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Abstract: In thistalk | will report on arecent work [arXiv:0908.1583], which investigates genera probabilistic theories where every mixed state has
a purification, unique up to reversible channels on the purifying system. The purification principle is equivalent to the existence of a reversible
realization for every physical process, namely that to the fact that every physical process can be regarded as arising from the reversible interaction of
the input system with an environment that is eventually discarded. From the purification principle one can also construct an isomorphism between
transformations and bipartite states that possesses all structural properties of the Choi-Jamiolkowski isomorphism in Quantum Mechanics. Such an
isomorphism allows one to prove most of the basic features of Quantum Information Processing, like e.g. no information without disturbance, no
joint discrimination of all pure states, no cloning, teleportation, complementarity between correctable and deletion channels, no programming, and
no bit commitment, without resorting to the mathematical framework of Hilbert spaces.
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MOTIVATION OF THIS WORK

e Ultimate goal: deriving the mathematical framework of
QM from few physical principles

* Intermediate goals:  understanding structural aspects

of QM on the basis of elementary
concepts

— simpler proofs of quantum
results

—— less hypotheses needed
for proving theorems






SYSTEMS AND TESTS
-Systems: A, B, C, ..., [ = trivial system (nothing)

A : Input system

A B B : output system
-Tests: {Ci } 1€X ' i: outcome

Specja_[ cases of tests: C ;. event of the test

e trivial input: preparation-test, f; : preparation-event

o= e
e trivial output: observation-test, @; : observation-event
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PARALLEL COMPOSITION

-Composite systems: AB, ABC ( trivial composition: A=AI=IA)
-Composite tests:

B
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CIRCUITS

OPERATIONAL THEORY: a theory of devices that can
be mounted to form circuits.

input-output arrow
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CIRCUITS

OPERATIONAL THEORY: a theory of devices that can
be mounted to form circuits.

input-output arrow

T T e

An operational theory is a language,
and its words are well-formed circuits.
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PROBABILISTIC STRUCTURE

On top of the language of circuits we add a probabilistic structure:
.é-. — pla;.pi)
e Their composition is the product of probabilities:
«P
A B
>

p(aj s Pi )p(bl, O'k) Page 1565

e Events from the trivial
system to itself are
probabilities
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COARSE-GRAINING

Coarse-graining of a test: a new test obtained by joining

outcomes .

i€X;

e deterministic states

Single-outcome tests > e deterministic effects

¢ deterministic transformations
(“channels”)

For deterministic p.C, e : P A C Be —
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DEFINITION

A theory is causal if the probability of an outcome is independent
of the choice of subsequent tests:

N = BN o
J k

In other words, the choice of a test can only affect the outcome
probabilities of tests that happen “later”.
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DEFINITION

A theory is causal if the probability of an outcome is independent
of the choice of subsequent tests:

Z Pz‘Aaj =— Z P@Abk
j k

In other words, the choice of a test can only affect the outcome
probabilities of tests that happen “later”.

The input-output arrow becomes the arrow of the information flow

__ﬁ
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EQUIVALENT CONDITIONS

Equivalent condition #1:  there is a unique normalized effect €

Marginal states are A — A
uniquely defined B
(no-signaling) B

Equivalent condition #2:  the choice of a test can be conditioned
by the outcomes of previous tests

- CE
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DEFINITION
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GENERALIZATIONS

Convexity and local discriminability

are not essential for most of the results presented in the
following.

(e.g. most result hold for QM on real Hilbert spaces)

In this presentation, however, [ will stick to the simplest scenario
and assume both.
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THE PURIFICATION AXIOM

* Existence: For every state p of A
there is a system B and a pure state W p of AB

such that

“- &

* Uniqueness up to (reversible) transformations on the

purifying system:

Tl Thu Ol T
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FIRST CONSEQUENCES

e There are entangled states

e Every couple of pure states is connected by a reversible

transformation

e Unique invariant state for every system:

¢ - ¢m -

e Purity —— independence from the rest of the world
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NO CLONING OF PURE STATES

Perfect cloning ——  perfect discrimination

Barnum, Barret, Leifer, Wilce, Phys. Rev. Lett. 99,240501 (2007)
[see also GC, D’Ariano, Perinotti, Phys. Rev. Lett. 101, 180504 (2008)]

Discriminabiliy

__ ‘ _ —— finite number of pure states {'79-,; }ge_ﬁ{
+ finite dimension

A

[ 6“ ——
Z p A a; .‘PEA: p 2 Vp
P,

Cloning —— ngn-dlstmbmg test | O
with non-zero information
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ENTANGLEMENT BREAKING CHANNELS

e Channel C is entanglement breaking (upon input of 0 )

< > it is measure-and-prepare (upon input of p)

< > (] state (defined by a purification of p ) is separable

cf. Horodecki, Shor, and Ruskai for QM
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COMPLETENESS OF THEORIES WITH
PURIFICATION

Theorem: a theory with purification is completely identified once we
declared the state space of every system.

Every mathematically admissible map MUST be a physical
transformation allowed by the theory.

This explains why it is so difficult to invent new examples of
theories with purification.
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REVERSIBLE DILATIONS
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DILATION OF CHANNELS

Theorem: For every channel C from A to B
there exist two systems E and E’,
a pure state Y0 of E,

and a reversible channel I/ from AE to BE’ such that

The dilation is unique up to reversible channels on E’
(cf Stinespring theorem in QM)

Irreversibility can be always thought as arising from
— the loss of control over some system.

o Information cannot be erased, it can only be discardesd



DILATION OF TESTS

Theorem: For any test {CI- }iex fromAtoB
there exist a pure state j on E

a reversible channel U from AE to BE’
and an observation-test {@;}icx onFE’

such that

By adding extra-ancillae, {@;};cx canbe madetobea
discriminating test (in QM, an orthogonal measurement)

cf.Llzawa and Naimark theorems in QM
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NO PROGRAMMING THEOREM

Problem: Given N reversible gates,
find N program states such that

for some A

Theorem: to do this you need N perfectly distinguishable states

Corollary: it is impossible to program every reversible gate with a
finite-dimensional ancilla
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cf. Nielsen-Chuane no-proeramming for OM






CHANNELS WITH MEMORY

Theorem: any causally ordered channel can be realized as a
sequence of channels with memory.

cf. Beckmann, Gottesmann, Nielsen, and Preskill;
Eggeling, Schlingemann, and Werner (N=2);
Kretschmann and Werner (general N);
for QM
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DILATION OF CAUSAL CHANNELS

Uniqueness: two dilations of the same channel only differ for a
local channel on the last memory system E

—— no perfect bit-commitment:
-single-party strategies = sequences of memory channels
-a protocol is concealing if Alice’s strategies for 0 and 1
are indistinguishable by Bob up to the end of the

commitment
e ~Alice can decide at the end to change the value of the bit












CONDITIONS FOR ERROR CORRECTION

Theorem: a channel is correctable iff in any reversible dilation
environment and reference factorize:

_@
@

Equivalently: C correctable upon input of p

i. E
p Page 58/65
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ERROR CORRECTION WITH FEED-FORWARD

A channel correctable with 1-way classical communication from
the environment if

L elliy -

Theorem: C correctable with 1-way CC from E
— s =Y 5 s
e X

eb.bapegoratti and Werner in QM page 5965






PURIFICATION WITH CONJUGATE SYSTEMS

Stronger form of the purification axiom:

for every system A, there is a conjugate system A
such that every state of A has a purificationin AA .

Moreover, one has

t!

a—2a (symmetry)

—

AB = AB (regularity under composition)
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DETERMINISTIC TELEPORTATION

Theorem: there exist an observation test {E; };cx
and a finite set of reversible channels {U; }icx

such that
A

D A = Az a
= '
A

e P can be converted by LOCC in any bipartite state of AA

Moreover, P is the unique state (up to local reversible channels)
allowing for deterministic teleportation
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Purification is the key for deriving most of the diagrammatic
teatures of QM:
e entanglement, no cloning, no info without disturbance
e teleportation, Choi-Jamiolkowski isomorphism,
e dilation theorems, causal channels, no bit commitment
® NO programming,
e conditions for error correction

However, an information-theoretic analysis is still missing:
entropies and rates for compression, communication,
entanglement concentration, and similar tasks.

Next step: treatment of info-theoretic tasks in theories
with purification
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