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Abstract: Diffeomorphism symmetry is the underlying symmetry of general
relativity and deeply intertwined with its dynamics. The notion of
diffeomorphism symmetry is however obscured in discrete gravity, which
underlies most of the current quantum gravity models. We will propose
anotion of diffeomorphism symmetry in discrete models and find that

such asymmetry is weakly broken in many models. Thisis connected to
the problem of finding a consistent canonical dynamics for discrete
gravity. Finally we will discuss methods to construct models with

exact symmetries and elaborate on the connection between
diffeomorphism symmetry and triangulation independence.
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Motivation

»In the continuum diffeomorphism symmetry is deeply entangled with the
dynamics of the theory.

»canonical theory: dynamics defined by constraints
»evolution as time reparametrization

»writing the most general diffeomorphism invariant action

»implementing diffeomorphism symmetry into quantum gravity model could
ensure that general relativity (+ more) emerges in semiclassical limit
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Questions

»Is there a notion of diffeomorphism symmetry in discrete models?

»Can it help us to adress:
»ambiguities and anomalies, lattice effects
»path integral measure (for labels and triangulations)

»sum over triangulations?’

»Relation to triangulation independence?
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Overview

Criterium for gauge symmetries

Do we have gauge symmetries in discrete gravity?

Why do we care!

. Improving the dynamics with renormalization

Perturbative Expansion

Repercussions for canonical formalism

Conclusions
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Set up: Regge calculus

(classical theory corresponding to spin foam models, lattice loop quantum gravity)

*approximate space time by

. 2 : : e \ &
piecewise flat triangulation T S |
= F .-"'f-.h. T o
*|length variables on edges fix geometry y/ |~ =t
ediscrete action defines dynamics N IS

Sr:ont == /le\/a (éR = E’L) \

g

Sd-,-_;ﬂ-_r = Z FhEh — A Z V.L.,

hinges h simplices o deficit angle
4d:triangles
3d: edges -
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A.and B.

Is there a notion of diffeomorphism symmetry in
discretized actions!?
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A. Criterium for gauge symmetries

ecriterium: non-unigueness of solutions for fixed boundary conditions

d*S
> det —

. “. el ' | =
drtdx ) \solution

*existence of symmetries depends on dynamics (that is the action)!
edifferent solutions might have gauge orbits of different size
*invariance of action not sufficient for gauge symmetry

ecriterium relevant for
»canonical analysis
»perturbative expansion
»counting of physical degrees of freedom
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B. Gauge symmetries in Regge calculus!?

*for boundary conditions leading to flat solutions: non-uniqueness of solutions!
=there are gauge symmetries!

*3d (vanishing cosmological constant): all boundary conditions lead to flat solutions
=gauge symmetries for all configurations [Freidel, Louapre '02]

*4d (vanishing cosmological constant): some boundary conditions lead to flat solutions
=gauge symmetries for these configurations

egauge modes correspond to changing position of vertices on flat background
=matched to continuum diffeomorphism symmetry in lineariziation [Rocek and Williams 81]

Hessian of action evaluated on

flat solutions has null modes
Page 8/86

vertex translation acting on

flat solution
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B. Gauge symmetries in Regge calculus!?

For (a) curved solution: symmetries are broken.

[Bahr, BD 09]

lowest eigenvalues of Hessians as function of deviation
parameter from 4d flat solution (curvature)
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Non-invariance under 3-3 Pachner moves
[Bahr, BD, Hoehn wip]

4d Regge action already invariant under [-5, 5-1, 2-4 and 4-2 moves.

L= Lo Triangulation with three 4-simplices and spherica
% ‘ /.ff‘ = '<&¥_K I ? boundary. There are no inner edges.
i N Y 3-3 move redefines inner triangle.

Difference of actions evaluated on the two
configurations as function of the deficit angle on
the inner triangle.

Effect quadratic in curvature. Pege 10



C. Why do we care!

sexact symmetries = exact (first class) constraints

[Gambini & Pullin et al 03-05, et al, Bahr & BD 09, BD & Hoehn 09 ]

eanomalies in quantization (by regularization) vs fixing of ambiguities

[for instance Perez & Pranzetu 10 in 3d with cosmological constant]

eperturbative expansion around flat geometries is very subtle if symmetries are broken
[related: Horava-Lifshitz gravity]

epath integral computation: no propagator for pseudo gauge modes
econdition on measure in path integral

eaction with exact diffeomorphism symmetry hopefully related to triangulation independent
Pirsa: 10030027 age 11/86

Hamilton-Jacobi functional: control sum over triangulation!



D. Is there a discretization with exact symmetry?

Gauge symmetries are properties of the (discrete) action.
= Improve the action.
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Construct better actions

*by renormalization group transformation:
*fine grain and integrate out fine grained degrees of freedom
*obtain effective action on coarse grained lattice, capturing dynamics of
fine grained lattice

Question: Do we regain local gauge symmetries from continuum?
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Lattice deformation algebra

coarse graining to alternative vertex
intermediate lattice intermediate lattice translation

eDirac’s hypersurface deformation algebra (Hamiltonian and diffeomorphism constraints) can be

derived as condition that final evolved state does not depend on intermediate hypersurface
[Teitelboim '76]

elattice deformation algebra: independence from intermediate lattice

esubgroup: vertex translation algebra could be similar to hypersurface deformation algebra
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Examples

|d discretized 3d Regge 4d Regge
systems, calculus with calculus,
perturbatively cosmological perturbative
and non- constant expansion
perturbatively
[Bahr & BD 09] [BD & Hoehn 09]
[guantum: Bahr, [Bahr & BD &He wip]
Steinhaus & BD wip] It works!
It works!
3d Regge
calculus with
matter

[Banisch & BD wip]
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. i e § r > 1
nio o e ) integrate out small edge lengths He——— 1N
3d Regge with 3d Regge with curved
cosmological constant simplices
[B.Bahr, BD 09]

Sr=) Le.—AY 'V, S5 =N Loz +2xY W&
€ o E o

: = action for simplices with curvature
action for flat simplices

=N
approximate exact
symmetries, symmetries,

16/86
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0

0
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3d Regge with cosmological constant

Y lee—AY V, +Y ep(Le— )Y L)
£ a E eC E

equations of motion

Lg - Z I,
av,
= Z al,
resum : ZIF
Y leee - ;3_121-;, =

—Et‘t}_-‘

ESe

b3 Lg
£ i

y ; S
A ek

solution

ap =

In the infinite refinement limit
deficit angles and volume for
homogeneously curved
tetrahedra.

Obrain fix point action.
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- i -——o— % g . > T
e e, e integrate out small edge lengths Me————F
3d Regge with 3d Regge with curved
cosmological constant simplices
[B.Bahr, BD 09]

ST:ZZEEE_AZV} S;:ZLEEE-I-QF;ZVE""
€ = = =

! T action for simplices with curvature
action for flat simplices

E=N
approximate exact
symmetries, symmetries,

18/86

" riang. dependent triang. independeénit



0

0
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3d Regge with cosmological constant

Y lee—AY V, +Y ep(be— Y L)
£ o E e_E

equations of motion

Lg - Z l
aV,
=il Z Al
resum : ZE,.
Z le€e — 2.3_1 Z Ve

—Eﬁ;_-—

ESe

E
¥y / Lg
> "4
e = u

solution

with

IV,
€ — A Z {()TE

In the infinite refinement limit
deficit angles and volume for
homogeneously curved
tetrahedra.

Obtain fix point action.
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. 3 0 : . > {
o e - integrate out small edge lengths ——
3d Regge with 3d Regge with curved
cosmological constant simplices
[B.Bahr, BD 09]

Sr=Y Le.—AY ¥, 5 =Y Lpes + 2 W2
€ a = =

. e action for simplices with curvature
action for flat simplices

T
approximate exact
symmetries, symmetries,

20/86
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|d reparametrization invariant systems

continuum:
e take ¢ and f as variables , (m q’ 2 b
e use auxilarv parameter evolution L=t (? l”—3 — W (Q'))
parameter s —
e solutions #(s), ¢(s) invariant
under reparametrizations in s
discretization S — T

m \qn —qn) 1 1
L-('H.ﬂ -+ l) — (t”_._l = fn) ( 5 ((f :1 — 3 l))z = “I(gq” + EQTL-T—}.))

]

e vertex translation symmetry for V" =0
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L - U e S 3 L = .
= o i - integrate out small edge lengths -
3d Regge with 3d Regge with curved
cosmological constant simplices
[B.Bahr, BD 09]

ST:ZZEEE_AZE’ S;ZZLEEEA-QEZVE“
€ — = =

- o action for simplices with curvature
action for flat simplices

k= A
approximate exact
symmetries, symmetries,
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3d Regge with cosmological constant

:J':l
|

equations of motion

0 = Lg-— Z!,_
aV,
g = —\Z(H —ZHE
resum : Z ' 3
0 = Y lee—3AY Vo —Y aplg

2 Lg
P ¥
- - f
* = - e
” { 2
P e
Pirsa: 10030027 - 2

Y lee—AY V, +Y ap(Le— )Y L)
e o E eCE

S

SN

solution ZLEHE+ EZL?

with

V, = Zl

AV,
O = € — ALZ {)T

In the infinite refinement limit
deficit angles and volume for
homogeneously curved
tetrahedra.

Obtain fix point action.
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0

0

0

Pirsa: 10030027

3d Regge with cosmological constant

foh ~ L"LZ Vs ——Zt:tE[LE ~ ZL ]
£ = eCE

E

equations of motion

Lg— Y L
eCE =

e Z: (:*”

resum : Z L.

Y e —;.:‘1 > Vo —) agplg

E

= E aF

E e
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- 2 e —————— i - > 1
. q 4 - integrate out small edge lengths e ——F
3d Regge with 3d Regge with curved
cosmological constant simplices
[B.Bahr, BD 09]

ST:ZZEEE_i&Z‘/} S%:ZLEFFJLE+2HZLEL
€ o E =

: o action for simplices with curvature
action for flat simplices

K=K
approximate exact
symmetries, symmetries,
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| - e i > .
s S A integrate out small edge lengths e
3d Regge with 3d Regge with curved
cosmological constant simplices
[B.Bahr, BD 09]

ST:ZZEEE—AZEI S;:ZLEEF,Q“*'QHZVE
e o E o

: — action for simplices with curvature
action for flat simplices

e=
approximate exact
symmetries, symmetries,
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. . ———— M . > {
ey, L s integrate out small edge lengths e————}
3d Regge with 3d Regge with curved
cosmological constant simplices
[B.Bahr, BD 09]

Sr=) le—A)'V, -V Lt +2:¥ W
€ o E o

: == action for simplices with curvature
action for flat simplices

k=N
approximate exact
symmetries, symmetries,
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|d reparametrization invariant systems

continuum:
e take ¢ and f as variables , (m q*’ 2
e use auxilary parameter evolution L=t ( 5 t’—3 — (Q))
parameter s =
e solutions #(s). g(s) invariant
under reparametrizations in s
diseretization 5 — N

m (QTH—l = qrt)g a 1 1
L(ﬂ.ﬂ g l) —= (tn——l == tn) 5 (f = f )2 — ¥ (EQH + EQH.—-—I)
- n+1 = tn -

e vertex translation symmetry for V=0
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. i - W ! . > t
oo o st integrate out small edge lengths e
3d Regge with 3d Regge with curved
cosmological constant simplices
[B.Bahr, BD 09]

Sr=Y Lee—AY'V, S5 =Y Leer +2: Y W
€ T = =

. o~ action for simplices with curvature
action for flat simplices

k=N
approximate exact
symmetries, symmetries,
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|d reparametrization invariant systems

continuum:
e take g and f as variables , (m t]'f 2
e use auxilary parameter evolution L=t 53 r,__; i V(Q)
parameter s —
e solutions /(s), ¢(s) invariant
under reparametrizations in s
discretization 5 —> N
m (QTH—l — q'rt)z r 1 1
L—(ﬂ. - 1} —_ (t”_._l = f.'.”) 5 P 1‘ (aq“ -+ SQH—e—l)
= (fra—}—l = fn)_ = =

e vertex translation symmetry for V=0

pirsa 10030027 ® Symmetry broken for V' # 0 [Gambini, Pullin "03, Marsden. West "01] T



|d reparametrization invariant discrete systems

® There is always a discrete action with exact symmetries!
® trick: use the Hamilton-Jacobi functional of continuum theory as discrete action

® =discrete theory captures exactly continuums dynamic

® can be obtained by integrating out almost all variables —y .reﬁnement
(“renormalization group flow™) independent
e s ® a5
» L
L ] ..
N—-1 0.8 ® ™
- i Sty Frd] { L] ®
'53 == E bHJ (fn n - tn—!—l ; QH.——I) 0.6 -
n=4() =&

N—1 S 1 g |
a Z/ ds L(t(s),q(s)) - 0z
—g 7 Sn

Pirsa: 10030027 continuums selution

Remark: piecewise linefsge s
approximation introduces errors
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0

0

0
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3d Regge with cosmological constant

Zu* = JLZ V. *—ZtilE[LE = fo )
: a E el” FE

equations of motion

Lg— Z l
al,
= Z al.
resum : ZIF
Y lee—-30Y Vs

—Ecu_.-

E
=7 Lg
2

solution

with

IV,
€ — ALZ (()TE

In the infinite refinement limit
deficit angles and volume for
homogeneously curved
tetrahedra.

Obrtain fix point action.
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- i et — ¥ . > 1
e o Vi integrate out small edge lengths o e
3d Regge with 3d Regge with curved
cosmological constant simplices
[B.Bahr, BD 09]

Sr =) lee—A) Vo S5 =Y Leet +2: Y W2
€ = = =

: = action for simplices with curvature
action for flat simplices

£= A
approximate exact
symmetries, symmetries,
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|d reparametrization invariant systems

continuum:
e take g and f as variables , (m q’ 2
e use auxilary parameter evolution L=t ?f’—-} — (Gf)
parameter s S
e solutions #(s). g(s) invariant
under reparametrizations in s
diseretization S — N
m (‘%H—l —= Qrt)z - 1 1
L-('H. T+ 1} == (tn—-—l == IL'H) 5 —— V (TQIL = EQTH—I)
= (fra—}—l = fn)_ 2 =

e vertex translation symmetry for V =0
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*vanishing potential

eposition of vertices arbitrary
*one gauge mode
erefinement independent

Remark: piecewise linear
approximation added by hand!

Pirsa: 1003002

Examples

1.0

equadratic potential
eposition of vertices fixed
*one pseudo gauge mode
erefinement dependent

*linearization around solution:
kinetic term of pseudo gauge
mode vanishing: no propagase:

*but gauge breaking in potential



|d reparametrization invariant discrete systems

® There is always a discrete action with exact symmetries!
® trick: use the Hamilton-Jacobi functional of continuum theory as discrete action

® =discrete theory captures exactly continuums dynamic

® can be obtained by integrating out almost all variables —m 1’"*3{'”5"”5”‘3
(“renormalization group flow™) independent
ek ) s ®
» »
L -.
_"\'F_]_ s L] -
= ‘i S ST . L L]
‘53 == E bH,} (fn G tn—i—l- (i'n——lj 0.6 e
n—_0 .I

= S ,
= Z/ ds L(t(s).q(s)) . =

n=>0 ¥ Sn / » 0.5 10 15 20 .
Pirsa: 10030027 continuums selution

Remark: piecewise linegspe 36
approximation introduces errors



Existence of symmetries depends on the dynamics.

This dynamics can be improved by constructing actions that approximate
continuum dynamics very well/perfectly.

Interpretation of discrete building blocks depends on dynamics.

Do not see them literally as (flat) blocks but as representing coarse
grained quantities.
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4d!?

eaction will be non-local, but might be triangulation independent [Bahr. BD, He wip]

*impossible to solve equation of motion non-perturbatively:

=rexpansion around flat space

*VWhat are the properties of this expansion?
To which order are the gauge symmetries/ triangulation independence realized?

Regge calculus Parametrized (an-)harmonic oscillator
e cauge symmetries for flat solutions e gauge symmetries for ¢, = 0. {t, arbitrary
e background gauge parameters e background gauge parameters

position of vertices in flat background

e svinmetries broken for curved solutions e svmmetries broken for ¢, &£ 0
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E. Perturbative expansion

[BD. Hohn 09]

T —=Eg+Exy+eE Tt
,LE]‘ﬂ : 3 2o £ 1 ,31* = 3k
L= ;&”11114—_ Fisody € 3—',5uki1.f{¢1 |

solutions not unique S

* Sl

We will see:

*Typically: consistent expansion only possibly for specific choices of background gauge.

*For other choices: I} ~ =

e 10smprecise relation with invariance properties of (truncated) Hamilton-Jacobi function
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E. Perturbative expansion

[BD, Hohn 09]

E——— ) =
= o 3 3 i i o
S — ;‘S‘ij‘fl‘fl = SIJ‘EZLI'{ - = ?S'ijklll—{i

.ltt'
= I

linear order:

Sij(xo) y;(rn} =@ y;(.r.n) null vectors with index g

g - 5.3 P 1 = a . : . e .
To = TpYy T ToY, coordinate transformation to gauge and physical modes

i Z
P I‘{{ and J:Ef remain free

— IT determined

first non-linear order:

l

J.'Eir and ,cg remain free

l

xh determined

Pirsa: 10030027

But there are still the EOM for the gauge modes! ——



E. Perturbative expansion

[BD. Hohn 09]

solutions not unique e

lu

We will see:

*Typically: consistent expansion only possibly for specific choices of background gauge.
*For other choices: 1) ~=

e 10saprecise relation with invariance properties of (truncated) Hamilton-Jacobi functiony
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E. Perturbative expansion

[BD. Hohn 09]

2

1
o

= - < 0 _3 3 gt o
gsijfli"l == SI'J"LQI{ £ __S—Tngki.l.r'{Il L

linear order:

i

Sij(xo) y;(rn ) =0, y,(zo) null vectors with index g

g g i = 2 s .
To = TpYy T ToY, coordinate transformation to gauge and physical modes

i 5
- I{{ and J:'iF remain free

—_— ri’ determined

first non-linear order:

J."Lf and Jg remain free

l

xh determined
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E. Perturbative expansion

[BD. Hohn 09]

Theorem: After solving for the physical modes we have
S l) ;i O
s = %5 Um
(d zi 79 second order - dxy : ) second order
EOM in non-linear theory computed in linearized theory!

in particular:
e first order and second order gauge variables do not appear in EOM

e if EOM is not automatically zero: have to use it as a consistency condition for background
gauge parameters

e EOM is automatically zero if Hamilton Jacobi functional of linearized theorv does not
depend on background gauge parameters

Interpretation: background parameters get fixed such that dependence of Hamilton-Jacobi functional
Pirsa: 10030027 = g Page 43/86
on these parameters is minimal. g



Hamilton-Jacobi functional for linearized Regge

Does the Hamilton-Jacobi functional for linearized Regge calculus depend on background

gauge?

Yes! (for a specific example) [BD,Hoehn 09]

-also the case for the parametrized (an-)harmonic oscillator

Consistent perturbative expansion only possible around certain choices for
positions of vertices.
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Hamilton-Jacobi functional for linearized Regge

Does the Hamilton-Jacobi functional for linearized Regge calculus depend on background
gauge?’

Yes! (for a specific example) [BD.Hoehn 09]

-also the case for the parametrized (an-)harmonic oscillator

Consistent perturbative expansion only possible around certain choices for
positions of vertices.

Pirsa: 10030027 Page 45/86



Although linearized Regge has exact symmetries,
it is not triangulation independent.

Need to improve even the quadratic part of the Regge action.
[Bahr, BD, He wip]
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E. Perturbative expansion

[BD. Hohn 09]

Theorem: After solving for the physical modes we have
S i ) i ()
= = — (SuJ
(df i Yo second order % dxy : : second order
EOM in non-linear theory computed in linearized theory!

in particular:
e first order and second order gauge variables do not appear in EOM

e if EOM is not antomatically zero: have to use it as a consistency condition for background
gauge parameters

e EOM is automatically zero if Hamilton Jacobi functional of linearized theory does not
depend on background gauge parameters

Interpretation: background parameters get fixed such that dependence of Hamilton-Jacobi functional
irsa: 1003002 - hek age 47/86
= on these parameters is minimal. e



E. Perturbative expansion

[BD. Hohn 09]

ol =" ; e - I =
= L e =3 T 3 1 N5
o —F ES'-‘JII‘EI = = Siji'zil £ ? ijkilipj{"tl S =

linear order:

i

Sij(xo) y;(rn) =0, y,(zo) null vectors with index g

n'i-. R ag '! | ap ! T = ) — i 3 - -
To = TpYe + ToY, coordinate transformation to gauge and physical modes

[ 5
— I'{{ and I‘T remain free

—_— r‘f determined

first non-linear order:

— .r"f and J'j remain free

—> ) determined
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Hamilton-Jacobi functional for linearized Regge

Does the Hamilton-Jacobi functional for linearized Regge calculus depend on background
gauge’

Yes! (for a specific example) [BD.Hoehn 09]

-also the case for the parametrized (an-)harmonic oscillator

Consistent perturbative expansion only possible around certain choices for
positions of vertices.
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E. Perturbative expansion

[BD. Hohn 09]

= 2.7 = £ e ¥ e
i ;Sz’jfrﬁ € Sui-zi'{ +—& 3_'Sijk~t-1*r{i

L

.llt'
s e

linear order:

{

Sij(xo) y;(rn) =0, y,(zo) null vectors with index g

B e e o . : R
To =Ty T ToY, coordinate transformation to gauge and physical modes

i &
. Iﬁi and J:’"lF remain free

—_— I‘L’ determined

first non-linear order:

— J.'if and Jf‘; remain free

—> rf determined
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But there are still the EOM for the gauge modes!



E. Perturbative expansion

[BD. Hohn 09]

Theorem: After solving for the physical modes we have
S 1 ) i d
= = Yo =5 (TmJ)
(r);r i 79 second order %o dxy : second order
EOM in non-linear theory computed in linearized theory!

in particular:
e first order and second order gauge variables do not appear in EOM

e if EOM is not automatically zero: have to use it as a consistency condition for background
gauge parameters

e EOM is automatically zero if Hamilton Jacobi hunctional of linearized theory does not
depend on background gauge parameters

Interpretation: background parameters get fixed such that dependence of Hamilton-Jacobi functional
irsa: 1003002 > el age 51/86
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E. Perturbative expansion

[BD. Hohn 09]

Theorem: After solving for the physical modes we have
S i ) 1 d
- = — (SHu
(d-.r i Y second order % dxy : ) second order
EOM in non-linear theory computed in linearized theory!

in particular:
e first order and second order gauge variables do not appear in EOM

e if EOM is not automatically zero: have to use it as a consistency condition for background

gauge parameters

e EOM is automatically zero if Hamilton Jacobi functional of linearized theory does not
depend on background gauge parameters

Interpretation: background parameters get fixed such that dependence of Hamilton-Jacobi functional
Pirsa: 10030027 - i = Page 52/86
on these parameters is minimal. ’



E. Perturbative expansion

[BD. Hohn 09]

: : 2
E =X+ €2 +E Tot+
ale ¥, ¢ 5.9, 3Lc .k
e S=¢ ;L‘in—.,ﬂl.fﬁl " Saaxy HE 5;‘5!1“ ey b

solutions not unique S

L ™

We will see:
*Typically: consistent expansion only possibly for specific choices of background gauge.

eFor other choices: I} ~ =

e 1000 T €CISE relation with invariance properties of (truncated) Hamilton-Jacobi functiongl. ..



4d!?

*action will be non-local, but might be triangulation independent [Bahr, BD, He wip]

*impossible to solve equation of motion non-perturbatively:

=expansion around flat space

*What are the properties of this expansion?
To which order are the gauge symmetries/ triangulation independence realized?

Regge calculus Parametrized (an-)harmonic oscillator

e cauge svimetries for flat solutions e gauge symmetries for ¢, =0, {, arbitrary
e background gauge parameters e background gauge parameters

position of vertices in flat background i
e svinmetries broken for curved solutions e svmmetries broken for ¢,, & 0
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E. Perturbative expansion

[BD, Hohn 09]
G 2lg i, 3¢ i 3. Sa i ik
D = £ ;L ij L1 = gji-2i1+: ? ijkL1L7Lq e

linear order:

i

Sij(xo) y_;(;rn) =0, y,(xo) null vectors with index g

LI R T i P s a : ; . = :
To =Ty, T+ ToY, coordinate transformation to gauge and physical modes

i =
— r{{ and J:’rf remain free

—_— rf determined

first non-linear order:

— J."‘f and Ji’; remain free

—> 1§ determined
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E. Perturbative expansion

[BD. Hohn 09]

Theorem: After solving for the physical modes we have
S i ) t {'_}
= = Yg 75 OHJ
(d zi 79 second order %o dx ( ) second order
EOM in non-linear theory computed in linearized theory!

in particular:
e first order and second order gauge variables do not appear in EOM

e if EOM is not automatically zero: have to use it as a consistency condition for background
gauge parameters

e EOM is automatically zero if Hamilton Jacobi funectional of linearized theorv does not
depend on background gauge parameters

Interpretation: background parameters get fixed such that dependence of Hamilton-Jacobi functional
Pirsa: 10030027 - e Page 56/86
on these parameters is minimal. ’



Hamilton-Jacobi functional for linearized Regge

Does the Hamilton-Jacobi functional for linearized Regge calculus depend on background

gauge’

Yes! (for a specific example) [BD.Hoehn 09]

-also the case for the parametrized (an-)harmonic oscillator

Consistent perturbative expansion only possible around certain choices for
positions of vertices.

Pirsa: 10030027 Page 57/86



E. Perturbative expansion

[BD. Hohn 09]

il e - e e
-3 L e = = e 1 e
5 — E ES'-‘JII‘EI £ S;JLLQL[”{ = it 3—'Sfjk1-1i'{i

k.
e

linear order:

i

Sij(xo) y;(;rn) =0, y,(zo) null vectors with index g

C— y;;, + xh, y, coordinate transformation to gauge and physical modes

i -
S r{{ and r"’f remain free

—_— rf determined

first non-linear order:

l

J."Lf and Jg remain free

l

x} determined

Pirsa: 10030027

But there are still the EOM for the gauge modes! AR



E. Perturbative expansion

[BD. Hohn 09]

Theorem: After solving for the physical modes we have
S i ) s r)
. — . — (59
((}I Yo ‘secaud order o™ 0 : ) second order
EOM in non-linear theory computed in linearized theory!

in particular:
e first order and second order gauge variables do not appear in EOM

e if EOM is not antomatically zero: have to use it as a consistency condition for background
gauge parameters

e EOM is automatically zero if Hamilton Jacobi functional of linearized theorv does not
depend on background gauge parameters

Interpretation: background parameters get fixed such that dependence of Hamilton-Jacobi functional
Pirsa: 10030027 = = Page 59/86
on these parameters is minimal. :



Hamilton-Jacobi functional for linearized Regge

Does the Hamilton-Jacobi functional for linearized Regge calculus depend on background

gauge’

Yes! (for a specific example) [BD.Hoehn 09]

-also the case for the parametrized (an-)harmonic oscillator

Consistent perturbative expansion only possible around certain choices for
positions of vertices.
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Although linearized Regge has exact symmetries,
it is not triangulation independent.

Need to improve even the quadratic part of the Regge action.
[Bahr, BD, He wip]
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Hamilton-Jacobi functional for linearized Regge

Does the Hamilton-Jacobi functional for linearized Regge calculus depend on background
gauge’

Yes! (for a specific example) [BD.Hoehn 09]

-also the case for the parametrized (an-)harmonic oscillator

Consistent perturbative expansion only possible around certain choices for
positions of vertices.
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Although linearized Regge has exact symmetries,
it is not triangulation independent.

Need to improve even the quadratic part of the Regge action.
[Bahr, BD, He wip]
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Improving the action order by order

21 -
l improve
21 IMP 3cIMP %l | 7k
T 5 .Izl.rl-l—f S 17;,.1:1 + & 3_,*9@?}&1'1171331 + ...
= now background gauge arbitrary '
to non-linear order improve
1
et IJIP % IJ,IP IJIP

It works not only for the harmonic oscillator but also for the anharmonic one!
Pirsa: 10030027 Page 64/86



Quadratic order

_____________________________ —
without gauge symmetries Stare = TiMijz; | Xy = bpx;
=
Sy — % (b“ M;b_”) X,
with gauge symmetries M;; yf —4 — ¥ —buy nullvectors for S,

need to project on orthogonal subspace, then invert

wip: evaluation for the Regge action, geometric interpretation’
Pirsa: 10030027
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Improving the action order by order

-3 3 1 k
S = SUJJILLJ +-£ Su.r;.11+,, 3 SUk.LlilLl‘F
]’ improve
S QISIJ.IP _|_;3SI1IP LS ] k‘_i_
5 JzzlJ:l 2.171 & 3] !ﬂleIlIl
now background gauge arbitrary

to non-linear order improve

= 2 ISIJIP -|- 55-{_-’1-1'1:’, E -] 1 = 1 I.UP I‘}

It works not only for the harmonic oscillator but also for the anharmonic one!
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Quadratic order

_____________________

......... | S e | e —
without gauge symmetries Stare = ziMijx; X = bpx;
=
S = Xi (b“_h',.;lb_”-) =
with gauge symmetries M;; yf =1 = ¥X; — by mullvectors for S,

need to project on orthogonal subspace, then invert

wip: evaluation for the Regge action, geometric interpretation?
Pirsa: 10030027
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Repercussions for canonical framework
and quantization?

SO T '_.-:.-_: s

T™\J :.--.-g: -—-.id--i"-ul--'-:-".-"", = - .
| ] 11 'l & | = ] 11 1AL 1L & -4 )
‘—JD-'"-"-LJ = '\—-"-r"\'\-rll Y’ LE e el N N 'h—i-;-“'ll-'-
1INO0OMalo CoOnsrraint alcanra resicictrtant AviRAarmirc
:!.-E ',_,.',15;.___._.— wiS b S -ELa il . il SEL L ‘:r-\;\-.-'-.p""-'—--'-.n"-u.--.ra':'-— "—-i_,d':-"-:--:-- 5-'"-.-.:-
!

a) Canonical formalism reproducing exactly solutions and
(broken) symmetries of discretized action?

b) Constraints! Constraint algebra? Anomalies?
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Canonical Framework

continuous action q discrete action

discretization

Legendre Legendre

discrete

: : q discrete wonlcal form.
continuous canonical form. X

canonical form.
discretization

continuous time, discrete time,
discrete space, discrete space,
(anomalous) constraints (pseudo) constraints
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Canonical Framework

continuous action q discrete action

discretization

Legendre Legendre

discrete

: _ q discrete womcal form.
continuous canonical form. B

canonical form.
discretization

continuous time, discrete time,
discrete space, discrete space,
(anomalous) constraints (pseudo) constraints
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Canonical Framework

continuous action q discrete action

discretization

Legendre Legendre

discrete

: : q discrete wonlcal form.
continuous canonical form. 1

canonical form.
discretization

continuous time, discrete time,
discrete space, discrete space,
(anomalous) constraints (pseudo) constraints
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Canonical Framework

[Bahr, BD '09; BD, Hohn 09]

eevolve spatial triangulation locally by tent moves  [Sorkin 75. Barretr et al 97]
efinite time steps
suse action as generating function for time evolution map

[consistent discretizations, Gambini & Pullin et al 03-05]

*reproduces (broken) symmetries exactly [BahrBD 09] .

symmetries exact = eom not independent =constraints (first class)

broken= eom almost not independ. =pseudo-constraints

Obtaining anomaly free constraints is equivalent to constructing an
pirsa: 10030027 action with exact symmetries. page 72186



Evolving spatial triangulations with tent moves

[ Sorkin 75, Barrett et al 97]

time evolution moves:
® do not change spatial triangulation/ number of variables
® act local, involving only star of a vertex

® can obtain local (pseudo-) constraints based at vertices

1l tan
d

L L B - |

D
L
© T

x O
[¥]
]

<
m
-t

£F

pirsa: 100300 tex with star in bi

trianguiation
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Canonical Framework

canonical (tent move)

transformation:
e — % Sn pn —— d S”
! ‘ r}f T s ()Efl
n—+1 d SH pn tE 5’5”
pf . l;_)fn-i—l ) : [:_Hfl—l

Pirsa: 10030027

equations of motion:

85\‘” TR
g = - =»—

o, f
O = E)J\.grl”__ 1 f_)us'j'l

ole ' ol

P

L L
_pe pe

use S, as generating
function for canonical
transformation

Page 74/86



4-valent vertex: flat dynamics

equation for the tent pole O=p = _g}:n = Z A_\

solution en—1§0

momenta associated to edges e (j;; = ; D:;; YA — _\Z;:F -:I:}:’l; €A
constraints Ce=p. + ; i}jj (13) va(ll)

Momenta do not depend on variables at next time step = constraints.

For higher valent vertices ¢y # 0 ,momenta depend (weakly) on variables at next time step

= pseudo constraints.

Pirsa: 10030027 Page 75/86



‘Dynamics’ for a 4-simplex (o aya o850, Hoem o3

*3d surface of a 4-simplex: five 4-valent vertices
*apply constraints to every vertex

dihedral angles
o y dAA eﬁ"/
e —— _ [

. ! - Ile WAL

geometric meaning’

esymplectic coordinate transformation:

e b &
An=An(l), pa = (-,; 15 Pe —_— Can = pa+9all)
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‘Dynamics’ for a 4-simplexX (o aya 0850, Hoem 05

econstraints fix the momenta to agree with the dihedral angles as defined by lengths

eare first class! (despite very complicated form of dihedral angles)

egenerate deformation of hypersurface (via vertex translations): Hamiltonian and diffeomorphism
constraints

*3d surface of a 4-simplex: zero physical degrees of freedom: no 4d curvature
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Higher-valent vertex: (linearized) dynamics o oo

For higher valent vertices ¢, = (0 , momenta depend (weakly) on variables at next time step

= pseudo constraints.

But for the linearized dynamics = constraints.

| oS ;
E:ﬂz__ :l]'—f—?f. (= £ ,r.{:
y, p="p i

Hessian on flat space has uge
p — gaug

null eigenvectors Y7 . symmetries
i i — e’ _n e’ () f):l._\k : 5
Imearl;ed Cr=Yrn}+Yr |= = E = WA e
constraints el — i
ADe 1=01
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‘Dynamics’ for a 4-simplexX (o aya o850, Hoem 03

econstraints fix the momenta to agree with the dihedral angles as defined by lengths

eare first class! (despite very complicated form of dihedral angles)

egenerate deformation of hypersurface (via vertex translations): Hamiltonian and diffeomorphism
constraints

*3d surface of a 4-simplex: zero physical degrees of freedom: no 4d curvature
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Higher-valent vertex: (linearized) dynamics o oo

For higher valent vertices ¢, # (0 , momenta depend (weakly) on variables at next time step

= pseudo constraints.

But for the linearized dynamics = constraints.

. 1S ;
E:{]E—— _ :D 1T, f;: £ O f.%_-
=r-f Y oicare”

Hessian on flat space has uge
p , > gaug

null eigenvectors Y7 . symmetries
: : = ,E;_'_” . e’ () ():1_\ e
Imearl;ed Cr=¥Yf o= +Y; e pYE A Yn
constraints Oty n
ADe 1=01
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Higher-valent vertex: (linearized) dynamics o oo

9, JAAN
C = 7 ” _.l— Y _ - : I, 1 [
r=Yf g+ ole Z e In

ADe 11=0]

*constraints give relation between intrinsic and extrinsic geometry

eare first class! (despite very complicated form of dihedral angles)

egenerate linearized deformation of hypersurface (via vertex translations): Hamiltonian and
diffeomorphism constraints

*preserved by linearized tent move dynamics (analogous to quadratic Hamiltonian)

*split into gauge and physical variables (relation to linearized curvature on inner triangles)
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Options

ehigher order: obtain pseudo constraints with Regge action - allows inly for discrete time evolution
ealternatively to tent moves:
*Pachner moves

equantization would lead to spin foam picture

ewith perfect action: regain continuous time evolution, exact constraints, however non-local

constraints and larger phase space (‘higher derivatives’)
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Repercussions:
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Connections between problems.

Construct discrete action with < S Construct canonical dynamics

exact gauge symmetries. with anomaly free constraints.

\ /

Construct triangulation
independent state sum.
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Conclusions

discrete actions generally break diffeomorphism symmetries
regaining symmetries by coarse graining, renormalization

canonical framework exactly mimics covariant symmetries:
constraints and pseudo-constraints

perturbative expansion subtle: background gauge fixed if
symmetries are broken
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Prospects

understand triangulation (in-)dependence and investigate
non-locality properties of improved actions

develop lattice deformation algebra:
improved quantum action/ renormalization in spin foams

canonical quantization: improve constraints

Explore general mechanisms and conditions for
regaining gauge symmetries.
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