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Abstract: We will review the definitions of spin foam models for quantum gravity and the recent advances in this field, such as the & quot;graviton
propagator& quot;, the definition of coherent states of geometry and the derivation of non-commutative field theories as describing the effective
dynamics of matter coupled to quantum gravity. | will insist on the role of group field theories as providing a non-perturbative definition of
spinfoams and their intricate relation with non-commutative geometry and matrix models.
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Defining Spinfoam Meaodels

Where do Spinfoams come from?

Three dual perspectives:

@ State-sum Models for Topological BF Theory:
S[B.A] = [,, TrB A F[A] with gauge connection A and field B
No local degree of freedom = the path integral discretized on
a triangulation of M provides an exact quantization.
— The Ponzano-Regge model for 3d quantum gravity (1968)

@ Quantized Regge calculus with discrete lengths/areas.

@ Histories of Spin Networks in Loop Quantum Grawty

Allows to compute transition amplltudes -
between spin network states as “sum- R

over-surfaces’ o
— “bubbles” of space-time = k

—— e
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Defining Spinfoam Meaodels

So what are Spinfoams?

Goal: A framework for a regularized path integral for gravity
How?

@ Write general relativity as a BF gauge theory with nontrivial
potential S= [ BAF[A] + V|[B]
@ Discretize the path integral on a triangulation (or cellular

decomposition) of the (4d) space-time manifold
What?

@ A spinfoam model is a choice of amplitude for each
triangulation defined as the product of local terms

@ The dual to (3d) space triangulation is a spin network state

@ [ his defines a probability amplitude to each history of
evolving spin networks
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Defining Spinfoam Maodels

The Spinfoam Ansatz

The data: Consider the gauge group G, then dress up the
triangulation:

@ Triangle — representation (spin) j; of G

@ letrahedron — intertwiner 717 between its 4 triangles

@ 4-Simplex — evaluation of the boundary spin network
— contraction of its 5 tetrahedra

A local ansatz:

AlA] =Y [T AeGe) 1] ArGe. T0) | AsGe. T7)
t ¥ o
o S e == .

Statistical weights Dynamics

Pirsa: 10020079 Page 5/50




Defining Spinfoam Meodels

The Standard Models

@ Ponzano-Regge : 3d gravity with G=SU(2) or SU(1,1)
@ Discretization of topological BF Theory in 3d
@ Amplitude for 3-simplex (tetrahedron) = {6/}
@ Related to Regge calculus {6/} ~ cos(Sg)
@ Cosmological Constant A related to g-deformation U,(SU(2))
@ SU(2) BF Theory : 4-simplex = {15/}, non-geometric
© Barrett-Crane : constrained BF Theory with G=Spin(4)
@ Quantization of a single 4-simplex — {10/}
@ No dynamics for intertwiners
@ Related to Regge calculus {10/} ~ bad terms + cos(Sg)
@ EPR-FK : G=Spin(4) or Spin(3,1)
@ Uses LS coherent intertwiners
@ Good control on large spin asymptotics
@ 3 /a Freidel-Starodubtsev : G=Spin(5) or Spin(4,1)
@ Based on the McDowell-Mansouri action for GR
SR @ Doesn't exist yet. .. Page 50



The Recent Results

Some Main Results

We have been trying to work hard in the past five years. . .

@ The Graviton Propagator : To recover the standard
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perturbative of quantum general relativity... with
improvements hopefully!

Using Coherent Intertwiners : tool for semi-classical expansion
and central objects in constructing “new’ spinfoam models

Coupling Matter to Spinfoams: deriving non-commutative
field theory describing the effective dynamics of matter
coupled to the quantum geometry (DSR)

— Experimental signature of deformed Poincaré symmetry?

Group Field Theory : Generating Spinfoam amplitudes as
Feynman diagrams
—the non-perturbative definition of spinfoam models =




The Recent Results

Other Cool Results

@ Better understanding of the relation to (area-)Regge calculus

— Discrete Lagrangians for spinfoam models
@ Explicit link with the canonical LQG framework
@ Spinfoam models for supergravity and for BF+strings
@ Recursion relations and symmetries of spinfoam amplitudes
@ Reconstruction of gravity from BF theory

s 0000® | M sure that | have forgotten other projects. . . page 850




The Recent Results The Graviton Propagator

The Graviton Propagator

An original proposal by Rovelli "05:

Compute correlations between areas in spinfoam models and relate
them to the graviton propagator of perturbative GR.

= A first real test for Spinfoam models |

Since then, a real task force between CPT (Marseille), ENS Lyon
and University of Western Ontario

And deeply intertwined with progress on the asymptotics of
spinfoam amplitudes, with Pl and the Nottingham group
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The Recent Results The Graviton Propagator

Computing correlations between geometric observables ...

The general setting: Consider a triangulation A with boundary

@ Choose a spinfoam model and define a suitable semi-classical
physical boundary state ¥'({j:.Z1}+ 7con)

@ Choose two 2\ in dA and define the correlation
O(a)OUs)) = - Z O(2)OUs)Uaa-Lan)AaUe. L7)
Je- jfT

@ Gauge fix the spinfoam amplitude Ap
@ Sum on all A compatible with fixed boundary structure A

@ This defines the graviton propagator (h,3h-5)
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The Recent Results The Graviton Propagator

... Computing correlations between geometric observables

The actual setting: Having fun with a 4-simplex. . .

@ Choose two /\ on the 4-simplex and take O(j) = j(j + 1)

@ Mainly study the Barrett-Crane model (or Ponzano-Regge
model in 3d), simpler because no intertwiner dynamics. . .

(OU2)OUb)) Z O(a)OUp)vUe) {10/}

Ur—J F .
@ Take Gaussian ansatz v'(ji) = [[,e ~ e'ft peaked on

flat (equilateral) 4-simplex (or improved Bessel ansatz)
@ Physical state? Turns out to fix the width 3 in 3d
@ More complex triangulations? Renormalization of spinfoams?

o 0000®  USE coherent intertwiners and EPR-FK spinfoams? = o




The Recent Resuilts The Gr_witc-n Propagator

Some actual results

A simplified setting but we get actual analytical and numerical

results | ' |
@ Leading order in 1/ =

Newton's law

N = - @ Regularized correlations at

e ™ small scale jo — 0 with

dynamic minimal scale

@ Compute quantum corrections with dependence on measure
@ Probing the asymptotics of the {10j}-symbol (and {6/} too!)

@ lesting the tensorial structure of graviton propagator
— asymptotical ansatz for new spinfoam amplitudes
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The Recent Resuits = witon Propaga
Using Coherent Intertwiners

Coherent Intertwiners for Tetrahedra

A simple observation: the standard intertwiner basis used in LQG
and SF, labeled by a internal spin, is not suited to semi-classical
analysis.

Coherent Intertwiners: Consider 4-valent intertwiners, dual to
tetrahedra, between Jj. ... j4 which give the area of the triangles,
and build the averaged tensor product of four SU(2) coherent
states

/ dg g > @7_4lji. Ni
JSU(2)

These are semi-classical states approximating classical tetrahedra
for large spins j's, with the n; giving the normals to the triangles.
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The Recent Results

Using. Cnheﬁnt Infer:fwirlers

Using Coherent Intertwiners

@ Used in spinfoam asymptotics and graviton calcultations

@ Used to build the new EPR-FK spinfoam models

Pirsa: 10020079

— To solve in a coherent way the simplicity constraints
(turning BF into gravity) and resolve the “no intertwiner
dynamics’ issue of the Barrett-Crane model: it helps both for
the relation between spinfoams and canonical LQG and for the
issue of coupling between 4-simplices.
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The Recent Results

Using C.nherent Infer:fwfners

and Going Further

@ Refined into holomorphic intertwiners |j;...j4. Z)

Pirsa: 10020079

— Coherent intertwiners use 4+8=12 labels for the
semi-classical states, but a tetrahedron is characterized by

only 6 numbers. The extra 6 labels are SO(3) rotations plus
the closure constraints. Together they form a SL(2,C)
transformations, which allow to reduce the labels to a single

complex number Z .
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The Recent Results

Coupling Matter to Spinfoams

Coupling particles to the Ponzano-Regge model

Pi

IIIII

3d Quantum gravity: topological and completely flat

Zpg = / [dBdA]el BAFIAL — / [dA]5(FA])

=== / dee] [To([ T &) = 3 ]2 + 1) [116}
- e ect {je} e T
Particles are topological defects : the mass m becomes a deficit
angle 0 — .
5(g) — 0p(g) on-shell or P(g) = (p(g)* — sin® #) ! off-shell
We insert a Feynman diagram [ into the spinfoam model:

Zall] = / [dg:] H P(ge) H*“) (ge) = Z H = H 2]6+1)H{6J-}

L
: 10020079 J(je ec r P(’:{]—e 16/50



The Recent Results

Cﬁup_li ﬁg Ma.tter to S.pinfua.ms

Effective Non-Commutative Quantum Field Theory

We prove that the spinfoam amplitudes are Feynman diagrams of a
Non-Commutative QFT: Zall] = I[T]
The momentum space is our gauge group SU(2):

Slo] = /dgfﬂ(g_l)(;v(g)z—Sinz-@)w(g)

+y / [de]” 6(g1)--0(gn)3(£1.-gn)

@ Momentum space is curved = coordinate space is
non-commutative

@ Momentum space is bounded = there is a minimal length x—!

@ J(g1..gn) is the conservation of momentum

irsa: 10020079
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The Recent Results

Coupling Matter to Spinfoams

A group Fourier transform

We introduce a Fourier transform between SU(2) and su(2) ~ R3

o(X) = /dgf_}(g) e e — /dg o(g) e~ Pe)
with x =X -0 and p = —irxTrgo.
This defines a »-product dual to the convolution product on SU(2),

e Trxgz kTrxgy ar Trxg1en

-

D

and a fuzzy o-distribution: S(x) = M

The NCQFT action can be written in coordinate space:

S[o] :'/.deS(x)(A—hsm 0)c Znn/[dx]
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The Recent Results

Coupling Matter to Spinfoams

Effective Non-Commutative Quantum Field Theory

We prove that the spinfoam amplitudes are Feynman diagrams of a
Non-Commutative QFT: ZAll] = T
The momentum space is our gauge group SU(2):

S5lo] = /dgfﬂ(g_l)(P(g)z—Sinz-@)w(g)

=3 Z ¥ ./[dg]” o(g1)..0(gn)o(g1..2n)

@ Momentum space is curved = coordinate space is
non-commutative

@ Momentum space is bounded = there is a minimal length £

@ J(g1..gn) Is the conservation of momentum
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The Recent Results

Coupling Matter to Spinfoams

A group Fourier transform

We introduce a Fourier transform between SU(2) and su(2) ~ R3

Fa

o(X) = /dgo(g) SO /dg o(g) eiXplg)

with x = X -0 and p = —irkIrgo.
This defines a »-product dual to the convolution product on SU(2),

' Trxgy k' Trxgy
N

and a fuzzy J-distribution: S(x) = —Jl(:;x')
The NCQFT action can be written in coordinate space:

S[o] = ' / dx O(x)(A + rsin® 0)o(x) + Y an ' / [dx]" 0™ (x)
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The Recent Results

Caun—hng M:.tter to S.pinfl.:la.ms

A deformed Poincaré symmetry

We have derived a NCQF T describing the effective dynamics of a
(scalar) matter field coupled to 3d quantum gravity.

@ It is invariant under the quantum double DSU(2), which is
identified to a deformed Poincaré symmetry:

r'_}(g) I -’_‘.J(/\g/\_l) (-_-"(g) s EHTHgO(g)

@ It has a non-trivial co-product:
o(g1) @ o(g2) — €778 o(g1) @ O(g2)

@ which translates into a modified addition of momenta:
p(g1) = p(g2) = B(g182) # P(g1) + P(g2)

woo® It has a non-trivial braiding: (g1.22) — (g1228; . &1) T



The Recent Results

Cﬁuﬁ_ﬁn- g Ma.tter tn. S.pi nfua-ms

A group Fourier transform

We introduce a Fourier transform between SU(2) and su(2) ~ R3

5()?) = /dgo(g) S e /dg o(g) ei%-plg)
with x =X -0 and p = —irTrgo.
This defines a »-product dual to the convolution product on SU(2),

e Trxgi * e" Trxgy _ _sTrxgig

and a fuzzy o-distribution: S(x) ~ —Jl(ix')

The NCQFT action can be written in coordinate space:

S[o] :'/dx;i(x)(&—hsm B)o( Znn/[dx] (x)
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The Recent Results

Coupling Matter to Spinfoams

A deformed Poincaré symmetry

We have derived a NCQF T describing the effective dynamics of a
(scalar) matter field coupled to 3d quantum gravity.

@ It is invariant under the quantum double DSU(2), which is
identified to a deformed Poincaré symmetry:

o(g) -3 o(Agh™) o(g) = e~ 1r€ o (g)

@ It has a non-trivial co-product:

k1rxg1 g (j(

o(g1) @ o(g2) — e g1) @ o(&2)

@ which translates into a modified addition of momenta:

-

p(g1) = p(g2) = P(g1g2) # P(g1) + P(g2)

woo® It has a non-trivial braiding: (g1, 22) — (g1228; . &1) _——



The Recent Results =

Coupling Matter to Spinfoams

And in four space-time dimensions?

It all works well in 3d, but can it work in 4d too?

@ We don't have the spinfoam model for 4d quantum gravity
@ Particles are not simply topological defects in 4d

But some notions still hold..

@ the correspondence between Feynman diagrams and
observables of a topological spinfoam model

@ NCQFT can be written as theories of a curved group manifold

@ Particles are almost topological defects from the viewpoint of
BF theory

= |t will work using group field theories !

— We will derive DSR with a k-deformed Poincaré symmetry
rs1bi@dM 4d spinfoam models
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The Recent Results

Cuuﬁiing Matter to Spinfoams

Effective Non-Commutative Quantum Field Theory

We prove that the spinfoam amplitudes are Feynman diagrams of a
Non-Commutative QFT: Zall] = ]
The momentum space is our gauge group SU(2):

Slo] = /dgfﬂ(g_l)(;?(g)z—Sinz-@)fﬂ(g)

=3 an [ ldel” oler)-oAen)(en-e)

@ Momentum space is curved = coordinate space is
non-commutative

@ Momentum space is bounded = there is a minimal length x—1

@ O(g1..gn) is the conservation of momentum
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The Recent Results

Coupling Matter to Spinfoams

And in four space-time dimensions?

It all works well in 3d, but can it work in 4d too?

@ We don't have the spinfoam model for 4d quantum gravity

@ Particles are not simply topological defects in 4d
But some notions still hold..

@ the correspondence between Feynman diagrams and
observables of a topological spinfoam model

@ NCQFT can be written as theories of a curved group manifold

@ Particles are almost topological defects from the viewpoint of
BF theory

= It will work using group field theories |

= We will derive DSR with a x-deformed Poincaré symmetry
rs1bb@dM 4d spinfoam models
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Group Field Theory...

Generating spinfoams as Feynman diagrams

Inspired from Matrix Models generating 2d triangulations:

1 A

SIM] = —TrM? — ZTeM3
2 3
gluing As generates /\s

n-d Group Field Theories:
@ Interaction term of GFTs represents n-simplex
@ Propagator gives the gluing of n-simplices

@ Feynman diagrams are nd (pseudo)triangulations and their
evaluation gives the relevant spinfoam amplitudes

@ Allows a rigorous and systematic definition of spinfoam
amplitudes and provides a non-perturbative definition of the

e 0000e SUM OVEr triangulations. page 21150




The Recent Results

Coupling Matter to Spinfoams

And in four space-time dimensions?

It all works well in 3d, but can it work in 4d too?

@ We don't have the spinfoam model for 4d quantum gravity

@ Particles are not simply topological defects in 4d

But some notions still hold..

@ the correspondence between Feynman diagrams and
observables of a topological spinfoam model

@ NCQFT can be written as theories of a curved group manifold

@ Particles are almost topological defects from the viewpoint of
BF theory

= |t will work using group field theories !

— We will derive DSR with a x-deformed Poincaré symmetry
rsibi@dM 4d spinfoam models
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Group Field Theory...

Generating spinfoams as Feynman diagrams

Inspired from Matrix Models generating 2d triangulations:

1 A

SIM] = TrM? — ZTeM3
2 3
gluing As generates /\s

n-d Group Field Theories:
@ Interaction term of GFTs represents n-simplex
@ Propagator gives the gluing of n-simplices

@ Feynman diagrams are nd (pseudo)triangulations and their
evaluation gives the relevant spinfoam amplitudes

@ Allows a rigorous and systematic definition of spinfoam
amplitudes and provides a non-perturbative definition of the

e 0000e SUM OVEr triangulations. page 20150




Group Field Theory...

2d Group Field Theory

2d Group Field Theory for SU(2) BF theory:
Take a gauge-invariant field o(g1.9) = ©(g12. 22g) and define:

Se] = %'/[dg]zg(a.gﬂ) (g2, 81)— 3\, /[dg} o(&1.82)0(82. 83)¢(g3. 8

Gets written in term of gauge-fixed field ©(g1.22) = r_‘)(glgz_l)i

Stel = 5 [1deloe ™ ole)—5; [ 1deP oln)elen)oles) e gass)
Decompose field in SU(2) irreps o(g) = > _. d;Tro/ D! (g) with

d; x d; matrices ¢/ and we recover (decoupled) matrix models:

S[o] = Zd [ Tr(¢)? — 3_\13(01) ]
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Group Field Theory...

3d Group Field Theory

3d Boulatov’s Group Field Theory for Ponzano-Regge:
Take a gauge-invariant field o(g1.9.53) = 2(g12. 2. 39) :

ﬂdzlfwu@@guggm

_i /[d§]6 o(g1-82-83)0(g3. ga. g5) o(g5- £2- 86 ) (g6 - 84 £1)

The interaction term defines a tetrahedron and this GF T generates
spinfoam amplitudes for SU(2) BF theory.
Decompose field in irreps using Peter-Weyl theorem

(gl 82- g3) Z *-’Jr}?jlszr%?ma H Djm:ﬂf(gf )1{111'%3”3
Ji I

Z - /\ —
"r* ‘r* I T e ‘:"r* y ot {6.1’ }
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Group Field Theory...

4d Group Field Theory

We can play the same game in 4d using a gauge-invariant field

over G*.
@ [ he combinatorial structure of interaction

reproduces a 4-simplex

@ A trivial propagator glues the 4-simplices
together

@ Boulatov-Ooguri GFT generates SU(2) BF theory and the
{15/ }-symbol

@ Any spinfoam model can be written as such a GFT with the
iInteraction term given by the Fourier transform of the

4-simplex amplitude
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Group Field Theory...

3d Group Field Theory

3d Boulatov’s Group Field Theory for Ponzano-Regge:
Take a gauge-invariant field o(g1.2.53) = 2(g12. 22. 39) :

skl — - / Bk s el i o

== /[dg]6 P(e1-82-83)0(83- 84, 85) (85 82- 86 ) (&6 84- 81)

The interaction term defines a tetrahedron and this GF T generates
spinfoam amplitudes for SU(2) BF theory.
Decompose field in irreps using Peter-Weyl theorem

r(81.82.83) = ZJ; *:-*Jr}ffﬁ?ma 11 Djm:”f(ci)I{TIifrzr{Fna

1 |2 /\ —— L =
Pirsa: 10020079 S[T]:EZ T'| _a “_'TJTT'{EU}
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Group Field Theory...

4d Group Field Theory

We can play the same game in 4d using a gauge-invariant field

over G*.
@ [ he combinatorial structure of interaction

reproduces a 4-simplex

@ A trivial propagator glues the 4-simplices
together

@ Boulatov-Ooguri GFT generates SU(2) BF theory and the
{15/ }-symbol

@ Any spinfoam model can be written as such a GFT with the
Interaction term given by the Fourier transform of the

4-simplex amplitude
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Group Field Theory...

3d Group Field Theory

3d Boulatov’s Group Field Theory for Ponzano-Regge:
Take a gauge-invariant field o(g1.9.53) = 2(g12. 2. 839) :

1
Slel = 5/[dg]3Tf(glfgz-ga)x;(g?)-gz-gl)

A
4l /[dg]6 o(81.82.83)¢(&3. 8a. 85) (5. 82- 86 ) (86 84 £1)

The interaction term defines a tetrahedron and this GF T generates
spinfoam amplitudes for SU(2) BF theory.
Decompose field in irreps using Peter-Weyl theorem

o(g1.82.83) = Zj, *-#Jr%zfr%vman Djm,m(c:)I{?lifrﬁam

Sl:“a:]:_ ‘::|__I_ ‘r”r*‘r"r'{ﬁf}
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Group Field Theory...

4d Group Field Theory

We can play the same game in 4d using a gauge-invariant field

over G*.
@ [ he combinatorial structure of interaction

reproduces a 4-simplex

@ A trivial propagator glues the 4-simplices
together

@ Boulatov-Ooguri GFT generates SU(2) BF theory and the
{15/ }-symbol

@ Any spinfoam model can be written as such a GFT with the
Interaction term given by the Fourier transform of the

4-simplex amplitude
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... and Non-Commutative Geometry

The Interplay between Group field theory and NCQFT

Spinfoam Amplitudes = Feynman diagrams of

for Geometry+Matter Effective NCQFT
T ,_, T
Group Field Theory = NCQFT
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... and Non-Commutative Geometry

NCQFT as Group Field Theories

Remember using SU(2) as the momentum manifold :

Slo] = / dg o(g HK(g)o(g) + an '/[dg]” o(g1).-0(gn)o(g1--8n)

and compare to 2d GFT:

S[o] = %/[dg] r:ﬂ(g‘l)f-?*(g)—;—\!/[dg]?) o(g1)o(g2)o(g3) 0(g18283)

It's the same type of momentum conservation. The only difference
Is the trivial propagator , which ensures the consistent gluing of
simplices.
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... and Non-Commutative Geometry

From Group field theory to NCQFT: 2d variations

Starting from the 3d GFT for the Ponzano-Regge model for 3d

quantum gravity, we define 2d variations ©(g1.82.483) =t (glga,_l)
to reduce it to a 2d GFT:

1

Sle]l = 5‘/[0@’]3;(gl.gz-ga);(ga.gz-gl)

_i /[dg]6;(gl.gz.gg),,:(gg.ga.ga);(ga.gz.ge);(gs-gﬁl-gl)

= — 5 [ldelvte et [ ldel* vler)--vien) ier-ea)
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... and Non-Commutative Geometry

From Group field theory to NCQFT: classical solutions

We identify a class of “flat” classical solutions to the 3d GFT :

3l ; ) :
of(g1. &2. 83) = V /dgfﬁ(glg)f(gzg)fﬁ(g?)g) with /f2 =1

and we define the effective dynamics of 2d variations around such
classical field configurations:

Sefr[] = Slor + U] — Sler]
This leads to a non-trivial propagator!
3

Ser[t)] = %/[dg] V(g )Kr(g)v(g) - I“—f./[dg]S 1] ¢(gi)d(e1--g3)

]

[dg]* H ) (g1.-g4)
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... and Non-Commutative Geometry

From Group field theory to NCQFT: 2d variations

Starting from the 3d GFT for the Ponzano-Regge model for 3d

quantum gravity, we define 2d variations ©(g1.42.43) = t_'(glggl)
to reduce it to a 2d GFT:

1

Sle]l = 5/[dg]3;(gl.gz-gz);(ga-gz-gl)

A
_E /[dg]ﬁ ;(gl- 22. gg),r_’,”(gg g4. g5);(g5 . gﬁ)‘r:(gﬁ g4. gl)

—Ste =1 =5 [ldelvle el [ ldel* vler)-vien) Ser-ea)
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... and Non-Commutative Geometry

From Group field theory to NCQFT: classical solutions

We identify a class of “flat” classical solutions to the 3d GFT :

/ 3] ) - _
F(g1.82.83) = - /dgf}(glg)f(ggg)f)(ggg) with /f2 —1

and we define the effective dynamics of 2d variations around such
classical field configurations:

Sefr[t] = Slor + U] — Sler]

This leads to a non-trivial propagator!

Ser[t)] = %/[dg] V(g )Ke(g)v(g) - '“—f./[dg]3 1] ¢(i)d(s1--e3)

A
=1 [dg]* H (i) 6(g1--84)
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... and Non-Commutative Geometry

A new class of matrix models

We decompose this effective NCQFT into SU(2) representations
and we get a matrix model with

@ the kinetic term K(g) coupling matrices of different sizes

@ but the whole action still invariant under the deformed
Poincaré symmetry.

— a new family of matrix models .
Can we solve them using standard matrix model techniques? |t

would open an approach to solving this class of NCQFT and the
GFTs.
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... and Non-Commutative Geometry

From Group field theory to NCQFT: classical solutions

We identify a class of “flat” classical solutions to the 3d GFT :

3! = . :
or(g1. &2.83) = Vo /dgrﬁ(glg)f(gzg)ﬂ(&g) with /f2 —1

and we define the effective dynamics of 2d variations around such
classical field configurations:

Se#[Y] = Sler + Y] — S|+l

This leads to a non-trivial propagator!

Sl = 3 [ldelv(eKe(e)ie) — b5 [leel [] v(e) dlan-eo)

4
_;_\!. del* ] [ v(e1) o(en--e2)
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... and Non-Commutative Geometry

A new class of matrix models

We decompose this effective NCQFT into SU(2) representations
and we get a matrix model with

@ the kinetic term K(g) coupling matrices of different sizes

@ but the whole action still invariant under the deformed
Poincaré symmetry.

= a new family of matrix models .
Can we solve them using standard matrix model techniques? |t

would open an approach to solving this class of NCQFT and the
GFTs.
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... and Non-Commutative Geometry

What happened?

We have closed the diagram and identified a phase of the 3d GFT
which is the NCQF T describing the effective dynamics of matter
fields coupled to the quantum geometry. How did we do that?

@ Looking at certain 2d group field variations around non-trivial
classical solutions

@ Matter in pure quantum gravity? GFT are summing over all
geometries and topologies, matter is represented through
some non-trivial topology&geometry configuration

@ Classical solutions to the GFT provide non-trivial geometry
backgrounds for gravity
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... and Non-Commutative Geometry

Deriving 4d DSR from GFT

We follow the same steps as in 3d:

@ Start with the GFT for topological BF theory with group

SO(4,1) used in the Freidel-Starodubtsev spinfoam approach
(McDowell-Mansouri)

Q Write the DSR field theory with a k-deformed Poincaré
symmetry in term of a momentum space AN3 and identify
AN5 as a subgroup of SO(4,1)

© Find “flat” classical solutions of the GFT and study 2d
variations localized on AN3 around them

@ DSR is a specific phase of the 4d GFT

@ generic variations? dynamical localization? spinfoam for
gravity’
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... and Non-Commutative Geometry

Group Field Theories as NCQFT

Some lessons and directions for the future of spinfoams:
@ [he group manifold for GFT is the momentum representation.

@ We should encounter the same problems with GFTs as with
NCQFTs. .. Braiding of GFTs? Or do GFTs help to solve
them?

@ Matter is already in the GFT! But can we get gauge fields and
fermions?

@ A deformed Poincaré invariance for 3d GFT

@ Already a lot to understand about GF Ts at the classical
level. . .
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What's next?

What can we do?

We could try to..
@ Classify good classical solutions of the 4d GFTs (use coherent
intertwiners?) and compute some mean field approximation
@ What are the (quantum) symmetries of the GFTs?
@ Compute NCQFT correlations using matrix model techniques
@ Renormalize GFTs using NCQF T techniques
@ Integrable Structures in GF Ts following matrix model results?

E xploit the interplay between GFT for spinfoams, NCQFT and
matrix models!
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What's next?

What can we do?

Or is it time for a coffee break?
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