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Abstract: Are Quantum Mechanics and Special Relativity unrelated theories? Is Quantum Field Theory an additional theoretical layer over them?
Where the quantization rules and the Plank constant come from? All these questions can find answer in the computational paradigm: & quot;the
universe is a huge quantum computer& quot;.

In my talk I'll take the computational-universe paradigm as genuine theoretical framework, and analyze some relevant implications. A new kind of
guantum field theory emerges. & quot;Quantum-Computational Field Theory& quot; (QCFT). | will show how in QCFT Special Relativity unfolds
from the fabric of the computational network, which aso naturally embeds gauge-invariance, and even the quantization rule and the Planck
constant, which thus resort to being properties of the underlying causal tapestry of space-time. In this way Quantum Mechanics remains the only
theory needed to describe the computational-universe. | will analyze few simple toy-modelsin order to explore the mathematical structure of QCFT.

The new QCFT has many advantages versus the customary field theoretical framework, solving a number of logical and mathematical problems that
plague quantum field theory. One further advantage of QCFT is the possibility of changing the computational engine without changing the
field-theoretical framework. One can thus consider different kind of engines, e.g. classical, quantum, super-quantum, and even input-output
networks with no pre-established causal relations, which are very interesting for addressing the problem of Quantum Gravity.

QCFT opens a large research line: | argue that this program should be addressed soon in the particle physics domain, before entering Quantum
Gravity, notwithstanding the experimental success of the usual quantum field theory. It will also be the first test of the Lucien Hardy's program on
Quantum Gravity.

Reference: arXiv:1001.1088 (http://arxiv.org/abs/1001.1088)
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Relativity from QT

(more generally from causality)
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Causal probabilistic theories
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A theory is causal, if for any two tests and that are connected (without

loops) the marginal probability of the input event is independent on the
choice of the output test, whereas, viceversa the marginal probability of
the output event generally depends on the choice of the input test

= E
1 Thm. A theory is causal iff the deterministic effect is unique for each system. L
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A theory is causal, if for any two tests and that are connected (without
loops) the marginal probability of the input event is independent on the
choice of the output test, whereas, viceversa the marginal probability of
the output event generally depends on the choice of the input test.
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Thm. A theory is causal iff the deterministic effect is unique for each system.
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Wittgenstein-ism

| The world 1s all that 1s the case.

|.1 The world is the totality of
facts. not of things.

.11 The world is determined
by the facts. and by therr being
all the facts.
1.12 For the Lnl:ﬂil} of facts
determines what i1s the case. and
also whatever 1s not the case.
1.13 The facts in logical space
are the world.
.2 The world divides into facts.

|.2 The world divides into fact:
1.21 Each item can be the case
or not the case while everything
else remamns the same.
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p nn translational-invariant “Hamiltonian”
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p nn translational-invariant “Hamiltonian”
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SIMULATING QFT

Simple scalar fields in 1 space dimension

T W W W L. i ® W W W

(@) infinitesimal space-granularity (minimal in principle discrimination
between independent events);

field, operator function of space (¢ g in time); we will
escribe it by the set of operators|¢,, := a2 tp(na)
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 SIMULATING QFT

Simple scalar fields in 1 space dimension

W W W LE Al ™ W W W

(@) infinitesimal space-granularity (minimal in principle discrimination
between independent events);

field, operator function of spa in time); we will
describe it by the set of operators|¢,, := a2 ¢ (na)

enerally nonlocal operators. In QFT they satisfy (anti)commutation relations

] Simplest equal-time microcausality:

Fermion: Y/ {Wn, Wm} = Bnm (Dirac)
J Boson: ¢ [(Pm (pm] — Snm (Newton-Wigner)
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Simple scalar fields in 1 space dimension

Time evolution: (¢ (1) = U,¢(0)U,’]

U; =exp (—%HM)H) = exp(—2mwiNTH)

H : adimensional Hamiltonian
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Simple scalar fields in 1 space dimension
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Simple scalar fields in 1 space dimension
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0 =0 Klein-Gordon
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Simple scalar fields in 1 space dimension
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Simple scalar fields in 1 space dimension
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 SIMULATING QFT

Simple scalar fields in 1 space dimension
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However, for a fixed one has maximal causal speed going to infinity!

= x/2N, a
"~ t/2N’ N—ow=T

a
T

If we want to keep the maximal causal speed equal to € we need to
rescale both time and space atoms in the same way, namely:

a 1
c=f=aw‘_>Nr=N »c:wa=—=>a)=—
t 2N T T
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Simple scalar fields in 1 space dimension

* K % & I 1l * RN

However, for a fixed one has maximal causal speed going to infinity!

x/2N, =8
— ; lm — =eo
t/2N~ N—oT

a
T

If we want to keep the maximal causal speed equal to € we need to
rescale both time and space atoms in the same way, namely:

a |
P Y I »c=wa:—=>m: -

t 2N T T

but then Suzuki bound doesn’t guarantee convergence of Trotter-ization
since:
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Simple scalar fields in 1 space dimension
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Since the phase for a swapping gate is 7T

irsa: 10020037







 SIMULATING QFT

IST QUANTIZATION —
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In a first-quantized field theory the field @(x)is a c-function of position
evolving in time---the so-called wave-function.

Question: Which kind of computation will simulate a first-quantized theory?

Answer: a classical computation! (Runge-Kutta integration)
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In a first-quantized field theory the field @(x)is a c-function of position
evolving in time---the so-called wave-function.

Question: Which kind of computation will simulate a first-quantized theory?
Answer: a classical computation! (Runge-Kutta integration)

@ (x) will be described by a string of classical infbits l¢> (¢|

P; = @n|®n)(0n|  (9|0") =0p9 @ <C

A general classical processing will be described by a classical channel: g
€(pg) = L4 p(9'16)p; 2

P

DetéFministic evolution: p((ﬁ’ltp) = ((p’ — f((p)) Pagegl’%
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=~ IST QUANTIZATION BY QCFT, [ ——

QCFT; squanders the Hilbert space when simulating QF T, !

It linearly combines the eigenvalues @, of the projectors |@y,) (‘Pn | without
making superpositions of the kets |9,) nor making entanglements between
different systems
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— IST QUANTIZATION BY QCFT, e
QCFT; squanders the Hilbert space when simulating QF T, !
It linearly combines the eigenvalues @, of the projectors | @) (9| without

making superpositions of the kets |0,) nor making entanglements between
different systems

QCFT, simulates QFT'; more eﬁumﬂv’

¢n—1 Interactions between n quantum systems become ma
o=1| o, connecting n orthogonal states of a single quantum sy

On+1
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—— IST QUANTIZATION BY QCFT,

QCFT; squanders the Hilbert space when simulating QF T, !

It linearly combines the eigenvalues @, of the projectors On) ((Pn | without
making superpositions of the kets |@,) nor making entanglements between
different systems

QCFT, simulates QFT; more tﬁﬂt’lll.l\"

* W

-

4,"_1 Interactions between n quantum systems become matrix blocks
o=\ ¢ connecting n orthogonal states of a single quantum system

On+1
Time evolution:

—— [@ — @] ]¢(t) =U;0(0) := exp(—iwtHJHT0)
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— = i Schrodinger equation i e

“Trotterize' the Hamiltonian

H :H(ﬂ) "|'H“)- ZH2;,2j+l H = £H71+1 2j+2
J
H; j+ —Z‘UHJ €jj—€j+l,j+1T€j j+]

By taking the rnaximal causal speed equal to C
namely @ o< N l one obtains:

h 2
a)—zmag-ocN

a contradiction'
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Clifford algebra I'. := (H Gj) oy
o
{Tk: Th} = Okn
Fermi scalar field: Y, =14, o

{y(x). ¥y (x)} =8(x—y)
{y(x).y(y)} =0

T ——— T

Dirac Field Theory

Dirac field: :
{Va(x), 'V; (v)} = 8apd(x—y)
{Wa(x), yp(y)} =0 (ul(n))

— _ | u2(n)
R | | e

va(n)
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Dirac Field Theory
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Clifford al_gebra Ci:= (hl o;:') o, | Dirac field:
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{Wa(x),ys(y)} =0 uy(n)
Fermi scalar field: Y, =14, o ] uz(n)
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GAUGE INVARIANCE

NONABELIAN
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PLAY GOD WITH QCFT

or else: Einstein demystified
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Einstein operationalist?

Faa
®

Einstein's disagreement with
the operationalist approach
was criticized by Bridgman?*
as follows: “Einstein did not
carry over into his general
relativity theory the lessons and
insights he himself has taught
us in his special theory.”
Bridgman, Einstein's Theories and the
Operational Point of View, in: PA. Schilpp, ed.,

Albert Einstein: Philosopher-Scientist, Open :
LBUrE1a Salle, I, CUP, 1982,Vol. 2, p. 335-354.



















Advantages of QCFT versus QF T

nonstandard representation
of Feynman path integral
Makamura)

QCFT

Operationally
defined

N/ 2WIN: If there is a problem with
ﬁ@ QCFT, it will be an interesting

problem for foundations of QFT?

causal
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THE PRINCIPLE OF THE QUANTUMNESS

= 1 Nature loves to trick us? ﬁ e



















Mo Sigra

S |




