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Abstract: Multipartite quantum states constitute a (if not the) key resource for quantum computations and protocols. However obtaining a generic,
structural understanding of entanglement in N-qubit systems is still largely an open problem. Here we show that multipartite quantum entanglement
admits a compositional structure. The two SL OCC-classes of genuinely entangled 3-qubit states, the GHZ-class and the W-class, exactly correspond
with the two kinds of commutative Frobenius algebras on C*2, namely “specia' ones and "anti-special’ ones. Within the graphical language of
symmetric monoidal categories, the distinction between “special’ and “anti-specia’ is purely topological, in terms of “connected' vs.~ disconnected'.
These GHZ and W Frobenius algebras form the primitives of a graphical calculus which is expressive enough to generate and reason about
representatives of arbitrary N-qubit states.

This calculus induces a generalised graph state paradigm for measurement-based quantum computing, and refines the graphical calculus of
complementary observables due to Duncan and one of the authors [ICALP08], which has aready shown itself to have many applications and admit
automation.

References. Bob Coecke and Aleks Kissinger, http://arxiv.org/abs/1002.2540

Pirsa: 10030114 Page 1/125



The Compositional Structure of Multipartite Quantum Entanglement
Bob Coecke and Aleks Kissin ger

{ /xtorn nmIveErsmy | GadidTied I aborseyg
4 i \ kLl

e, TR
EPSRC 7@5 TS M-
- “E';;""z_h

fquo

Pirsa: 10030114 Page 2/125




SLOCC
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Classifyving entanglement: Two multipartite quantum
states compare if by (possibly probabilistic) either lo-
cal or classical means one can be turned into the other.
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Classifving entanglement: Two multipartite quantum
states compare if by (possibly probabilistic) either lo-
cal or classical means one can be turned 1nto the other.

Two qubits:

Proof: A linear map either has an inverse or not.

Three qubits:

Proof: Significantly less trivial.
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GHZ-SLOCC-class representative:
GHZ = |000) + |111

Many applications in quantum computing e.g. fault-
tolerance: canonical witness of quantum non-locality.
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states compare if by (possibly probabilistic) either lo-
cal or classical means one can be turned into the other.

Two qubits:

Proof: A linear map either has an inverse or not.

Three qubits:

Proof: Significantly less trivial.
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GHZ-SLOCC-class representative:

GHZ = 0) +|111
Many applications in quantum computing e.g. fault-
tolerance: canonical witness of quantum non-locality.
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GHZ-SLOCC-class representative:
GHZ = |000) + |111

Many applications in quantum computing e.g. fault-
tolerance: canonical witness of quantum non-locality.

W-SLOCC-class representative:
‘[{_: Wil £ = !‘_I t 1T1iuH)

Occurs naturally in condensed matter physics.
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GHZ-SLOCC-class representative:
GHZ = |000) + |111

Many applications in quantum computing e.g. fault-
tolerance: canonical witness of quantum non-locality.

W-SLOCC-class representative:
II_: 1 - Y 4= | T1EXH)

. & . . A

Occurs naturally in condensed matter physics.

Bevond these it’s kind of a mess: continuous classes
for which no clear structure is identified. hence also no
systematic scheme for applications.
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Classifving entanglement: Two multipartite quantum
states compare if by (possibly probabilistic) either lo-
cal or classical means one can be turned into the other.

Two qubits:

Proof: A linear map either has an inverse or not.

Three qubits:

S ___r__,-F

Proof: Significantly less trivial.
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GHZ-SLOCC-class representative:

i.r;-; Z — HiE —

Many applications in quantum computing e.g. fault-
tolerance: canonical witness of quantum non-locality.

W-SLOCC-class representative:
W = |001) + |010) + |100

Occurs naturally 1in condensed matter physics.
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GHZ-SLOCC-class representative:
GHZ = |000) + |111

Many applications in quantum computing e.g. fault-
tolerance: canonical witness of quantum non-locality.

W-SLOCC-class representative:
W = 1001\ - 1010 = 1100

L i A

Occurs naturally in condensed matter physics.

Bevond these it’s kind of a mess: continuous classes
for which no clear structure 1s identified. hence also no
systematic scheme for applications.
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— this talk —

e The algebraic similarity and purely topological
difference for GHZ and W SLOCC-class states.
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GHZ-SLOCC-class representative:
GHZ = |000) + |111

Many applications in quantum computing e.g. fault-
tolerance: canonical witness of quantum non-locality.

W-SLOCC-class representative:
W = 1001Y 4+ 01¢ 4 (T1(H)

Occurs naturally in condensed matter physics.

Bevond these it’s Kind of a mess: continuous classes
for which no clear structure 1s identified. hence also no
systematic scheme for applications.
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— this talk —

e The algebraic similarity and purely topological
difference for GHZ and W SLOCC-class states.
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—thas talk —

e The algebraic similarity and purelyv topological
difference for GHZ and W SLOCC-class states.

e A compeositional paradigm for multipartite quan-
tum entanglement, with GHZ and W as generators.
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— this talk —

e The algebraic similarity and purely topological
difference for GHZ and W SLOCC-class states.

e A compositional paradigm for multipartite quan-
tum entanglement, with GHZ and W as generators.

— Discreteness supports automation e.g. protocol design

¢ Quantum structural paradigm and graphical cal-
culus which subsumes complementary observables:

— GHZ/W-duality more fundamental than complementarity’
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GHZ-SLOCC-class representative:

GHZ = 10005 = 1111

PN

L —
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— commutative Frobenius algebras —
A commutative monoid 1s a set A with a binary map
pl—,—):AX A— A
which 1s commutative. associative and unital 1.e

plp(a.b),c) = pla, u(b.c)) pla.b) = ulb.a) pla.1) =a
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— commutative Frobenius algebras —

A commutative monoid 1s a set A with a binary map
—e— A8 A
which 1s commutative. associative and unital 1.e

aeblec=ae(bec) aeb=bea ael =a

Pirsa: 10030114 Page 39/125




— commutative Frobenius algebras —

A commutative monoid 1s a set A with a binary map
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— commutative Frobenius algebras —

A commutative monoid 1s a set A with a binary map

p:AxXxA— A
which 1s commutative. associative and unital 1.e
po(pxly) = po(laxpu) p=pooc po(lyxe)=14
with:
S s 5 A 1 =
i
— A = =
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— commutative Frobenius algebras —

A commutative monoid i1s a set A with a binary map

H:-AxXA— A
which 1s commutative. associative and unital 1.e
po(pxly) = po(laxu) pm=poo po(lyxe)=1,4
with:
= t - A 1 S
i
= =
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— commutative Frobenius algebras —

A commutative monoid 1s a set A with a binary map
n:AxA— A
which is commutative. associative and unital i.e

po(puxly) = po(laxpu) pm=poo po(lyxe)=14

A cocomutative comonoid 1s a set A with a binary map

;f ; -—1 — —l " —l
which 1s cocommutative. coassociative and counital Le
"5‘ 1‘1 ff.q: ]._Jl'fi'- :fi :";:r’_T:f_i u]__l-F_'-r :r_i:]__i
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— commutative Frobenius algebras —

A commutative monoid 1s object A with morphism
BH:-AA— A
which is commutative. associative and unital 1.e

po(pu=ly) = po(ly@pu) p=poo po(lye)=14

A cocomutative comonoid 1s object A with morphism
3:-A—A A
which 1s cocommutative. coassociative and counital 1.e

0 I-.l 0 — ]._;_ 0)00 O =000 ']-.1 F__'F_"_ ri — 1_{
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— commutative Frobenius algebras —

A commutative monoid is object A with morphisms

, A:A;A—A v A
NS e -NEe

A cocommutative comonoid i1s object A with morphisms

_ ﬁ;‘a—la_a Ay
CRTNUECHEY
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— commutative Frobenius algebras —
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— commutative Frobenius algebras —

A commutative monoid 1s a set A with a binary map

H:AxA— A
which 1s commutative. associative and unital 1.e
po(pxly) = po(laxpu) pm=pooc po(lyxe)=14
with:
=4 i — A4 | s
1
A =3
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— commutative Frobenius algebras —

A commutative monoid 1s a set A with a binary map
w:AxA— A
which i1s commutative, associative and unital i.e

po(pxly) = po(laxpu) p=poo po(lyxe)=14

A cocomutative comonoid 1s a set A with a binary map
d:A—Ax A
which 1s cocommutative, coassociative and counital re

r_‘}‘f . 1‘1 :;i — ]__,1 <0 )00 0O — 000 i]-_l K £ JOg — ]._JL
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— commutative Frobenius algebras —

A commutative monoid 1s object A with morphism
H:-AA— A
which 1s commutative. associative and unital 1.e

po(p=ly) = po(la=2pu) pm=poo po(ly=e)=14

A cocomutative comonoid 1s object A with morphism
o _—1 —> -‘l. -_‘.
which 1s cocommutative. coassociative and counital 1.e

0214)080 =(14260)0d d =008 (ly2€e)od=14
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— commutative Frobenius algebras —

A commutative monoid 1s a set A with a binary map
u:AxXxA— A
which 1s commutative. associative and unital 1.e

po(pxly) =po(laxpu) pm=poo po(lyxe)=14

A cocomutative comonoid 1s a set A with a binary map
d:A—Ax A

which 1s cocommutative. coassociative and counital Le
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— commutative Frobenius algebras —

A commutative monoid 1s object A with morphism
n:-AA— A
which 1s commutative. associative and unital 1.e

po(p=ly) = po(la=2pu) pm=poo po(lyg®e)=14

A cocomutative comonoid 1s object A with morphism
0:A—> AR A
which 1s cocommutative. coassociative and counital i.e

r’j'- 11 :f;]' = 1{ r} :I} t‘ = f'_T':,r} .Il f._T _-:‘,a_} = 1{
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— commutative Frobenius algebras —

A commutative monoid is a set A with a binary map
H:AxA— A

which 1s commutative. associative and unital 1.e

po(pxly) = po(lyxXu) p= puoo =

po(lyxe) =14

A cocomutative comonoid 1s a set A with a binary map

d:A—Ax A

which 1s cocommutative. coassociative and counital L.e

fj'-- 1‘1 :;i: 1-{.r‘; :.'_; t}:(_T:.r_i ;]__l..‘;_'.F :Fi:]-l
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— commutative Frobenius algebras —

A commutative monoid 1s object A with morphism
H:-AA— A
which is commutative. associative and unital i.e

po(p2ly) = po(ly@pu) p=poo po(ly=e) =14

A cocomutative comonoid 1s object A with morphism
0:A— A A
which 1s cocommutative. coassociative and counital L.e

- - - - r -

) 1‘1 0 = 1_1 000 O =000 i}-.l € |00 = ]-.i
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— commutative Frobenius algebras —

A commutative monoid 1s object A with morphisms

q A:,{_A—A W -4
A AR =M

A cocommutative comonoid 1s object A with morphisms

_ *;A—A--{ Ay
Y Y=g =Y
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— commutative Frobenius algebras —
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— commutative Frobenius algebras —

FdHilb:
{ 0y — |00y 1015110
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— commutative Frobenius algebras —

Thm. In FHilb special CFAs. 1e

AJ=E 0

Frobenius special

exactly correspond with (arbitrary 1.e. non-ONB) bases
on the underlying Hilbert space via the correspondence:

Pirsa: 10030114 Page 59/125




— commutative Frobenius algebras —

A commutative monoid is object A with morphisms

1 y  QEEEE v -4
A AR M

A cocommutative comonoid is object A with morphisms

_ *;A—A A Ay
CEINVECEE
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— commutative Frobenius algebras —
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— commutative Frobenius algebras —
FdHilb:

A (B N (B
A mTE e
2 Ll T - i
et~ gl
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— commutative Frobenius algebras —

Thm. In FHilb special CFAs. Le

AJ=E 0

Frobenius special

exactly correspond with (arbitrary 1.e. non-ONB) bases
on the underlying Hilbert space via the correspondence:
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GHZ AND W:
ALGEBRAIC SIMILARITY
and
TOPOLOGICAL DIFFERENCE




— commutative Frobenius algebras —

Thm. In FHilb special CFAs. i.e

AJ-E 0=

Frobenius special

exactly correspond with (arbitrary 1.e. non-ONB) bases
on the underlying Hilbert space via the correspondence:
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GHZ AND W:
ALGEBRAIC SIMILARITY

and
TOPOLOGICAL DIFFERENCE




— (-1f r r_—l N

tripartite states —

From (co)monoid and (co)unit we build tripartite (co)state:

J-ﬂ_.__REL ) — P — 1
) e == = L =1
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—_— ("r r r_—l )

ripartite states —

From tripartite state and unit we build:

.-"'f

Tl

M= | 1=l

=

with “T T~ sd1. | RI_H l/‘,lf —

and via transposition we obtain comonoid.
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=

Propeosition. A special CFA on C-, 1e.

=2, [0

induces a symmetric GHZ -class state, and vice versa.
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— C(F )As

tripartite states —

From (co)monoid and (co)unit we build tripartite (co)state:

e
w—
1

=
1

)

o = il
o
EH\//
_ -'-I-H-‘-H-\- T
_ - -
e ""‘--..\_‘_\H a— l —
| | 5
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rt

Propesition. A special CFA on C-, Le.

J=4 [QF

induces a symmetric GHZ -class state, and vice versa.
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— (-'{ r :_—l S

tripartite states —

From tripartite state and unit we build:

a WﬁL g

with E’lfﬁ | —‘_T / — |

and via transposition we obtain comonoid.
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')

Propeosition. A special CFA on C-, 1.e

(J=2 |[O

induces a symmetric GHZ-class state, and vice versa.

Propeosition. An anti-special CFA on C-, i.e.

MJ-E 0-8

induces a symmetric W-class state, and vice versa.
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— CFA axioms —

CETNURS
- =
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— CFA axioms —

CEINRS
-y J=X

2N
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GRAPHICAL REASONING
WITH SCFAs and ACFAs




— CFA axioms —

CETNURS
BEN R
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| o]

Propesition. A special CFA on C-, 1.e.

EVE=A =

induces a symmetric GHZ-class state, and vice versa.

Propesition. An anti-special CFA on C

MJ=x O"’

induces a symmetric W-class state, and vice versa.

Proposition. Every CFA on C? is either special or

anti-special: every monoid on C* extends to an CFA.
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— CFA axioms —

CEINRS
- =
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— CFA axioms —

CEINRS
- AJ=

~
%,
b,

Pirsa: 10030114 Page 81/125




GRAPHICAL REASONING
WITH SCFAs and ACFAs




— CFA axioms —

V=% U=@
= (V=1
[-0-8
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— CFA normal form —
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— CFA axioms —

CETRURS
= NJ=x
|- 0-8
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— CFA normal form —
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— CFA axioms —

CETRURS
= NJ=x
|- 0-8
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—_— GHZ- \'[}f{f{’f'h‘ S—

T —TIT7 _A

r1_._r|, —

Data:

Rules:
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— CFA normal form —
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— CFA axioms —

CETRURS
= NJ=x
|- 0-8
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S u-'{[’fdt'f'w —

=
.Q_Q ==

m-+m’ — 1

Data:

RUIQ‘{-.;:
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— Wespiders —

x E‘.Q.Q-n.m-—if?

Data:

Rules:
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— CFA axioms —

CETRURS
= NJ=x
|- 0-8
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— GHZ-spiders —

Data:

Rules:

] >
m-+m —k
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— Wespiders —

_Q.Q | n,meN

m-+m — 1

Data:

Rules:
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— Wespiders —

Nwm _
xin.é.(?n.m-—'f:

Data:

Rules:

=
-

m4+-m —. m4+m —
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— Wespider example —

Examples:
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COMPOSING W AND GHZ




— composition of structures —

Examples:

e G H Z-states = multi-qubit GHZ

o IV -states = multi-qubit W
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COMPOSING W AND GHZ




— composition of structures —

Examples:

e G H Z-states = multi-qubit GHZ

e IV -states = multi-qubit W
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— composition of different structures —
Examples:

e + & x = general polynomials.
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— composttion of different structures —

Examples:
e + & x = general polynomials.
e {0),[1)}-& {|+).|—) ;-bases = graph states.
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— composition of different structures —
Examples:

e + & x = general polynomials.

e{0),|1)}-& {|+).|—) }-bases = graph states.

e GHZ- & W -states = 2??
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— composition of W- and GHZ-CFAs —

Interaction rules:




— composttion of different structures —
Examples:

e + & x = general polynomials.

-y i

e {0),|1)}- & {|+),|—) }-bases = graph states.

e GHZ- & W -states = 2??

WP
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— composition of W- and GHZ-CFAs —

Interaction rules:
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— composition of W- and GHZ-CFAs —

Interaction rules:

b=MJ=MJ 1=¢

\J_ ST
=8

Correspondence:

e Structural points of W are copyable points of GHZ
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— composition of W- and GHZ-CFAs —
Generating power:

Emulating SLOCC-superclass generation:
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— composition of W- and GHZ-CFAs —

Interaction rules:

t=MJ=MNJ 1=§

St S=-% 3
=41 1

Correspondence:

e Structural points of W are copyable points of GHZ
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— composition of W- and GHZ-CFAs —
Generating power:

Emulating SLOCC-superclass generation:
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— {'t”H{HM’HfUH H_f W-and GHZ-CFAs —
Generating power:

Some four qubit SLOCC-superclass representatives:

o~

= e o By

L
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— composition of W- and GHZ-CFAs —
Generating power:
Some four qubit SLOCC-superclass representatives:

A four qubit continuous SLOCC-superclass:
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COMPLEMENTARY
IS SUBSUMED




Thm. Under the assumption that one-input operations
are determined by their action of W structural points.

together with the GHZ CFA define a pair of comple-
mentary observables.
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— this talk —

e The algebraic similarity and purelv topological difference
for GHZ and W SLOCC-class states.

e A compesitional paradigm for multipartite quantum entan-
glement. with GHZ and W as generators.

— Discreteness supports automation e.g. protocol design

e Quantum structural paradigm and graphical calculus which
subsumes complementary observables:

- GHZ/W-duality more fundamental than complementarity’?

Ref: B. Coecke and A. Kissinger (2010) The compositional struc-

ture of multipartite quantum entanglement. arXiv:1002.2540
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— CFA axioms —

CETNRS
- =
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Classifving entanglement: Two multipartite quantum
states compare if by (possibly probabilistic) either lo-
cal or classical means one can be turned into the other.
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The Compositional Structure of \!uitipanm {‘)udntum Entanglement
Jr' W7 {. M i F S 1‘1

(/rror [myvErsay | NI m TN YT

EPSRC -
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SLOCC
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— commutative Frobenius algebras —

A commutative monoid is object A with morphisms

q A;_{_‘A—A W -4
A =4

A cocommutative comonoid is object A with morphisms

_ ﬁ;‘a—x‘{ Ay
CEINVECEE
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—_ {'HHJ;M\'HEHH of structures —

Examples:

e G H Z-states = multi-qubit GHZ

e W -states = multi-qubit W
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S H_-\'[J:'lih‘f‘ t-’.'L'cHH[J/.{' —

Examples:
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