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1-D Wave Equation: Crank-Nicholson Scheme

e Written out in full, this is

n—+1 n n+1 n+1 n n
{Il_; — ‘I,_; B l H_I+1 — H_;—l i H_r+1 . H;—l (41)
At - 2Ax 2 Ax

e Note that the Crank-Nicholson scheme immediately generalizes to any equation
that can be written in the form

ug = L[u] (42)
where is L is some spatial operator. A Crank-Nicholson FDA of (42) is
d;!+l N ”T l h n+1 i 1
— = E (L [H“ ] + L [H ) (43)

At :

where L" is some discretization of L, not necessarily second order
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e Also observe that Crank-Nicholson scheme is a two-level method (couples



FDAs: Back to the Basics—Concepts & Definitions

e Will be considering the finite-difference approximation (FDA) of PDEs-0—will
generally be interested in the continuum limit, where the mesh spacing, or grid
spacing, usually denoted /., tends to 0.

e Because any specific calculation must necessarily be performed at some
specific, finite value of , we will also be (extremely!) interested in the way
that our discrete solution varies as a function of /.

o Will always view h as the basic “control” parameter of a typical FDA.

e Fundamentally, for sensibly constructed FDAs, we expect the error in the
approximation to go to 0, as /i goes to 0.
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Some Basic Concepts, Definitions and Techniques

o Let
Lu=f (54)

denote a general differential system.

e For simplicity, concreteness, can think of « = u(.r.t) as a single function of one
space variable and time,

e Discussion applies to cases in more independent variables
(u(x,y.t). ulr.y.z.t) --- etc.), as well as multiple dependent variables

(.: =u= [”1- Uz, *--, un]).

e In (54), L is some differential operator (such as J;; — d,.) in our wave equation
example), « is the unknown, and f is some specified function (frequently called
a source function) of the independent variables.
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Some Basic Concepts, Definitions and Techniques

e Here and in the following, will sometimes be convenient use notation where a
superscript /» on a symbol indicates that it is discrete, or associated with the
FDA, rather than the continuum.

» With this notation, we will generically denote an FDA of (54) by
Lh ”h - fh (55)

where «" is the discrete solution, f” is the specified function evaluated on the
finite-difference mesh, and L" is the finite-difference approximation of L.
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Residual

e Note that another way of writing our FDA is

th!h . fl': == (56)

e Often useful to view FDAs in this form for following reasons

e Have a canonical view of what it means to solve the FDA—"“drive the
left-hand side to 0.

e For iterative approaches to the solution of the FDA (which are common,
since it may be too expensive to solve the algebraic equations directly), are
naturally lead to the concept of a residual.

e Residual is simply the level of “non-satisfaction” of our FDA (and, indeed, of
any algebraic expression).

e Specifically, if " is some approximation to the true solution of the FDA, u”,
then the residual, ", associated with #" is just

~ /
=Lt — f" (57)
Pirsa: 10030101 Page 9/58

A | f\"'l.l'll_' *‘ﬂ +l‘lﬂ ‘i:f\l.l‘ ﬂ‘- — rﬂ“llﬂ'ﬂ'ﬂ“* :+ﬂ"l+:llﬂ 'Y a2V arF-"T= — g l‘ﬂ:“l‘l‘ ro-m -7 .1 l‘ll‘.:‘-l\ “A':Ilﬂf‘



Truncation Error

e Truncation error, 7", of an FDA is defined by

_'_I,J — Lf?” - _I.h (58)
where u satisfies the continuum PDE (54).

e Note that the form of the truncation error can always be computed (typically

using Taylor series) from the finite difference approximation and the differential
equations.
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Convergence

Assume FDA is characterized by a single discretization scale, /7,
we say that the approximation converges if and only if

nh —u as h—D0. (59)

In practice, convergence is clearly our chief concern as numerical analysts,
particularly if there is reason to suspect that the solutions of our PDEs are
good models for real phenomena.

Note that this is believed to be the case for many interesting problems in
general relativistic astrophysics—the two black hole problem being an excellent
example.
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Consistency

e Assume FDA with truncation error 7" is characterized by a single discretization
scale, h,

e Say that the FDA is consistent if

™50 as h — 0. (60)

e Consistency is obviously a necessary condition for convergence.
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Order of an FDA

e Assume FDA is characterized by a single discretization scale, /

e Say that the FDA is p-th order accurate or simply p-th order if

lim T'f' — O(h?P) for some 1111‘1-3_"1_-1‘ p (61)
h—0
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Solution Error

e Solution error, ¢", associated with an FDA is defined by
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Order of an FDA

e Assume FDA is characterized by a single discretization scale, /

e Say that the FDA is p-th order accurate or simply p-th order if

lim 7" = O(hP) for some integer p (61)
h—0
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Solution Error

e Solution error, ¢, associated with an FDA is defined by

e=u—u" (62)
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Relation Between Truncation Error and Solution
Error

e Common to tacitly assume that

P — O(hP) — e = O(hP?)

e Assumption is often warranted, but is extremely instructive to consider why it is
warranted and to investigate (following Richardson 1910 (!)) in some detail the

nature of the solution error.

e Will return to this issue in more detail later.
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Error Analysis and Convergence Tests

e Discussion here applies to essentially any continuum problem which is solved
using FDAs on a uniform mesh structure.

e In particular, applies to the treatment of ODEs and elliptic problems

e For such problems convergence is often easier to achieve due to fact that the
FDAs are typically intrinsically stable

e Also note that departures from non-uniformity in the mesh do not, in general,
complete destroy the picture: however, do tend to distort it in ways that are
beyond the scope of these notes.

e Difficult to overstate importance of convergence studies
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Sample Analysis: The Advection Equation

e Consider solution of advection equation,

ug = auy (a>0) 0<2<1 t>20 (63)

u(xr,0) = uglr)

with periodic boundary conditions; i.e. = = 00 and = = 1 identified

e Note that initial conditions ug(.r) must be compatible with periodicity, i.e must
specify periodic initial data.

e Given initial data, ug(.r), can immediately write down the full solution
ulxr.t) = uplxr + at mod 1) (64)

where mod is the modulus function which “wraps” r +a f, t > 0 onto the unit
interval.
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Sample Analysis: The Advection Equation

e Consider solution of advection equation,

ug = aury (a>0) 0<2<1. t>0 (63)

IHJ'.“':I —— -‘|'|_||.f':|

with periodic boundary conditions; i.e. = = 00 and = = 1 identified

e Note that initial conditions ug(r) must be compatible with periodicity, i.e must
specify periodic initial data.

e Given initial data, ug(r), can immediately write down the full solution
u(x.t) = uglxr + at mod 1) (64)

where mod is the modulus function which “wraps” = +a f, t > 0 onto the unit
interval.
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Sample Analysis: The Advection Equation

Due to the simplicity and solubility of this problem, will see that can perform a
rather complete closed-form ( “analytic” ) treatment of the convergence of

simple FDAs of (63).

Point of the exercise, however, is not to advocate parallel closed-form
treatments for more complicated problems.

Rather, key idea to be extracted that, in principle (always), and in practice
(almost always, i.e. I've never seen a case where it didn't work, but then there’s
a lot of computations | haven't seen):

h

The error, ¢", of an FDA is no less computable than the solution, u" itself

Has widespread ramifications, one of which is that there is no excuse for
publishing solutions of FDAs without error bars, or their equivalents!
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Sample Analysis: The Advection Equation

e First introduce some difference operators for the usual Of h?) centred
approximations of d, and 0;:

il —
n 71+1 >3
Dr -‘!J = 9 —' (65)
nf“+1 - ”n -1
n 7 3
Dr “'.f — 2_1" (66)
e Again take
Ar = h At = A Ax = A\h

and hold A fixed as / varies, so that, as usual, FDA is characterized by the
single scale parameter, /.

e First key idea behind error analysis: want to view the solution of the FDA as a
continuum problem,

e Hence express both the difference operators and the FDA solution as asymptotic
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Sample Analysis: The Advection Equation

e Have the following expansions for /), and D;:

1,
D; = Oz+ch”Orax + 0 h*) (67)
)
l ) o
D, = ,+ F.\'b' Oyee + O(h*) (68)

e In terms of the general, abstract formulation discussed earlier, have

Lu—f=0 — (O —ady)u=0
LL.;" - fh —i | — (D¢ —a D) ;:h — |
» l ) v |
1% — f}’ =l — (D; —aD,)u=1"=—h? (X280 — a0z ) u + O(R?

J
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Sample Analysis: The Advection Equation

e Second key idea behind error analysis: The Richardson ansatz: Appeal to L.F.
Richardson’s old observation (ansatz), that the solution, ", of any FDA which

1. Uses a uniform mesh structure with scale parameter /,
2. Is completely centred

should have the following expansion in the limit & — 0:

uh[.r.f) =wzZ.5)+ hzr'-_?;,r,f} 2 [34,-4( o o (B I— (72)

e Here u is the continuum solution, while ¢4, ¢4, --- are (continuum) error
functions which do not depend on h.

e The Richardson expansion (72), is the key expression from which almost all

error analysis of FDAs derives.
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Sample Analysis: The Advection Equation

e Have the following expansions for D, and D;:

1,
D: = Or+ -h"Orzz + Of h*) (67)
)
2 1 > . I_
Dr = l'_’f -+ f__'.\-h- (-’f!f -+ ()| h ] (68)

e In terms of the general, abstract formulation discussed earlier, have

Lu—f=0 - (O —ad)u=10
Lh.;" - f" =0 — (D¢ —a D) .-.fh =
: 1.2/.2 :
Lh I — fh == —> (D —aD,)u= r® = {—_hl (A“Oss — a r:‘,.r.r.r) u+ O(h*
J
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Sample Analysis: The Advection Equation

e Second key idea behind error analysis: The Richardson ansatz: Appeal to L.F.
Richardson's old observation (ansatz), that the solution, «", of any FDA which

1. Uses a uniform mesh structure with scale parameter /,
2. Is completely centred

should have the following expansion in the limit /i — 0:

uh(z. 1) = u(z.t) + h2eax(x.t) + hieg(x.t) + - - - (72)

e Here u is the continuum solution, while ¢4, ¢4, - - - are (continuum) error
functions which do not depend on h.

e The Richardson expansion (72), is the key expression from which almost all
error analysis of FDAs derives.
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Sample Analysis: The Advection Equation

In the case that the FDA is not completely centred, we will have to modify the
ansatz.

In particular, for first order schemes, will have

.f"[.r.f} = ul(x.t)+ hey(x.t) + he . t)+ h3e a(z, t) + - -- (73)

Also note that Richardson expansion is completely compatible with the
assertion discussed previously namely that

rh —O(h2) — e*=u—u"=0(h?) (74)

However, Richardson form contains much more information than “second-order
truncation error should imply second-order solution error”

Dictates the precise form of the /i dependence of u".
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Sample Analysis: The Advection Equation

e Given the Richardson expansion, can proceed with error analysis.

e Start from the FDA, L"u" — f* =0, and replace both L" and «" with
continuum expansions:

Lhb =0 —  (Dy—aD,;)(u+h%e+---)=0

|

o 1l .,
(f:)r + F'\"h-(.')fff — f:)J_. P -('_—_'”Ah‘ f: TTT —+— .. ')
) )

< (u+ h%ea+---) =0

e Now demand that terms in above vanish order-by-order in /
e At O(1) (zeroth-order), have

(D —ad,)u=0 (75)
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Sample Analysis: The Advection Equation

e More interestingly, at O(h?) (second-order), find

1 o
(O —ady) ez = = (@0rzr — AN “Ottt) u (76)
)

e View u as a “known” function, then this is simply a PDE for the leading order
error function, e,.

e Moreover, the PDE governing ¢ is of precisely the same nature as the original
PDE, (0 — ad,)u =0
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Sample Analysis: The Advection Equation

e In fact, can solve (76) for e,.

e Given the “natural” initial conditions
f:[.!‘_”} — )

(i.e. we initialize the FDA with the exact solution so that u" = u at t = 0),
and defining q(r + at):

1. o) | of | =
glz 1+ at) = E” (1 —Aa®)Opppulx.t)

have
f-j_;{..".f'l = fq'.'.f‘ + at 111t_Hl 1) (7?)

e Note that, as is typical for leap-frog, we have linear growth of the finite
difference error with time (to leading order in /).
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Sample Analysis: The Advection Equation
e In fact, can solve (76) for €.
e Given the “natural” initial conditions

ea(x.0) =0

(i.e. we initialize the FDA with the exact solution so that »" = u at t = 0),
and defining g(r + at ):

] — R
glxr+at) = —a ( 1 — Xe el . E)
§

have
eolr.t) =tqglxr + at mod 1) (77)

e Note that, as is typical for leap-frog, we have linear growth of the finite
difference error with time (to leading order in /).
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Sample Analysis: The Advection Equation
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] 9 9y .
glz+at) =-a ( 1 — /\.2”.1'. Otttz 1)
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Sample Analysis: The Advection Equation

e Also note that analysis can be extended to higher order in i—what results,

then, is an entire hierarchy of differential equations for « and the error
functions eo, ¢4, €5, - -

e Indeed, useful to keep following view in mind:

When one solves an FDA of a PDE, one is not solving some system which
Is “simplified” relative to the PDE, rather, one is solving a much richer

system consisting of an (infinite) hierarchy of PDEs, one for each function
appearing in the Richardson expansion ([72)).
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Convergence Tests

In general case we will not be able to solve the PDE governing «, let alone that
governing co—otherwise we wouldn't be considering the FDA in the first place!

Is precisely in this instance where the true power of Richardson’s observation is
evident!

The key observation is that starting from (72), and computing FD solutions
using the same initial data, but with differing values of /i, can learn a great deal
about the error in FD approximations.

The whole game of investigating the manner in which a particular FDA
converges or doesn’t (i.e. looking at what happens as one varies /1) is known as
convergence testing.

Important to realize that there are no hard and fast rules for convergence
testing; rather, one tends to tailor the tests to the specifics of the problem at
hand, and, being largely an empirical approach, one gains experience and
intuition as one works through more and more problems.

rasoodppowever, the Richardson expansion, in some form or other, always underkeszss

convercence analveiec of FDAc



Convergence Tests

A simple example of a convergence test, and one commonly used in practice is
as follows.

h 2h d-lh

Compute three distinct FD solutions «", u at resolutions /i, 2h and 44

respectively, but using the same initial data (as naturally expressed on the 3
distinct FD meshes).

Also assume that the finite difference meshes “line up”, i.e. that the 4/ grid
points are a subset of the 2/; points which are a subset of the /i points

Thus, the 4/ points constitute a common set of events (.r;.1") at which
specific grid function values can be directly (i.e. no interpolation required) and
meaningfully compared to one another.
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Convergence Tests

e From the Richardson ansatz (72)), expect:

Hh = i{+h2l2+h4f4+---
“'.?h — u 4+ l.fh }31' 2 -+ {-..zh _|_lf 4 + . s =
ult — ..e+f4h}3:3+{4hr‘.4+“.

e Then compute a quantity Q(t), which will call a convergence factor, as follows:

||.;'“' - d‘.!le”{
Qlt) = — - 78
. H”._Zh . "'hH.r ( )
where || - || is any suitable discrete spatial norm, such as the /5 norm, || - ||2:
1/2
J |
h .. hy <
luPlla={ T~ (ul) (79)
71=1
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Convergence Tests

e Is simple to show that, if the FD scheme is converging, then should find:

lim Q(t) = 4. (80)

h—0

e In practice, can use additional levels of discretization, 8/, 16/, etc. to extend
this test to look for “trends” in Q(#) and, in short, to convince oneself (and,
with luck, others), that the FDA really is converging.

e Additionally, once convergence of an FDA has been established, then point-wise
subtraction of any two solutions computed at different resolutions, immediately
provides an estimate of the level of error in both.

e For example, if one has «" and «?", then, again by the Richardson ansatz have

uh — = ((H + {2},]3.,24— i ) - (” s 5 hz"l"’ )) (81)
—— 3!!28-_‘3—}—()‘,!4} o -'.-;f h o -J' - (82)
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Convergence Tests

e From the Richardson ansatz (72)), expect:

nh = w¥ hzt - dm hﬂ 1+ ---
ujh = u+(2h }21 2 + (2h ‘,I-lr s+
ul® — |J+ilh}jt-_'g-i-{-lh]lr_,l—i—---

e Then compute a quantity (1), which will call a convergence factor, as follows:

- ”d-ih . d‘.!!e”i_ -
A(t) =
. I| ”.'lh I “,h HI ( )
where || - ||, Is any suitable discrete spatial norm, such as the /5 norm, || - ||2:
1/2
J §
; hy2
luPlla = T (ul) (79)
1=1
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Convergence Tests

Is simple to show that, if the FD scheme is converging, then should find:

lim Q(t) = 4. (80)

h—0

In practice, can use additional levels of discretization, 3/, 16/, etc. to extend
this test to look for “trends” in (Q(#) and, in short, to convince oneself (and,
with luck, others), that the FDA really is converging.

Additionally, once convergence of an FDA has been established, then point-wise
subtraction of any two solutions computed at different resolutions, immediately
provides an estimate of the level of error in both.

For example, if one has «" and «", then, again by the Richardson ansatz have

—_—

—
=

L

2h h ((tr+{2l112f2+"')_("'+hz'2+.“)) (81)
9

— 3hZ2es + O(h?) ~ et ~ &2t 82)

Pirsa: 10030101 4 Page 48/58




Convergence Tests

Is simple to show that, if the FD scheme is converging, then should find:

lim Q(t) = 4. (80)

h—0

In practice, can use additional levels of discretization, 34, 16h, etc. to extend
this test to look for “trends” in ()(f) and, in short, to convince oneself (and,
with luck, others), that the FDA really is converging.

Additionally, once convergence of an FDA has been established, then point-wise
subtraction of any two solutions computed at different resolutions, immediately
provides an estimate of the level of error in both.

For example, if one has «" and «?", then, again by the Richardson ansatz have

—_—
—
-

T

2h _ b ((u+ (2h)%e2+---) — (u+ h2ez + --+)) (81)

- B x
— :;h"( 2 - ()(h'l] .~ :.‘f h PRl ==t 2h 82)
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Richardson Extrapolation

e Richardson extrapolation: Richardson’s observation (72) also provides the basis
for all the techniques of Richardson extrapolation

e Solutions computed at different resolutions are linearly combined so as to
eliminate leading order error terms, providing more accurate solutions.

e As an example, given «" and «2" which satisfy (@) can take the linear

combination
-lnh s lfzh
o

which, by ([72)), is easily seen to be O(h'), i.e. fourth-order accurate!

Jul — w2k 1 (u+ h2e; + hteqs + - - ) — (u+ th%e; + 16h%ey + - - )

v — ——

3 3
— —-1,}41 4 '+- (_)(hb] — (_){ h.l } (84)
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Independent Residual Evaluation

Question that often arises in convergence testing: is the following:

“OK, you've established that «" is converging as i — 0, but how do you
know you re converging to u, the solution of the continuum problem?”

Here, notion of an independent residual evaluation is very useful.

Idea is as follows: have continuum PDE

and FDA
thth - fh —0 (86)

Assume that " is apparently converging from, for example, computation of
convergence factor (78) that looks like it tends to 4 as / tends to 0.

However, do not know if we have derived and/or implemented our discrete
operator L" correctly.
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Independent Residual Evaluation

Note that implicit in the “implementation” is the fact that, particularly for
multi-dimensional and /or implicit and/or multi-component FDAs, considerable
“work” (i.e. analysis and coding) may be involved in setting up and solving the
algebraic equations for u".

As a check that solution is converging to u, consider a distinct (i.e.
independent) discretization of the PDE:

Eh ”h e fh - (87)
¥,

Only thing needed from this FDA for the purposes of the independent residual
test is the new FD operator L".

As with L", can expand L" in powers of the mesh spacing:

L* =L+ h2E; + h*E4 + - -- (88)

s odhere Ea, Fy, - -- are higher order (involve higher order derivatives than ).

differential operators.



Independent Residual Evaluation

e Now simply apply the new operator L" to our FDA «" and investigate what
happens as i — 0.

e If u" is converging to the continuum solution, u, will have

u® = u - h2e 5 4+ O h*) (89)

and will compute
LMa® = (L + h2Es + O(h*)) (u + h%e2 + O(hY)) (90)
= Lu+h*(Ezu+ Les) (91)

e That is L"u" will be a residual-like quantity that converges quadratically as

h — 0.
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Independent Residual Evaluation

Note that implicit in the “implementation” is the fact that, particularly for
multi-dimensional and /or implicit and/or multi-component FDAs, considerable
“work” (i.e. analysis and coding) may be involved in setting up and solving the
algebraic equations for u".

As a check that solution is converging to u, consider a distinct (i.e.
independent) discretization of the PDE:

Lh uh B fh - (87)

Only thing needed from this FDA for the purposes of the independent residual
test is the new FD operator L".

—  O(h*) (92)

That is L"u" will be a residual-like quantity that -converges quadratically as

h — ().
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Independent Residual Evaluation

e Now simply apply the new operator L” to our FDA «" and investigate what
happens as i — ().

e If u" is converging to the continuum solution, u«, will have

u® = u + h<e o + O h#) (89]
and will compute
IPu® — (L + h2E-> + O(h*)) (u + hes + O(h* ) (90)
— Lu —+—hjl f'_g u -+ Lf-_r' (91)
— ()l ;I:P (92)

e That is L"u" will be a residual-like quantity that converges quadratically as
h — 0.
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Independent Residual Evaluation

e Conversely, assume there is a problem in the derivation and/or implementation
of L"u" = f* = 0, but there is still convergence; i.e. for example,

”‘.‘_’h — uh >0 a8 >0 (93)

e Then must have something like

u'h:fl+f‘|+,lf1+flzf-_£+--- (94)

where crucial fact is that the error must have an O(1) component, ¢.

e In this case, will compute

LPu® = (L + h*E5 4+ O(h*)) (u + eg + hey + h%es + O(h?))
= Lu+ Leg + hLe; + O(h?)
= Leo+ O(h)
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Independent Residual Evaluation

e Instead, will see L"u" — f" tending to a finite (O(1)) value—a sure sign that
something is wrong.

e Possible problem: might have slipped up in our implementation of the
“independent residual evaluator”’, L"

e In this case, results from test will be ambiguous at best!

e However, a key point here is that because L" is only used a posterior on a
computed solution (never used to compute «", for example) it is a relatively
easy matter to ensure that L” has been implemented in an error-free fashion
(perhaps using symbolic manipulation facilities).

]

e Also, many of the restrictions commonly placed on the “real” discretization
(such as stability and the ease of solution of the resulting algebraic equations)
do not apply to L".

e Finally, note that although have assumed in the above that L, L" and L" are
linear, the technique of independent residual evaluation works equally well for
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Stability Analysis

e One of the most frustrating/fascinating features of FD solutions of time
dependent problems: discrete solutions often “blow up”—e.g. floating-point
overflows are generated at some point in the evolution

e ‘Blow-ups” can sometimes be caused by legitimate (!) “bugs’—i.e. an
incorrect implementation—at other times it is simply the nature of the FD
scheme which causes problems.

e Are thus lead to consider the stability of solutions of difference equations
e Again consider the 1-d wave equation, uy = u .,
e Note that it is a linear, non-dispersive wave equation

e Thus the “size” of the solution does not change with time:
|u(x. t)|| ~ [ju(x,0)], (95)

where || - || is an suitable norm, such as the L2 norm:
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