM \/

v i 0 '
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Match to LQG phase space

Reduction from Plebanski.

Pirsa: 10030115

LQG Phase space.

2 o (ELAETY=7&7M

But (because reduced conjugated variable is not a
connection anymore) one introduces the Ashtekar
(Barbero-Immirzi) connection

M ~ expr¥
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(Barbero-Immirzi) connection

AL =T* 4 oKT

M ~expd '
A exXp A # /
Complete agreement with (discrete) LQG phase space.
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connection anymore) one introduces the Ashtekar

M ~exp 4 :
/

M ~ exprf

Complete agreement with (discrete) LQG phase space.
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-
But (because reduced conjugated variable is not a
connection anymore) one introduces the Ashtekar

AF =T*+ 4KT

M ~exp A /

M ~ expo#

Complete agreement with (discrete) LQG phase space.
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{ \ A A coso; v 4,4, cos 0, } = ;T.' i . { FE j:“ |r - &
L ; — L, (EM) =1
L dorde 1V Aij-Oijkt ) :
tassspestlannm @A) But (because reduced conjug

connection anymore) one int

A ~ cXp A ‘]‘I

——

M ~ expf

Complete agreement with (discrete) LQG phase space.
Page 60/61



® Keynote Edit

File

insert Slide Format Arrange View Play Window Share Help < + B CF 004 Thuleldl Q
f

[TT LI -.|"||;:. = 'u' "__'-h'_'lj.u;_,' 1 -I"."—Hj-l:ﬁ-

LW ToRE 3 — I iE
2 - E L TLRPAR T ETAC I E AT Y

P o I-:!.I-- "
mena

i I bz tliege a|r
rmalization i ;

“E__.I,ﬁlg'ii|u|i.:;j!.i“l"| =i

adeiied .L;,_*.m.,_.[_:@._'-_g- p UL Hanare wigibkar Simume 1
’-55—:!-"—"-‘—*-'12'—"&?-&12 ahi Ll LT LT T EREARLY mymfi

—m = B L K s hanranigcie I|:=- nﬂ‘l!l!clt' “:l L 10 ey
MU eSS —, o Rl :-'L_;_m- el e i

5 ' - ; Jlelvinbd v inniidirinirjanayge
- id s = - B =
2 '_,‘ o BaezHuertal003.pdf R'ustenunﬂamentalg ham_ac uk 0 Lodi===
o T, S ERGET003:pdf*

: -'hlexan:lrnvﬁaﬂ’ bdfiR VTe 1’l}?IL‘:_';n:rf'.3."'*.'' >
ksEnergyBianchi g 2 _ * . . 2 . .

Tanasal90%.pdf

-'hlexan:irnvﬂ"ﬂSRmelll Er AI : jl]"l'l'i bmnﬁi}numng- - : l

=[5 Birsa: 1003 m-Cosmo. 1003, pl:lf"' harrrac uk E!E.ndF:'- .

reuter@thep



