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Abstract: Topological phases in spin systems are exciting frontiers of research with intimate connections to quantum coding theory. However, there
is a disconnection between quantum codes and the idea of topology, in the absence of geometry and physical realizability. Here, we introduce a toy
model, in which quantum codes are constrained to not only have alocal geometric description, but also have translation and scale symmetries. These
additional physical constraints enable us to assign topologically invariant properties to geometric shapes of logical operators of the code.
Topological phases of the model are analyzed by geometrically classifying logical operators. The classification scheme also has topologically
universal properties which are invariant under local unitary transformations and local perturbations, and may explain how global symmetries of a
system Hamiltonian give rise to topological phasesin correlated spin systems.
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Condensed matter Quantum
physics information science
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Condensed matter
physics

Introduction 1

Quantum
information science

Open questions

* High Tc

* Novel quantum order
* Numerical algorithm

* Resource for Q computation and
communication

etc
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Quantum information
theoretical techniques

(MPS, TPS, entanglement entropy
etc)
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Introduction 2

Topological Order Quantum Code

(H,f] = 0 (H,0 = 0

Symmetry Operators : global symmetries  Logical Operator : global entanglement
Topological degeneracy Logical qubit
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Introduction 2

Topological Order Quantum Code

[H.( =0 [H.€(] = 0
Symmetry Operators : global symmetries  Logical Operator : global entanglement
Topological degeneracy Logical qubit
Mysteries in topological order Quantum coding

theoretical technigues
= Topological order at finite temperature

(self-correcting memory)

Operator algebra based on a

» Topological phase transition finite group

» Classification of topological order
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Introduction 3

Topological Order - Quantum Code

Quantum code needs

* Hamiltonian —ep  Stabilizer formalism (Gottesman 96)
» Geometry (metric) — Local interactions on a lattice (Bravyi & Terhal 09)
* Physical realizability

Pirsa: 10030033 Page 11/182



Introduction 3

Topological Order - Quantum Code

Quantum code needs

» Stabilizer formalism (Gottesman 96)
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Translation and Scale symmetries

Toy Model
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Introduction 3

Topological Order Quantum Code

Quantum code needs

* Hamiltonian
* Geometry (metric)
* Physical realizabili

» Stabilizer formalism (Gottesman 96)
Local interactions on a lattice (Bravyi & Terhal 09)

Translation and Scale symmetries

Goals : Questions in topological Toy Model

order
» Geometric classification of
- - :
» Self-correcting quantum memory logical operators
* Topological quantum phase transition * Topological order and coding
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Review of stabilizer code 1

P = (Z]_. .;Xl- e Z.—V- XN—)
H

—_— Z Sj‘ . S}'Stem Hamiltonian
]
[S!" S}] = Sjl(;’,-’) — IU)
5 - (Sl_..... 'S_"*—k) = tP

: Pauli operator group

: The stabilizer group
stabilizers
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Review of stabilizer code 1

P = (Z4:.Xy,--- .25, XnN) : Pauli operator group

H = — Z o : System Hamiltonian
b

[S:.S;] = 0 Silv) = |¥)

S =(% .S € P : The stabilizer group

4 Energy stabilizers

Ground state space = Codeword space

e ;- Ground states = k logical qubits

- e,

T

o I
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Review of stabilizer code 2

{ € P st (H =0 but £ & S - Logical operators
e <U eP: U5 = O.Vj> : Centralizer group

C = <Sl‘?.-. -SN—k-ifl-“‘ s oy Ry rk) —% Logical operators

-

ll] =0  [fror] =0  [lr;] =0 for(i #3) {t.r} =0
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Review of stabilizer code 2

feP st LH —0 but £ &S - Logical operators
£ = <U e P:[US;] =0 .‘v’j) : Centralizer group

C=(S% - ,95%wmll,-—,G,72:---,7x) » Logical operators

6.0 =0 [rr] =0 [lir] =0 for(i #j) {iri} =0
C= Sl.. SN__;;.. fl. fk
s - - T
- Operators in the same column anti-commute with each other

* Operators in the different columns commute with each other
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Review of stabilizer code 2

{ €e P st [(H =0 but £ & S - Logical operators
E = <U € P:[US;] = 0.‘v’j> : Centralizer group
C = <SI~'“ -S.V—k--fl-”' > Els Tl = -rk> * Logical operators

E:-E_;] = [ri.'f'j] = § [f,.rj-] = () for (! ?é _}) {Cl'.f'l'}' =4
e _ [ S s Sna b, -, b
¥ ——%%
- Operators in the same column anti-commute with each other

* Operators in the different columns commute with each other
k

) = ® (Gi|6>e+3z'|i)i)

1=

i i e S . equivalent logical operat@i®™
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Stabilizer code in a bi-partition 1

Bi-partitioning a system into A and B
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Stabilizer code in a bi-partition 1

Bi-partitioning a system into A and B

Logical operators defined non-locally over A and B are responsible
for non-local correlations and entanglement over A and B.
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Stabilizer code in a bi-partition 1

D Bi-partitioning a system into A and B

Logical operators defined non-locally over A and B are responsible
for non-local correlations and entanglement over A and B.

Start with locally defined logical operators

I I I

Def : A logical operator can be defined locally inside A

if a logical operator has an equivalent representation which can be
supported only inside A.
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Stabilizer code in a bi-partition 1

) Bi-partitioning a system into A and B

Logical operators defined non-locally over A and B are responsible
for non-local correlations and entanglement over A and B.

Start with locally defined logical operators

Def : A logical operator can be defined locally inside A

if a logical operator has an equivalent representation which can be
supported only inside A.

Def : A logical operator is non-locally defined over A and B

if.a.kogical operator cannot be defined either inside A or B






Stabilizer code in a bi-partition 2

How many logical operators can be defined inside A locally ?
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Stabilizer code in a bi-partition 2

How many logical operators can be defined inside A locally ?

Def

ga # of independent logical
- operators defined inside A
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Stabilizer code in a bi-partition 2

How many logical operators can be defined inside A locally ?

Det : , Duality in a bi-partition
ga # of independent logical
- operators defined inside A

ga+gs = 2k
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Stabilizer code in a bi-partition 2

How many logical operators can be defined inside A locally ?

Def Duality in a bi-partition

ga # of independent logical
operators defined inside A

ga+gs = 2k

B | " Can be defined inside B
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Stabilizer code in a bi-partition 2

How many logical operators can be defined inside A locally ?

Det Duality in a bi-partition
ga # of independent logical

operators defined inside A

ga+gs = 2k

B | " Can be defined inside B

—— Can be defined both on A and B

&.__. —— i ___________
3 . .
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Stabilizer code in a bi-partition 2

How many logical operators can be defined inside A locally ?

= Duality in a bi-partition
gy *# of independent logical

operators defined inside A

ga+gs = 2k

B ~___—— Can be defined inside B

—— Can be defined both on A and B

‘ﬁ$_ S —
§ . .

See my recent paper ...,
(Beni Yoshida Isaac L. Chuang)
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Stabilizer code in a bi-partition 3

Z

Geometry in X gs+gs = 2k
Toric Code (k=2)
z z X
X
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Stabilizer code in a bi-partition 3

S Z
Geometry in X
Toric Code (k=2 )
Z Zz X * X
Y y-type 7 -
i
I
e
t - -:" --------- 4 string operators
I
I
: x-type
I

A
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Stabilizer code in a bi-partition 3

Z

Geometry in X
Toric Code (k =2)
2 F % T X
v Y y-type 7 X
I
I
R eemeeeees e
[ - -:" --------- 4 string operators
I
i
: x-type
|

> X

gs + 9B

2k

Page 40/182



Stabilizer code in a bi-partition 3

_ Z
Geometry in - ga+9B =
Toric Code (k =2)

Z Z X 1 X
v Y y-type Z =
: A
T AR e l

[ . _:_ --------- 4 string operators :
| A :
| I B
I x-type .
: i
I ]
: .

y-type logical operators
cannot be defined either
inside AorB

N
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Stabilizer code with translation and scale symmetries

* Translation symmetries
* Local interactions
* Scale symmetries
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Stabilizer code with translation and scale symmetries 1

Translation symmetries

: : : : : : : : @ @ Stabilizer code defined on
000000000000 - - : .
YTY XY LYY D dimensional square lattice of qubits
A A L XX LR R * System Hamiltonian is invariant under
000000666 finite translations of qubits
009000000 == =

XX (XX XX * Periodic boundary conditions
09009 OOOOGGS
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Stabilizer code with translation and scale symmetries 1
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it

irsa: 10030033

>
X

Translation symmetries

Stabilizer code defined on

* D dimensional square lattice of qubits

* System Hamiltonian is invariant under
finite translations of qubits

* Periodic boundary conditions

In this example, the stabilizer code is invariant under translations by
3 qubits.
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»

Stabilizer code with translation and scale symmetries 2

Translation symmetries

Stabilizer code is defined on

* D dimensional square lattice of

-
[

composite particles

- w
» System Hamiltonian is invariant under

. unit translations of composite particles
* Periodic boundary conditions

>
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Stabilizer code with translation and scale symmetries 2

Composite particles (2 3 C%
- - -

- - v : number of qubits inside a composite particle
o e e

Translation symmetries

Stabilizer code is defined on

Y
4

* D dimensional square lattice of
composite particles

» System Hamiltonian is invariant under
unit translations of composite particles

* Periodic boundary conditions

{ X 1, 3 X‘U }
o oimarse-graining of the system & ==, Zgggw, 4



Stabilizer code with translation and scale symmetries

* Translation symmetries Stabilizer code with

* Local interactions » translation and scale
» Scale symmetries symmetries (STS)
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Stabilizer code with translation and scale symmetries 3

Local interactions

\
*

I - —I
'.
T —— T

-
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Stabilizer code with translation and scale symmetries 3

Local interactions

Interaction terms (stabilizers) are defined inside
a region with 2 x -.. x 2 composite particles.

v .
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Stabilizer code with translation and scale symmetries

* Translation symmetries Stabilizer code with
* Local interactions » translation and scale
e Scale symmetries symmetries (STS)
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Stabilizer code with translation and scale symmetries 4

Scale symmetries —— Change of system sizes

Ly

X

- 9000 ;
" X
=~

0000
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Stabilizer code with translation and scale symmetries 4

Scale symmetries » Change of system sizes
n = (np.---.np) k; : number of logical qubits

k=— & for all n

The number of logical qubits does
not depend on the system size.

Pirsa: 10030033



Stabilizer code with translation and scale symmetries 6

* Translation symmetries
* Local interaction
* Scale symmetries
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Stabilizer code with translation and scale symmetries 6

* Translation symmetries
* Local interaction
* Scale symmetries

Intuition of solving the model

* We are interested in properties at “thermodynamic limit” where
n is infinitely large.
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Stabilizer code with translation and scale symmetries 6

* Translation symmetries
* Local interaction
* Scale symmetries

Intuition of solving the model

* We are interested in properties at “thermodynamic limit” where
n is infinitely large.

* Due to the scale symmetries, there exist some universal
properties regardless of n.

* |t is possible to study large n by analyzing small n
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Stabilizer code with translation and scale symmetries 6

* Translation symmetries
* Local interaction
* Scale symmetries

Intuition of solving the model

* We are interested in properties at “thermodynamic limit” where
n is infinitely large.

* Due to the scale symmetries, there exist some universal
properties regardless of n.

* |t is possible to study large n by analyzing small n

» Effective reduction of dimensiGis
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Translation equivalence of logical operators 1

Translation and scale symmetries : How can we simplify the problem ?
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Translation equivalence of logical operators 1

Translation and scale symmetries : How can we simplify the problem ?

Translations of logical operators
are logical operators

00000000
00000000
00000000
00000000
00000000
00000000
0000000
00000000
00000000
00000000
00000000
00000000
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Translation equivalence of logical operators 1

Translation and scale symmetries : How can we simplify the problem ?

000000000000 Translations of logical operators
. N N N N N N N N N N N are logical operators
00000000 OGOO
0000000000 O
900 0000OCGOOOSS T“‘“‘“"'ﬁ“‘:‘"*’iﬂ
independent logical operators
900000000 0OCFOC
00000000000

There exists a finite translation which keep logical operators
equivalent
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Translation equivalence of logical operators 2

In fact....

All the logical operators remain equivalent under unit translations
with respect to composite particles.

00000000000 0O
00900 00000OOGOO
o900 000000000
000000000 O0OGO
929990000000 O0C0FOC
000000000000
000000000000
0900000000000

Physical meanings

Ground states are invariant under unit translations of
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Logical operators in 1 dim

(For simplicity, k =1 first)

T —— — —

Composite particles

irsa: 10030033 Page 64/182



Logical operators in 1 dim

(For simplicity, k =1 first)

{(X.Z} = 0

T ——— —

Composite particles
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Logical operators in 1 dim

(Now for general k)

irsa: 10030033
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Logical operators in 1 dim

(Now for general k)

X, -, X
2, -, Zp

f.z‘ )(i X,‘ ;Y,‘ .X:,: ------- )(,; X,'

r; Zl ———————

* Code distance is at most v (number of qubits in a composite particle)

* GHZ-like entanglement

W) = W) +Ir) o) = €n)
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Logical operators in 1 dim

(Now for general k) 1dim

):f;- )gk
Ly, ---, L

Ei JYI' ..X} .:’Yi .XTI' ------- JX.F,' X,'

r; Zi ———————

0 dim
* Code distance is at most v (number of qubits in a composite particle)

* GHZ-like entanglement

V) = [to) + [¥1) Vo) = €|un)

0-dim logical operator and 1-dim logical operator form a pair
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Logical operators in 1 dim

However, logical operators have many equivalent representations.

Is this classification universal ?
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Logical operators in 1 dim

However, logical operators have many equivalent representations.

Is this classification universal ?
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Logical operators in 1 dim

[r—

However, logical operators have many equivalent representations.

Is this classification universal ?

ga+gs = 2k
i S8 e |
A B gas = g = k

B can support only 0-dim logical operators
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Logical operators in 2 dim
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Logical operators in 2 dim
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Logical operators in 2 dim

£ IZ
Z;
Z; Sum of dimensions
Zi
|
0 dim 1dim D=2
X:| X| Xi| Xi| Xi| 7
x| x| x| x| X,
b A L ¢ X;| Xi| Xi
X:| X;| X;| X:| X;
X;| X;| X:| X: | X, X| X,| X:| X: | X
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Logical operators in 2 dim

Physical properties

¢ [z,
Z;
Z;
Z;
I';
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Logical operators in 2 dim

L | Z
Z
Z; Sum of dimensions
Zi
|
0 dim 1dim D=2
X:| X| X:| Xi| Xi| 7
X:| Xi| X:| Xi| X;
X;| X;| Xi| Xa| Xa
X:| X;| X:| X;| X;
X:| X:;| X:| X: | X, X:| X;| X:| Xi | X;
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Logical operators in 2 dim

Physical properties

i
N

N

L

VN[N
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Logical operators in 2 dim

‘ - Physical properties
£ | Z,
7 Endpoints of string operators can
= be viewed as anyonic excitations
A
Z;
I

-?\‘,',I
s
I
s
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Logical operators in 2 dim

Physical properties

b | Z
Z;
Z;
Z;
I';
I?i Afi )Z-,: .f,_: :‘?i

Pirsa: 10036633

Endpoints of string operators can
be viewed as anyonic excitations

Braiding group
ZQ R---R ZQ
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Logical operators in 2 dim

¢. [7 Physical properties
: Zt Endpoints of string operators can
= be viewed as anyonic excitations
Zi
Z;
7 Braiding group
Z2 R---R ZQ
r;

Topological order resulting
from 1 dim logical operators
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Logical operators in 2 dim

Universality of classification
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Logical operators in 2 dim

Universality of classification
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Logical operators in 2 dim

Universality of classification
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Logical operators in 2 dim

Universality of classification

ga = qa

If we are given a logical operator defined inside A, we can
change its geometric shape to A'.
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A’

Pirsa: 10030033

Logical operators in 2 dim
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Logical operators in 2 dim

Page 91/182




Logical operators in 2 dim
B
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Logical operators in 2 dim
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Logical operators in 2 dim

We are allowed to deform geometric shapes of logical operators
continuously.

/

[
.
=1
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Logical operators in 2 dim

We are allowed to deform geometric shapes of logical operators
continuously.
Topological deformation of logical operators

i
L0
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Logical operators in D dim

0 -dim D - dim 0 -dim D - dim
1-dim D-1-dim 1-dim D-1-dim

I I

I I

I I
D/2 - dim D/2 -dim (D-1)/2-dim (D+1)/2 - dim

D : even D : odd
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Logical operators in D dim

0 -dim D - dim 0 -dim D - dim
1-dim D-1-dim 1-dim D-1 -dim
I I
I |
1 |
D/2 - dim D/2 - dim (D-1)/2-dim  (D+1)/2 - dim
D : even D : odd

Dimensional duality in logical operators
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Logical operators in D dim

0 -dim D - dim 0 -dim D -dim
1-dim D-1-dim 1-dim D-1 -dim
[ |
I I
1 I
D/2 - dim D/2 - dim (D-1)/2-dim  (D+1)/2 - dim
D : even D : odd

Dimensional duality in logical operators

Topological deformation of logical operator holds in D
s ufdiMENsions too.
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Logical operators in 2 dim

We are allowed to deform geometric shapes of logical operators
continuously.
Topological deformation of logical operators

dinm |
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Application

* Feasibility of self-correcting memory
» Topological Quantum Phase Transitions
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Application

* Feasibility of self-correcting memory
* Topological Quantum Phase Transitions
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Application (self-correcting memory)

Open Question 1
Code distance = robustness of the code

Upper bound on code distance of local stabilizer codes
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Application (self-correcting memory)

Open Question 1
Code distance = robustness of the code

Upper bound on code distance of local stabilizer codes

® Toric code (D-dimensional lattice)

d=0(1) 1dim) d=O(L) (2 3-dim)
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Application (self-correcting memory)

Open Question 1
Code distance = robustness of the code

Upper bound on code distance of local stabilizer codes

® Toric code (D-dimensional lattice)

d=0(1) (1dim) d=O(L) (2 3-dim)

® Code distance (Terhal and Bravyi)

Ll ol i

What is tight bound for D>2?
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Application (self-correcting memory)

Open Question 2

Feasibility of self-correcting memory
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Application (self-correcting memory)

Open Question 2
Feasibility of self-correcting memory

® Self-Correcting Memory : corrects errors by itself in the presence of large
energy barrier
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Application (self-correcting memory)

Open Question 2

Feasibility of self-correcting memory

® Self-Correcting Memory : corrects errors by itself in the presence of large
energy barrier

A

E

\ Energy Barrier
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Application (self-correcting memory)

Open Question 2

Feasibility of self-correcting memory

® Self-Correcting Memory : corrects errors by itself in the presence of large
energy barrier
-~

E
B Many proposals in 4-dim (4-dim Toric code)

B No 2D self-correcting memory (stabilizer)

/ \ Energy Barrier
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Application (self-correcting memory)

Open Question 2

Feasibility of self-correcting memory

® Self-Correcting Memory : corrects errors by itself in the presence of large
energy barrier

B Many proposals in 4-dim (4-dim Toric code)
B No 2D self-correcting memory (stabilizer)

/ \ Energy Barrier @

3D self-correcting memory?

E
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Application (self-correcting memory)

Open Question 2

Feasibility of self-correcting memory

® Self-Correcting Memory : corrects errors by itself in the presence of large
energy barrier

B Many proposals in 4-dim (4-dim Toric code)
B No 2D self-correcting memory (stabilizer)

/ \ Energy Barrier @

3D self-correcting memory?

A

E

Topological order at finite temperature
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Application (self-correcting memory)

Open Question 2

Feasibility of self-correcting memory

® Self-Correcting Memory : corrects errors by itself in the presence of large
energy barrier

B Many proposals in 4-dim (4-dim Toric code)
B No 2D self-correcting memory (stabilizer)

/ \ Energy Barrier @

3D self-correcting memory?

-,

E

Topological order at finite temperature
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Application (self-correcting memory)
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Application (self-correcting memory)

Stabilizer code with translation and scale symmetries as a
physically realizable model of quantum code.
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Application (self-correcting memory)

Stabilizer code with translation and scale symmetries as a
physically realizable model of quantum code.

D/2

3dimSTSis....

I
o

not a self-correcting memory. | -

Partial answers for two open questions

irsa: 10030033
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* Feasibility of self-correcting memory
* Topological Quantum Phase Transitions
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Applications (QPT)

In realistic physical systems

o= L] e :external parameters

Small change of € »  Significant change of physical properties

Phase transition

Quantum Phase Transition (QPT] Topological Quantum Phase

Transition (TQPT)
Change of symmetry
- Translation Symmetry Beyond Landau’s theory

* Gauge Symmetry
Topological guantum numbers
Landau symmetry breaking theory

(local) order parameter What kind of symmetry is broken ?
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Logical operator characterizes global symmetries of the system
Hamiltonian.
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Logical operator characterizes global symmetries of the system

Hamiltonian.
TQPT?

Assume
H(e;) ~ H, H(ez) ~ H>

where H; and H- are different STSs.

Possible Scenario

STS1 STS 2
| |

€1 €9

Expected phase diagram
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Applications (QPT)

H(e) = eH,+ (1 —€)H> (Adiabatic change between
STSs)
Conjecture

1. Change of geometric shapes of logical operators may lead to
TQPT (2" order).

2. When two systems can be transformed each other by local unitary
operations, we consider them as the same systems

Hl _— LTHQL'T

since local unitary transformations do not change the
geometric shapes of logical operators. (no QPT or, 1%
order)
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Applications (QPT)

(ex1) Ising with transverse field
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1
1 dim logical operator No logical operator

XXX
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Applications (QPT)

(ex1) Ising with transverse field

== —EZZI'ZI'H — (1 —¢) ZX.- 2" order QPT

1 dim logical operator No logical operator
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(ex2) Local unitary i
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Spectrum becomes gapless, but this is 1°* order
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1 dim logical operator No logical operator

XXX

(ex2) Local unitary
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Applications (QPT)

(ex1) Ising with transverse field
H = —e Z ZiZia|— (1 —¢ Z Xi 24 order QPT

1
1 dim logical operator No logical operator

XXX

(ex2) Local unitary _ =
H= —€Y ZZi—(1—-¢) XX,

1 dim logical operator 1 dim logical operator

Spectrum becomes gapless, but this is 15 order

OOOOKXXX  YYYYYYYYYYYYY 777777777777 Symmetry protected
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Applications (QPT)

(ex3) Toric + magnetic field
H(e) = eHy + (1 —€)H>

| on 3

1 dim logical operator No logical operator

This model is dual to 2 + 1 dim Ising model. We have 2" order TQPT
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gapless

gapped gapped
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Application (QPT)

Counter example ??7? A= L.-Z XX & JyZY;Y} . Z =2

: J T Toric code
Kitaev’s honeycomb model

Two Toric codes can be transformed
through a local unitary.

Toric Code

However, in this transition, topological order is not broken !!

Entire system = Gauge part + Fermion part
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Application (QPT)

H(e) = eH, + (1 —e)H,
Suppose : Energy gap remains open during the change of ¢

Two phases are adiabatically connected through time evolution
induced by local interaction terms.

£, : logical operator ?11 H, veUt = ¢
{5 : logical operator in H>

€1 Lr(]_ L?'l'
Ift = O(1)
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Summary

Operator based approach used in quantum coding theory may become useful in
analyzing correlated systems, as we have seen in studies of the toy model.

“Logical operator = Symmetry of the system”

Two dualities

ga+gs = 2k m dim and (D - m) dim
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