Title: Foundations and Interpretation of Quantum Theory - Lecture 17

Date: Mar 18, 2010 02:30 PM

URL: http://pirsa.org/10030024

Abstract:

Pirsa: 10030024 Page 1/150

A tale of a single world universe

Quantum states of all macroscopic objects are Localized Wave Packets all the time

$$\Psi^{\text{UNIVERSE}}(\vec{r}_{1}, \vec{r}_{2},, \vec{r}_{N}, t) = \psi^{\text{1}}(\vec{r}_{1}) \psi^{\text{2}}(\vec{r}_{2}) ... \psi^{\text{N}}(\vec{r}_{N})$$

$$\Psi^{\text{WORLD}} = \psi^{\text{1}}_{\text{CM}}(\vec{r}_{1}^{\text{CM}}) \varphi^{\text{1}}_{\text{rel}}(\vec{r}_{1i} - \vec{r}_{1j}) \psi^{\text{2}}_{\text{CM}}(\vec{r}_{2}^{\text{CM}}) \varphi^{\text{2}}_{\text{rel}}(\vec{r}_{2i} - \vec{r}_{2j}) ... \psi^{\text{M}}_{\text{CM}}(\vec{r}_{M}^{\text{CM}}) \varphi^{\text{1}}_{\text{rel}}(\vec{r}_{Mi} - \vec{r}_{Mj}) \Phi^{\text{REST}}$$

$$\Rightarrow \rho(\vec{r})$$

 $\rho(\vec{r})$ of a cat!

experience

 $\psi^{\text{\tiny l}}(\vec{r_1})\psi^{\text{\tiny l}}(\vec{r_2})...\psi^{\text{\tiny N}}(\vec{r_N})$

Almost the same as in

Textbook collapse

GRW-Pearle Collapse (mass density)

Bohmian trajectories

Pirsa: 10080024acian Determinism

Pirsa: 10030024 Page 4/150

Preferred basis:

$$\{|A\rangle, |B\rangle\}$$
 or $\{\frac{|A\rangle+|B\rangle}{\sqrt{2}}, \frac{|A\rangle-|B\rangle}{\sqrt{2}}\} \equiv \{|+\rangle, |-\rangle\}$

R

Preferred basis:

$$\{|A\rangle, |B\rangle\} \quad \text{or} \quad \left\{\frac{|A\rangle+|B\rangle}{\sqrt{2}}, \frac{|A\rangle-|B\rangle}{\sqrt{2}}\right\} \equiv \{|+\rangle, |-\rangle\}$$

Preferred basis:

$$\{|A\rangle, |B\rangle\}$$

$$\{|A\rangle, |B\rangle\}$$
 or $\{\frac{|A\rangle+|B\rangle}{\sqrt{2}}, \frac{|A\rangle-|B\rangle}{\sqrt{2}}\} \equiv \{|+\rangle, |-\rangle\}$

$$|A\rangle |R\rangle_{MDA} |R\rangle_{MDB} |R\rangle_{ENV}$$

$$\rightarrow |A\rangle |V\rangle_{MDA} |R\rangle_{MDB} |R\rangle_{ENV}$$

STABILITY

Preferred basis:

$$\{|A\rangle, |B\rangle\}$$
 or $\{\frac{|A\rangle+|B\rangle}{\sqrt{2}}, \frac{|A\rangle-|B\rangle}{\sqrt{2}}\} \equiv \{|+\rangle, |-\rangle\}$

$$|A\rangle |R\rangle_{MDA} |R\rangle_{MDB} |R\rangle_{ENV}$$

$$\rightarrow |A\rangle |V\rangle_{MDA} |R\rangle_{MDB} |R\rangle_{ENV}$$

$$\rightarrow |A\rangle |V\rangle_{MDA} |R\rangle_{MDB} |A\rangle_{ENV}$$

$$|B\rangle |R\rangle_{MDA} |R\rangle_{MDB} |R\rangle_{ENV}$$

Pirsa: 10030024 Page 14/150

Preferred basis:

$$\{|A\rangle, |B\rangle\}$$

$$\{|A\rangle, |B\rangle\}$$
 or $\{\frac{|A\rangle+|B\rangle}{\sqrt{2}}, \frac{|A\rangle-|B\rangle}{\sqrt{2}}\} \equiv \{|+\rangle, |-\rangle\}$

$$|A\rangle|R\rangle_{MDA}|R\rangle_{MDB}|R\rangle_{ENV}$$

$$\rightarrow |A\rangle |V\rangle_{MDA} |R\rangle_{MDB} |R\rangle_{ENV}$$

$$\rightarrow |A\rangle |V\rangle_{MDA} |R\rangle_{MDB} |A\rangle_{ENV}$$

$$|B
angle |R
angle_{\scriptscriptstyle MD\,A}|R
angle_{\scriptscriptstyle MD\,B}|R
angle_{\scriptscriptstyle ENV}$$

$$\rightarrow |B\rangle |R\rangle_{MDA} |V\rangle_{MDB} |R\rangle_{ENV}$$

Preferred basis:

$$\{|A\rangle, |B\rangle\}$$

$$\{|A\rangle, |B\rangle\} \text{ or } \left\{\frac{|A\rangle+|B\rangle}{\sqrt{2}}, \frac{|A\rangle-|B\rangle}{\sqrt{2}}\right\} \equiv \{|+\rangle, |-\rangle\}$$

$$|A\rangle |R\rangle_{MDA} |R\rangle_{MDB} |R\rangle_{ENV}$$

$$\rightarrow |A\rangle |V\rangle_{MDA} |R\rangle_{MDB} |R\rangle_{ENV}$$

$$\rightarrow |A\rangle |V\rangle_{MDA} |R\rangle_{MDB} |A\rangle_{ENV}$$

$$|B\rangle|R\rangle_{MDA}|R\rangle_{MDB}|R\rangle_{ENV}$$

$$\rightarrow \mid B \rangle \mid R \rangle_{MDA} \mid V \rangle_{MDB} \mid R \rangle_{ENV}$$

$$\rightarrow |B\rangle |R\rangle_{MDA} |V\rangle_{MDB} |B\rangle_{ENV}$$

Pirsa: 10030024 Page 16/150

Preferred basis:

$$\{|A\rangle, |B\rangle\}$$
 or $\{\frac{|A\rangle+|B\rangle}{\sqrt{2}}, \frac{|A\rangle-|B\rangle}{\sqrt{2}}\} \equiv \{|+\rangle, |-\rangle\}$

$$|A\rangle |R\rangle_{MDA} |R\rangle_{MDB} |R\rangle_{ENV}$$

$$\rightarrow |A\rangle |V\rangle_{MDA} |R\rangle_{MDB} |R\rangle_{ENV}$$

$$\rightarrow |A\rangle |V\rangle_{MDA} |R\rangle_{MDB} |A\rangle_{ENV}$$

$$|B\rangle |R\rangle_{MDA} |R\rangle_{MDB} |R\rangle_{ENV}$$

$$|B\rangle |R\rangle_{MDA} |V\rangle_{MDB} |R\rangle_{ENV}$$

$$\rightarrow |B\rangle |R\rangle_{MDA} |V\rangle_{MDB} |R\rangle_{ENV}$$

$$\rightarrow |B\rangle |R\rangle_{MDA} |V\rangle_{MDB} |B\rangle_{ENV}$$

$$|+\rangle |R\rangle_{MDA} |R\rangle_{MDB} |R\rangle_{ENV}$$

Pirsa: 10030024 Page 17/150

Preferred basis:

$$\{|A\rangle, |B\rangle\}$$

$$\{|A\rangle, |B\rangle\}$$
 or $\{\frac{|A\rangle+|B\rangle}{\sqrt{2}}, \frac{|A\rangle-|B\rangle}{\sqrt{2}}\} \equiv \{|+\rangle, |-\rangle\}$

$$|A\rangle |R\rangle_{\scriptscriptstyle MDA} |R\rangle_{\scriptscriptstyle MDB} |R\rangle_{\scriptscriptstyle ENV}$$

$$\rightarrow |A\rangle |V\rangle_{MDA} |R\rangle_{MDB} |R\rangle_{ENV}$$

$$\rightarrow |A\rangle |V\rangle_{MDA} |R\rangle_{MDB} |A\rangle_{ENV}$$

$$|B\rangle|R\rangle_{MDA}|R\rangle_{MDB}|R\rangle_{ENV}$$

$$\rightarrow |B\rangle |R\rangle_{MDA} |V\rangle_{MDB} |R\rangle_{ENV}$$

$$\rightarrow |B\rangle |R\rangle_{MDA} |V\rangle_{MDB} |B\rangle_{ENV}$$

$$|+\rangle |R\rangle_{MDA} |R\rangle_{MDB} |R\rangle_{ENV}$$

Preferred basis:

$$\{|A\rangle, |B\rangle\}$$
 or $\{\frac{|A\rangle+|B\rangle}{\sqrt{2}}, \frac{|A\rangle-|B\rangle}{\sqrt{2}}\} \equiv \{|+\rangle, |-\rangle\}$

STABILITY

$$|A\rangle |R\rangle_{\scriptscriptstyle MDA} |R\rangle_{\scriptscriptstyle MDB} |R\rangle_{\scriptscriptstyle ENV}$$

$$\rightarrow |A\rangle |V\rangle_{MDA} |R\rangle_{MDB} |R\rangle_{ENV}$$

$$\rightarrow |A\rangle |V\rangle_{MDA} |R\rangle_{MDB} |A\rangle_{ENV}$$

$$|B\rangle |R\rangle_{MDA} |R\rangle_{MDB} |R\rangle_{ENV}$$

$$\rightarrow |B\rangle |R\rangle_{MDA} |V\rangle_{MDB} |R\rangle_{ENV}$$

$$\rightarrow |B\rangle |R\rangle_{MDA} |V\rangle_{MDB} |B\rangle_{ENV}$$

$$|+\rangle |R\rangle_{MDA} |R\rangle_{MDB} |R\rangle_{ENV}$$

$$B \to \frac{|A\rangle |V\rangle_{MDA} |R\rangle_{MDB} + |B\rangle |R\rangle_{MDA} |V\rangle_{MDB}}{\sqrt{2}} |R\rangle_{ENV}$$

Preferred basis:

$$\{|A\rangle, |B\rangle\}$$
 or $\{\frac{|A\rangle+|B\rangle}{\sqrt{2}}, \frac{|A\rangle-|B\rangle}{\sqrt{2}}\} \equiv \{|+\rangle, |-\rangle\}$

$$|A\rangle |R\rangle_{\scriptscriptstyle MDA} |R\rangle_{\scriptscriptstyle MDB} |R\rangle_{\scriptscriptstyle ENV}$$

$$\rightarrow |A\rangle |V\rangle_{MDA} |R\rangle_{MDB} |R\rangle_{ENV}$$

$$\rightarrow |A\rangle |V\rangle_{MDA} |R\rangle_{MDB} |A\rangle_{ENV}$$

$$|B\rangle|R
angle_{\scriptscriptstyle MDA}|R
angle_{\scriptscriptstyle MDB}|R
angle_{\scriptscriptstyle ENV}$$

$$\rightarrow |B\rangle |R\rangle_{MDA} |V\rangle_{MDB} |R\rangle_{ENV}$$

$$\rightarrow |B\rangle |R\rangle_{MDA} |V\rangle_{MDB} |B\rangle_{ENV}$$

$$|+\rangle |R\rangle_{MDA} |R\rangle_{MDB} |R\rangle_{ENV}$$

$$B \rightarrow \frac{|A\rangle |V\rangle_{\text{MDA}} |R\rangle_{\text{MDB}} + |B\rangle |R\rangle_{\text{MDA}} |V\rangle_{\text{MDB}}}{\sqrt{2}} |R\rangle_{\text{ENV}} \\ |A\rangle |V\rangle_{\text{MDA}} |R\rangle_{\text{MDB}} |A\rangle_{\text{ENV}} + |B\rangle |R\rangle_{\text{MDA}} |V\rangle_{\text{MDB}} |B\rangle_{\text{ENV}}$$

$$\sqrt{2}$$

Preferred basis:

$$|A\rangle,|B\rangle\}$$
 or $\{$

$$\{|A\rangle, |B\rangle\}$$
 or $\{\frac{|A\rangle+|B\rangle}{\sqrt{2}}, \frac{|A\rangle-|B\rangle}{\sqrt{2}}\} \equiv \{|+\rangle, |-\rangle\}$

$$|A\rangle |R\rangle_{MDA} |R\rangle_{MDB} |R\rangle_{ENV}$$

$$\rightarrow |A\rangle |V\rangle_{MDA} |R\rangle_{MDB} |R\rangle_{ENV}$$

$$\rightarrow |A\rangle |V\rangle_{MDA} |R\rangle_{MDB} |A\rangle_{ENV}$$

$$|B
angle |R
angle_{\scriptscriptstyle MD\,A} |R
angle_{\scriptscriptstyle MD\,B} |R
angle_{\scriptscriptstyle ENV}$$

$$\rightarrow |B\rangle |R\rangle_{MDA} |V\rangle_{MDB} |R\rangle_{ENV}$$

$$\rightarrow |B\rangle |R\rangle_{MDA} |V\rangle_{MDB} |B\rangle_{ENV}$$

$$|+\rangle |R\rangle_{MDA} |R\rangle_{MDB} |R\rangle_{ENV}$$

$$B \to \frac{|A\rangle |V\rangle_{MDA} |R\rangle_{MDB} + |B\rangle |R\rangle_{MDA} |V\rangle_{MDB}}{\sqrt{2}} |R\rangle_{ENV}$$

$$\rightarrow \frac{|A\rangle |V\rangle_{MDA} |R\rangle_{MDB} |A\rangle_{ENV} + |B\rangle |R\rangle_{MDA} |V\rangle_{MDB} |B\rangle_{ENV}}{\Box}$$

 $\Pr[Pirsa: 10030024 \text{MDA} \mid R)_{\text{MDB}} \mid A\rangle_{\text{ENV}} + \mid R\rangle_{\text{MDA}} \mid V\rangle_{\text{MDB}} \mid B\rangle_{\text{ENV}} + \mid -\rangle \frac{\mid V\rangle_{\text{MDA}} \mid R\rangle_{\text{MDB}} \mid A\rangle_{\text{ENV}} - \mid R\rangle_{\text{MDA}} \mid V\rangle_{\text{Page 2 1/150}} \rangle_{\text{ENV}}$

experience i

world i

$$\Leftrightarrow \Psi_i(\vec{r}_1,\vec{r}_2,....,\vec{r}_N,t)$$

$$\Psi_i = \psi_i^{\text{OBJECT}_1} \ \psi_i^{\text{OBJECT}_2} ... \psi_i^{\text{OBJECT}_K} \varphi_i^{\text{REST}}$$

is a Localized Wave Packet for a period of time

A world consist of:

experience i

world i

$$\Leftrightarrow$$
 $\Psi_i(\vec{r}_1,\vec{r}_2,....,\vec{r}_N,t)$

$$\Psi_i = \psi_i^{\text{OBJECT}_1} \ \psi_i^{\text{OBJECT}_2} ... \psi_i^{\text{OBJECT}_K} \varphi_i^{\text{REST}}$$

is a Localized Wave Packet for a period of time

A world consist of:

Pirsa: 10030024 classical macroscopic objects rapidly measured by the environment,

quantum objects measured only occasionally (at world splitting events),

Page 23/150

world i

$$\Leftrightarrow$$
 $\Psi_i(\vec{r}_1,\vec{r}_2,....,\vec{r}_N,t)$

$$\Psi_i = \psi_i^{\text{OBJECT}_1} \ \psi_i^{\text{OBJECT}_2} ... \psi_i^{\text{OBJECT}_K} \varphi_i^{\text{REST}}$$

is a Localized Wave Packet for a period of time

Pirsa: 10030024 classical macroscopic objects rapidly measured by the environment,

quantum objects measured only occasionally (at world splitting events),

Page 24/150

Many worlds universe

Pirsa: 10030024 Page 25/150

experience i

world i

$$\Leftrightarrow \Psi_i(\vec{r}_1,\vec{r}_2,....,\vec{r}_N,t)$$

$$\Psi_i = \psi_i^{\text{OBJECT}_1} \ \psi_i^{\text{OBJECT}_2} ... \psi_i^{\text{OBJECT}_K} \varphi_i^{\text{REST}}$$

is a Localized Wave Packet for a period of time

Pirsa: 10030024 classical macroscopic objects rapidly measured by the environment,

quantum objects measured only occasionally (at world splitting events),

Page 26/150

Many worlds universe

Pirsa: 10030024 Page 27/150

Many worlds universe

Locality and strength of the interaction to numerous particles ensure stability of all worlds

The tree of worlds

Pirsa: 10030024 Page 29/150

The tree of worlds

The tree of worlds

Pirsa: 10030024 Page 33/150

Pirsa: 10030024 Page 34/150

Pirsa: 10030024 Page 38/150

Pirsa: 10030024 Page 39/150

The tree of worlds

Pirsa: 10030024 Page 42/150

Do we experience amplitude?

Pirsa: 10030024

Page 43/150

Do we experience amplitude?

Pirsa: 10030024 Page 45/150

Probability is the likelihood or chance that something in the case or will happen.

Wikipedia

Pirsa: 10030024 Page 46/150

Probability is the likelihood or chance that something is the case or will happen.

Wikipedia

'Interpreting probability' is a commonly used but misleading name for a worthy enterprise. The so-called 'interpretations of probability' would be better called 'analyses of various concepts of probability'

SEP

Pirsa: 10030024 Page 47/150

Probability is the likelihood or chance that something is the case or will happen.

Wikipedia

'Interpreting probability' is a commonly used but misleading name for a worthy enterprise. The so-called 'interpretations of probability' would be better called 'analyses of various concepts of probability'

SEP

The classical probability of an event is simply the fraction of the total number of possibilities in which the event occurs

Pirsa: 10030024 Page 48/150

Probability is the likelihood or chance that something is the case or will happen.

Wikipedia

'Interpreting probability' is a commonly used but misleading name for a worthy enterprise. The so-called 'interpretations of probability' would be better called 'analyses of various concepts of probability'

SEP

The classical probability of an event is simply the fraction of the total number of possibilities in which the event occurs

The Logical probability: the possibilities may be assigned *unequal* weights, and probabilities can be computed whatever the evidence may be, symmetrically balanced or not.

Pirsa: 10030024 Page 49/150

Probability is the likelihood or chance that something is the case or will happen.

Wikipedia

'Interpreting probability' is a commonly used but misleading name for a worthy enterprise. The so-called 'interpretations of probability' would be better called 'analyses of various concepts of probability'

SEP

The classical probability of an event is simply the fraction of the total number of possibilities in which the event occurs

The Logical probability: the possibilities may be assigned *unequal* weights, and probabilities can be computed whatever the evidence may be, symmetrically balanced or not.

Frequency Interpretation: the probability of an attribute A in a finite reference class B is the relative frequency of actual occurrences of A within B.

Pirsa: 10030024 Page 50/150

Probability is the likelihood or chance that something is the case or will happen.

Wikipedia

'Interpreting probability' is a commonly used but misleading name for a worthy enterprise. The so-called 'interpretations of probability' would be better called 'analyses of various concepts of probability'

SEP

The classical probability of an event is simply the fraction of the total number of possibilities in which the event occurs

The Logical probability: the possibilities may be assigned *unequal* weights, and probabilities can be computed whatever the evidence may be, symmetrically balanced or not.

Frequency Interpretation: the probability of an attribute A in a finite reference class B is the relative frequency of actual occurrences of A within B.

Pirsa: 10030024 Page 51/150

Propensity Interpretation: disposition, or tendency of a given type of physical

Subjective probability

degrees of confidence, or credences, or "partial" beliefs of suitable agents.

Pirsa: 10030024 Page 52/150

Subjective probability

degrees of confidence, or credences, or "partial" beliefs of suitable agents.

The betting interpretation, de Finetti:

Your degree of belief in E is p iff p units of utility is the price at which you would buy or sell a bet that pays 1 unit of utility if E, 0 if not E.

Pirsa: 10030024 Page 53/150

Classical Many Worlds

Pirsa: 10030024 Page 54/150

Teleportation

Pirsa: 10030024 Page 55/150

Teleportation

Pirsa: 10030024 Page 56/150

Classical teleportation

Pirsa: 10030024 Page 57/150

Classical teleportation

Pirsa: 10030024 Page 58/150

V

Pirsa: 10030024 Page 59/150

Pirsa: 10030024

Symmetry

n = -

Page 69/150

Probability of something to happen – A or B?

Pirsa: 10030024 Page 70/150

Probability of something to happen – A or B?

Pirsa: 10030024 Page 71/150

Probability of something to happen – A or B?

Pirsa: 10030024 Page 72/150

Pirsa: 10030024 Page 73/150

R

Pirsa: 10030024 Page 74/150

R

Pirsa: 10030024 Page 75/150

Here: A and B

There is nothing to be ignorant about, everything is known.

Pirsa: 10030024 Page 76/150

Here: A and B

There is nothing to be ignorant about, everything is known.

No ignorance, no randomness
NO PROBABILITY

Pirsa: 10030024 Page 77/150

Here: A and B

There is nothing to be ignorant about, everything is known.

No ignorance, no randomness

NO PROBABILITY

But a good reason to bet!

The betting interpretation, de Finetti:

Your degree of belief in E is p iff p units of utility is the price at which you would buy or sell a bet that pays 1 unit of utility if E, 0 if not E.

Pirsa: 10030024

Page 78/150

Here: A and B

There is nothing to be ignorant about, everything is known.

No ignorance, no randomness

NO PROBABILITY

But a good reason to bet!

The betting interpretation, de Finetti:

Your degree of belief in E is p iff p units of utility is the price at which you would buy or sell a bet that pays 1 unit of utility if E, 0 if not E.

Pires: 1003002

Page 79/150

Measure of existence: Can it be different from 0 and 1?

B

Measure of existence: Can it be different from 0 and 1?

B

$$\mu = 0$$

Measure of existence:

Can it be different from 0 and 1?

A $\mu_{A} = 0$

$$B$$

$$\mu_{p} = 0$$

Measure of existence: Can it be different from 0 and 1?

Probability Problems of the MWI of QM

Pirsa: 10030024 Page 84/150

Probability Problems of the MWI of QM

Probability given by the number of worlds yields wrong predictions

Pirsa: 10030024 Page 85/150

Probability Problems of the MWI of QM

Probability given by the number of worlds yields wrong predictions

$$|\Psi\rangle = \sqrt{0.9} |\Psi_A\rangle + \sqrt{0.1} |\Psi_B\rangle$$

Pirsa: 10030024 Page 86/150

Probability Problems

It seems that it is good to play Russian quantum roulette.

Pirsa: 10030024 Page 87/150

Probability Problems

B

It seems that it is good to play Russian quantum roulette.

The Probability Problem

In the MWI there is no meaning for probability

Pirsa: 10030024 Page 89/150

The Probability Problem

In the MWI there is no meaning for probability

There is no randomness and no ignorance

Probability of what?

Probability of something to happen – A or B? In MWI - A and B

There is nothing to be ignorant about, everything, $|\Psi(t)\rangle$, is known.

Pirsa: 10030024 Page 90/150

The Probability Problem

In the MWI there is no meaning for probability

There is no randomness and no ignorance

Probability of what?

Probability of something to happen – A or B? In MWI - A and B

There is nothing to be ignorant about, everything, $|\Psi(t)\rangle$, is known.

Textbook collapse, GRW – randomness probability

Pirsa: 10030024 Page 91/150

Add an Observer

Schrödinger:

$$|\Psi\rangle \rightarrow \sqrt{0.9} |\Psi_A\rangle + \sqrt{0.1} |\Psi_B\rangle$$

Collapse

Add an Observer

Schrödinger:

$$|\Psi\rangle \rightarrow \sqrt{0.9} |\Psi_A\rangle + \sqrt{0.1} |\Psi_B\rangle$$

Collapse

Bohmian Mechanics

Ignorance probability: the observer does not know the initial Bohmian

Many Worlds (Schrödinger):

Probability of what? Ignorant of what?

Pirsa: 10030024 Page 97/150

Pirsa: 10030024 Page 98/150

Probability postulate is replaced by

Behavior Principle:

We should care about all our successive worlds in proportion to their measures of existence.

Measure of existence of world $i: \mu_i = |\langle \Psi_{UNIVERSE} | \Psi_{WORLDi} \rangle|^2 = |\alpha_i|^2$

Pirsa: 10030024 Page 99/150

R

Probability postulate is replaced by

Behavior Principle:

We should care about all our successive worlds in proportion to their measures of existence.

Measure of existence of world $i: \mu_i = |\langle \Psi_{UNIVERSE} | \Psi_{WORLD i} \rangle|^2 = |\alpha_i|^2$

Behavior Principle ⇒

I should bet 1:9 Get 1 if A, pay 9 if B

B

Probability postulate is replaced by

Behavior Principle:

We should care about all our successive worlds in proportion to their measures of existence.

Measure of existence of world $i: \mu_i = |\langle \Psi_{UNIVERSE} | \Psi_{WORLDi} \rangle|^2 = |\alpha_i|^2$

Behavior Principle ⇒

I should bet 1:9 Get 1 if A, pay 9 if B

I should not play Russian quantum roulette

R

Probability postulate is replaced by

Behavior Principle:

We should care about all our successive worlds in proportion to their measures of existence.

Measure of existence of world $i: \mu_i = |\langle \Psi_{UNIVERSE} | \Psi_{WORLDi} \rangle|^2 = |\alpha_i|^2$

Behavior Principle ⇒

I should bet 1:9 Get 1 if A, pay 9 if B

I should not play Russian quantum roulette

Pirsa: 10030024

Page 102/150

I should bet as if I have a concept of probability

I should bet as if I have a concept of probability because my decedants have ignorance probability meaning

Pirsa: 10030024 Page 103/150

I should bet as if I have a concept of probability because my decedants have ignorance probability meaning

R

 $\mu_i = |\alpha_i|^2$ as an ignorance probability measure

Pirsa: 10030024 Page 104/150

Sleeping Pill Experiment

Vaidman (1998) ISPS

Ignorance probability of the descendants A and B

Pirsa: 10030024 Page 105/150

Pirsa: 10030024 Page 107/150

Pirsa: 10030024 Page 108/150

Pirsa: 10030024

Only I_A and I_B can give this answer

Since all the descendants yield the same answer we can relate it to me before the experiment. I put my bet for the descendants. They have probability. Thus, my bet is for a probabilistic event. This is the ignorance probability meaning of the measure of

Pirsa: 10030024

1

Pirsa: 10030024 Page 111/150

Since all the descendants yield the same answer we can relate it to me before the experiment. I put my bet for the descendants. They have probability. Thus, my bet is for a probabilistic event. This is the ignorance probability meaning of the measure of

Pirsa: 10030024

Page 112/150

B

Pirsa: 10030024 Page 113/150

R

We put "intelligent bet" according to $|\mu_i| = |\alpha_i|^2$ of future worlds

Pirsa: 10030024 Page 114/150

We put "intelligent bet" according to $|\mu_i| = |\alpha_i|^2$ of future worlds

Should I_A behave differently than I_B because $\mu_A = 9 \mu_B$?

Pirsa: 10030024

Page 115/150

19

We put "intelligent bet" according to $|\mu_i| = |\alpha_i|^2$ of future worlds

Should I_A behave differently than I_B because $\mu_A = 9 \, \mu_B$?

Pirsa: 10030024

We put "intelligent bet" according to $|\mu_i| = |lpha_i|^2$ of future worlds

Should I_A behave differently than I_B because $\mu_A = 9 \mu_B$?

Pirsa: 10030024

Page 117/150

R

We put "intelligent bet" according to $|\mu_i| = |\alpha_i|^2$ of future worlds

Should I_A behave differently than I_B because $\mu_A = 9 \, \mu_B$?

Pirsa: 10030024

Page 118/150

Pirsa: 10030024 Page 119/150

Pirsa: 10030024 Page 120/150

I am from another galaxy. Our technology is 10 million years ahead.

Pirsa: 10030024 Page 121/150

R

I am from another galaxy. Our technology is 10 million years ahead.

I like betting. Would you like to bet?

Pirsa: 10030024 Page 122/150

Pirsa: 10030024 Page 123/150

 $I_{\scriptscriptstyle R}$ should say no! The creature can always win.

Pirsa: 10030024 Page 124/150

 $I_{\scriptscriptstyle R}$ should say no! The creature can always win.

should say yes! I will have at least 6.4:3.6 odds to win.

I can do to the neutron what the creature can do to me

Pirsa: 10030024 Page 126/150

I can do to the neutron what the creature can do to me

Pirsa: 10030024 Page 127/150

I can do to neutron what the creature can do to me

Pirsa: 10030024 Page 128/150

MWI+Decisison Theory
$$\Rightarrow p = |\alpha_i|^2$$

$p=|\alpha_i|^2$ **MWI+Decisison Theory** Page 130/150

Pirsa: 10030024

There is no "real" probability in the MWI

Probability of an event is replaced by measure of existence of the world with this event and probability postulate is replaced by "behavior principle"

Measure of existence of future worlds can be given a meaning as an ignorance probability of the descendents of the observer.

Measure of existence of a present world has a physical meaning as a measure of ability to interfere with parallel worlds

Pirsa: 10030024 Page 131/150

There is no "real" probability in the MWI

Probability of an event is replaced by measure of existence of the world with this event and probability postulate is replaced by "behavior principle"

Measure of existence of future worlds can be given a meaning as an ignorance probability of the descendents of the observer.

Measure of existence of a present world has a physical meaning as a measure of ability to interfere with parallel worlds

Pirsa: 10030024 Page 132/150

1

Beaty, what is your credence for Tails?

Elga: 1/3

Lewis: 1/2

Tuesday

Monday

R

Beaty, what is your credence for Tails?

Elga: 1/3

Lewis: 1/2

Tuesday

Monday

R

Beaty, what is your credence for Tails?

Elga: 1/3

Lewis: 1/2

Page 135/150

Tuesday

Monday

Pirsa: 10030024

R

Beaty, what is your credence for Tails?

Elga: 1/3

Lewis: 1/2

Tuesday

Monday

Pirsa: 10030024

1

Beaty, what is your credence for Tails?

Elga: 1/3

Lewis: 1/2

Page 137/150

Tuesday

Monday

Pirsa: 10030024

Fair coin ½ : ½

1

Beaty, what is your credence for Tails?

Elga: 1/3

Lewis: 1/2

Page 138/150

Tuesday

Monday

Pirsa: 10030024

R

Beaty, what is your credence for Tails?

Elga: 1/3

Lewis: 1/2

Tuesday

Monday

1

Beaty, what is your credence for Tails?

Elga: 1/3

Lewis: 1/2

Page 140/150

Tuesday

Monday

Sleeping Beauty Quantumland

R

Beaty, what is your credence for Tails?

MWI: 1/3

Tuesday

Measure of existence of each world = $\frac{1}{2}$

Monday

Quantum Fair coin 1/2:1/2

A. Elitzur and L. Vaidman Found. Phys. 23, 987 (1993).

explodes when any particle "touches" it

BOMB:

interacts only through explosion

Pirsa: 10030024 Page 142/150

A. Elitzur and L. Vaidman Found. Phys. 23, 987 (1993).

explodes when any particle "touches" it

BOMB:

interacts only through explosion

Pirsa: 10030024 Page 143/150

A. Elitzur and L. Vaidman Found. Phys. 23, 987 (1993).

explodes when any particle "touches" it

BOMB:

interacts only through explosion

Pirsa: 10030024 Page 144/150

Pirsa: 10030024 Page 145/150

Pirsa: 10030024

Pirsa: 10030024

The Many-Worlds Interpretation is an approach to quantum mechanics according to which, in addition to the world we are aware of directly, there are many other similar worlds which exist in parallel at the same space and time. The existence of the other worlds makes it possible to remove randomness and action at a distance from quantum theory and thus from all physics.

Pirsa: 10030024 Page 150/150