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Abstract: It has recently uncovered that the intertwiner space for LQG carries a natural representation of the U(N) unitary group. | will describe this
U(N) action in details and show how it can be used to compute the LQG black hole entropy, to define coherent intertwiner states and to reformulate
the LQG dynamicsin new terms.

Pirsa: 10020027 Page 1/40



The U(N) Structure of Loop Quantum Gravity

Etera Livine

Ecole Normale Superieure de Lyon

February 2010 at the Perimeter Institute

An old idea with F. Girelli,

then mostly based on work with L. Freidel,
with more recent work with E. Borja, J. Diaz-Polo and |. Garay

Pirsa: 10020027 Page 2/40




Aim: Looking closer at the Structure of SU(2) Intertwiners for
Loop Quantum Gravity.

Q A U(N) Action on the Space of SU(2) Intertwiners:
» defines area-preserving diffeomorphisms at the discrete level.

Q Counting Intertwiners and compare to Black Hole Entropy
@ The Intertwiner Space as a L? space

& Creation/Annihilation Operators and Coherent Intertwiners

& A new Approach to LQG Dynamics
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The U(N) action on SU(2) Intertwiners
iting Intertwiners... and Black Hole Entropy? Schwinger Representation for SU(2) Intertwiners
A Dual Perspective on Spin Networks Building u(N) Representations from Harmonic Osallators
and Coherent Intertwiners The u(N) Representations for Intertwiners

A useful tool: Schwinger Representation for su(2)

The Object: the space of intertwiners with N legs i1.e of
SU(2)-invariant states in the tensor product of irreps
Vit = . = VN for arbitrary values of spins j; € IN/2.

First Step: Write the spaces V7 as Hilbert spaces for a system of
two harmonic oscillators at fixed total energy.

[a.a'] =[b.b'] =1. A (R L )
1, . ; -
Jo=3(ala=b'b)  _ 0= = BELTh
J_ s S';'b+ J_ = ab;-. Jr m — ”3. ”b OH -
3. . 1 ‘ 1
EF — —(STE 1P bb) J = 5(”;4_”4‘3)' I — E(na_”b)-
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The U(N) action on SU(2) Intertwiners
ring Interbwiners... and Black Hole Entropy? Schwinger Representation for SU{E} Intertwiners
Spin Networks Building u( N) Representations from Harmonic Oscillators
The u{N) Representations for Intertwiners

| o Second Step: We consider intertwin-
= = ers with N legs, thus we take 2 < N
L <, =~ oscillators a;. b;.

We look for invariant observables, i.e operators that commute with
global STU(2) transformations generated by J = Sfil 24

The standard operators that characterize intertwiners are the scalar
product operators, O = JU) . JU) which are quartic in the a. b's.
A problem: The commutators of the J\/) . JU)'s are cubic in the
J's (volume) and generate an infinite tower of higher order
operators. How to build semi-classical coherent states??

A solution: Build invariant operators which form a closed algebra?
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The U(N) action on SU(2) Intertwiners
g Intertwiners... and Black Hole Entropy? Schwinger Representation for SU(2) Intertwiners
Building u(N) Representations from Harmonic Osallators
The u(N) Representations for Intertwiners

The u(N) Algebra as the Underlying Structure of the Intertwiner Space

Harmonic oscillators allow quadratic invariant operators,
E.{f' = {:5; dj T b ij [Efj- Eﬁm’] = 0jk EH — D E-'aj-
The new operators Ej; form a closed u(/N) algebra |

E; = e thlll _, E — E E; = 2 T.t.}T_;il Ao,

At fixed number N of legs, the u(/N) transformations change the
individual spins j; on each leg, but they still commute with the
U(1) Casimir E =2) . ji which gives the (total) area.

U(N) is identified to the group of area-preserving

diffeomorphisms on the discrete sphere defined as th
SU(2) intertwiners with N legs

I

Here, the natural definition is Area= ) . j; .
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The U(N) action on SU(2) Intertwiners

Schwinger Representation for SU(2) Intertwiners
Building u(N) Representations from Harmonic Osciilators
The u(N) Representations for Intertwiners

In fact, ztardar-ﬂi construction in ﬂ::t*-aﬂ::ﬂ:E |
,'I F
» [ake P sets of N harmmmc oscillators a €N Lspe P
B (P)T
then £ = __rpc—:af a; ' form a u(N) Lie algebra.

Taking P = 1 gives a highest weight [/.0.0...] and a Young tableau
with a single line, then we tensor such representations P times.

For P < N, this gives irreducible representations of U(/N) with
highest weight [/;..../p.0.0...] or equivalently Young tableaux with
P horizontal lines.

Or more explicitly. ..
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The U(N) action on SU(2) Intertwiners

g Interowiners... and Black Hole Entrop Schwinger Representation for SU(2) Intertwiners

The u(N) Representations for Intertwiners

Casimir Equation and Highest Weights

= highest weight [/;. 5.0.0...] with { 5

FP=1_i | ratic relati the u(/N) rators:
For P=1, we get quadratic relations on the u(/N) generators

ZEE,_E(E N —1). ZEE,,_E(E N —1).

Taking a highest weight vector v, s.t. E;jv = /- v with the weights
i € Nand Ejv =0 for all 1 <, with /1 > > .. > [y > 0, the
Casimir equation implies that h = .. = [y =0

For P=2, we relate the CaS[mws of SU(N), U(1) and SU(2):

E S
¥ Exbpe— E(o+N—2)-+2/-J.
F.f

1
. j - . };' aE i l) Page 8/40

Building u(/N) Representations from Harmonic Oscillators



The U(N) action on SU(2) Intertwiners
iting Intertwiners... and Black Hole Entropy? Schwinger Representation for SU(2) Intertwiners
ypin Networks Building u(N) Representations from Harmonic Osallators

The u(N) Representations for Intertwiners

SU(2) Intertwiner Spaces as Representations of U(N)

Intertwiners correspond to [/ = 0, thus 1 = h. The representation
is defined by the highest weight [/./.0...] with U(1) Casimir is

E =2/ ieAr ¥oik .
Meaning of the highest weight??
A bivalent intertwiner! » A completely squeezed sphere.

D

=

1

The Young tableau is two lines of equal length /.

N {9
hook formula = dimy[/] = % ( L // 1 ) ( & // B ) .

@ U (N) acts on the space of intertwiners at fixed total area |/
and number of punctures N, including trivial irreps j; = 0.

@ dimp]|/] gives the number of such intertwiners.
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A Dual Perspective on Spin Networks Black Hole Entropy?
n Operators and Coherent Intertwiners The Binomial Transform

The Generating Functionals for the U(N) Dimensions. . .

For fixed N. we just established the equality:
dimy[] =11 = )  dimo[i....jn].
j1——jn=l
We can check this by introducing the generating functionals

Fn(t) =57, 2 dimpy[/] and Fan(t) = b a1} Fr can be

—_—

computed directly as an integral over SU(2):

_ N

= ‘ ge 2 4" sin” ¢

F;"I.,j(f) = / dg Z thj\(g) = .. / dH (1 .E]M‘
. : T .Jo |

-~ JFcast < =
We check that both functional satisfy the same 2nd order
(hypergeometric) diff eqn:

—~—
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Counting Intertwiners... and Black Hole Entropy? ~ Generating Functionals

A Dual Perspective SE etworks Black Hole Entropy?
JOperators and Coherent Intertbwine The Binomial Transform

.. The Generating Functionals for the U(/N) Dimensions

{ \ :I. 5 e - Y -
AW = 7 (1= £2)(t092 = 30:) = N(N = 1)t — (N = 1)

We show this using two different methods:
@ a recursion relation:
(I =1/ =2) dimy[/ +1] = (N+ (N +1—1) dimy[/].

@ a brute force calculation on the integral:

&f.N}IE o N(l—l‘z) /1_0({_} 9 Sin?’H —0
L T Jo “(1—2tcosf + 2)N+L

At the end of the day, Fy(t) can be expressed in term of the first
e gty [Vative of the Legendre polynomials. Page 11140




Counting Intertwiners..

; ; Generating Functionals
rs CTve - = Black Hole Entropy?
TS The Binomial Transform

The Big Generating Functional

Now, we introduce the full generating functional by also performing
the sum over the number N of legs: F(u.t) = uNt? dimy[/].
And we can compute explicitly from the integral representation:

1 5
(- 2) — ' L=

p P J
2t<

ult=(t= — 28 —2) - (g—1)]

Flu.t) =
(. 1) V(L + )2 —u)(( —£)? — u)

For fixed 0 < u < 1, the first pole is t. = 1 — \J/u, thus the
asymptotics:

.'f S

log Z uNdimN[/] ~  —2llog(1 — /u).
=
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A, Dual Perspective on Spin Networks Black Hole Entropy?
_reation Operators and Coherent Intertwiners The Binomial Transform

Probing Further with U(N) Charaters

Beyond computing the dimensions of the U(/N) representation, we
look at the U(N) characters. For group elements conjugated to
ei(stbi—-=svEn) e get a Van Der Monde determinant in t; = ¢

p ol N —
cialt t"u’) B d'&t( r,,( | )Hﬂ
VT --n T = VN
o det(tNV 1),

For highest weights [/./.0...], this corresponds to

A—-in=J i
It allows to distinguish the values of different punctures. We can
also introduce multi-index generating functionals:

1—-J]: i .
Fril tis s th) = il e Til) = f for N = 4.
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Counting Enterl:w:ners._ :nd BI:H:k i—lcﬂlEEntrnpy? Generating Functonals
A\ Dual Perspective on Spin Networks Black Hole Entropy?
_reation Operators and Coherent Intertwiners The Binomial Transform

Black Hole Entropy?

dimp/[/] counts the number of SU(2) intertwiners, so it gives the
black hole entropy? But. ..

@ Standard LQG isolated horizon counts U (1) intertwiners
» but see recent work =z serez 00] DUt also

@ The total area is ) _.ji instead of the standard > . /ji(ji + 1)
» but > . ji is the area preserved by the U(N)
transformations.

@ We are counting many intertwiners which carry trivial legs |

@ The dimension depends on the number of punctures N
» but we can argue that N Is given by the graph of the
outside spin network state.
P00z B> OF We can sum over the number of punctures. .. Page 14140




Counting Interl:w:ners. :nd EI:H:k i—lnﬁaEntrnpjr? Generating Functoonals
A Dual Perspective on Spin Networks Black Hole Entropy?
_reation Operators and Coherent Intertwiners The Binomial Transform

Asymptotics of dimy[/]

First we give the asymptotics of Sy[/] = Indimp[/] for large area
and large number of punctures .

@ Large Area Limit:
at fixed N, Sy[l] ~ (2N —4)In/

S
@ "Continuum” Limit:

at fixed /, Sy[/] i 2/ In N
=0

@ Linear Regime: Scale number of punctures as N ~ A/
— holographic behavior:

Sn[f] ~ 2[(1+A)In(1+A)=Aln A}/ = 2In/

| '
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Counting Enmrtmners. :nr.:l Ei:u:k I—Idel_Entmpf? Generating Functonals
A Dual Perspective on Spin Networks Black Hole Entropy?
_reation Operators and Coherent Intertwiners The Binomial Transform

Removing Trivial Punctures

[ =k
N=> .k
dimg[j1. ... n| depends only the occurrence nbs k; for j > 0.
Thus we separate trivial punctures, K = N — kg

We count the irreps: [j1....Jn] — {(U. k;)} with

s il = S ( jj ) Dk |[1].

K| |
DKM = Z W dim.g[-{ k}]
;J__:J;.,\f' J

T—
A .ll- | "{L

i
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Counting Interl:w:ners_ :nd BI-:H;J( i—ld-eEntrupjr? Generating Functionais
A, Dual Perspective on Spin Networks Black Hole Entropy?
_reation Operators and Coherent Intertwiners The Binomial Transform

Final Counting

We want the number of intertwiners at fixed area without trivial
punctures:

D[]=Y) Dkl[l]. » Sum is finite: K < 2/
K

Dk|!] is the binomial transform of dimp/[/]:
ke K
. e : K—N :
Dk[l] = NE_G(—I}” ( N ) dimpy[/].

We introduce the generating functionals, which can be computed as
integrals as before:

Gk(t) =) t7'Dk[l]. G(u.t) = ot Dgll].
/ K.l
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Counting Enmrtmners._ :nd EI:H:k i—lniEEnn"npﬁ Generating Functionais
A\ Dual Perspective on Spin Networks Black Hole Entropy?
_reation Operators and Coherent Intertwiners The Binomial Transform

Removing Trivial Punctures

We count the irreps: [j1....;n] — {(U. k;)} with £

dimg[/1. ... jn]| depends only the occurrence nbs k; for j > 0 .
Thus we separate trivial punctures, K = N — kg

= dimp[/] = Z (f 3 } Dic[1].

K | |
Yooy k=K~ -
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Counting Interl:mners. : Generating Functonais
A Dual Perspective SE 2 Black Hole Entropy?
1 Operators and Coherent Intertwiners The Binomial Transform

Final Counting

We want the number of intertwiners at fixed area without trivial
punctures:

D[]=Y) Dk[l]. » Sum is finite: K < 2/
K

Dk|!] is the binomial transform of dimp/[/]:

K

Dilf) = 3" (< (g ) dimaln

N=0

We introduce the generating functionals, which can be computed as
integrals as before:

Gk (t) =) t'Dk[l]. Gu.t) = "' Dkll]
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Counting Intertwiners... and Black Hole Entropy?

Generating Functionais
Black Hole Entropy?
The Binomial Transform

Final Result

The binomial transform has a simple generating functional |

L)

g™ “Ealg

This gives D[/] in term of the original dimensions dimy[/]:

Zt Gil.t) = lF(é_t). DM:Z l dimpy [/].

zm—l
N

— S[=ID[] ~ Ilha —

|
o
RSN ITS]

with a = —2 —- =6~ 42 ~ 11.6568.
| 1—/ 5 )
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Counting Interl:wmers._ and BI-EH;J( I—InleEnn'np]r? Generating Functonals
A Dual Perspective on Spin Networks Black Hole Entropy?

The Binomial Transform

More details?

; ] - |
We give the exact expression for F(t) = > , t='D][/] :

Fam— |

g - lﬁlrl (1= V1-1202-4r%)
1

s R R ER - AR L B0 - F1ERFY e |

Tl =

|t satisfies a 1st order diff eqn in term of T = t°:
T —10T - 4T50+F +-[1—6TF1F (AT —1) =0
which translates to a recursion relation on the dimension DJ/] :

D[0] = D[1] = 1. D[/] = % (6(21 — 1)D[I — 1] — 4(/ — 2)D[I = 2]).
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A Dual Perspective on Spin Networks

The Intertwiner Space as a [? Space...

The space of intertwiners with N legs can be represented as a
P, _—
space of L= functions:

Hy = @/fw[,/l 2 .. € Jn] = @R = L*(Grpy).

/

Gr> n Is a Grassmanian space:

U(N)
U(N —2) x SU(2)

GﬁN—

The subgroup U(N — 2) x SU(2) Stabilizes the highest weight
vector: U(N — 2) is generated by Ej;.i.j > 3 and 5U(2) by
Eig, Ex JE —E5.
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"~ A Dual Perspective on Spin Networks

...The Intertwiner Space as a [? Space

The space L>(Gr» p) consists in functions on U(N) satisfying:
vG € U(N). vHe UN —2) x SU(2). f(GH)=1f(G).

Gran ~ Pn(A) x U(L)N can be interpreted as the space of
polyhedra with N faces and only trivalent vertices at an arbitrary
fixed total area A. Such polyhedra have 3(N — 2) edges and

2(N — 2) vertices, so dimensions match:
N —(N—2)P—B=AN—-T=3(N—2)—=1+N.

This provides a geometric interpretation for intertwiners.
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A Dual Perspecl:me on 5p|n Netwnrks

Gluing Intertwiners into Spin Networks

Spin networks on a graph [ are functions of E group elements and
satisfying gauge Invariance at each vertex:

- :,. T T £ e \ vy ey | \
e [H(EU(2)=/50(2)") — a({z]) = ol{bg By }):
We can shift the degrees of freedom to the vertices:
-3 s
— DR Mgy, = P ((xU((1) (x4 Gram,))
|J"e' vel

- (e H e : K
where U, (1) generated by E. J — EZ'®) ensures the matching on
the representations on the same edge e. The gauge invariance now

reads on functions (K, ) with K, = U(N, ):

f(1Kvt) = F(HKvHV L)
THK[ ) Kf[ KV :] £ ﬂ: T5K5[5}~ TEKT[E]' K ]IJ
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" A Dual Perspective on Spin Networks

But what's the point??

Two Interesting consequences:

@ We can reformulate the LQG dynamics as directly acting on
the intertwiner spaces.

A, - . Y . .

@ The intertwiner space is a L~ space of wave-functions of a
classical unitary matrix: the intertwiner dynamics can be
described in term of an underlying matrix model.
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Gluing Intertwiners into Spin Networks

Spin networks on a graph [ are functions of E group elements and

satisfying gauge invariance at each vertex:

;€ L(SUQ)F/SU(Q2)Y) — v({ee}) = #({h ) 8ehe(e)})

Hr = QR Hyr...jy, = L2 ((xeU(e)(1)\(xy Gran,)) -

-.l:":-\. -'—{ — I I y
E2'®) — EI'® ensures the matching on

= =

where U, (1) generated by
the representations on the same edge e. The gauge invariance now

reads on functions (K, ) with K, = U(N, ):

F({K}) = FKUHLY)
f“ Ks[ e ) Kf[r;—:}~ Kv ]r] N f( II T5K5i5}~ T-:‘—.Kt[e_l' K‘u-' }J Page 26/40
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But what's the point??

Two Interesting consequences:

@ We can reformulate the LQG dynamics as directly acting on
the intertwiner spaces.

: s : ~ .

@ The intertwiner space is a L= space of wave-functions of a
classical unitary matrix: the intertwiner dynamics can be
described in term of an underlying matrix model. zoi: 0
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Creation D;_:emturs and -{.:o-l'igrer;tj Iptef;tl;\fir;er'.:'.

A new Set of SU(2)-invariant Operators

We identify a new set of SU(2)-invariant operators !
B = apbp—apll. = —p
They are invariant under SU(2) but do not preserve the total areall

[E.Fj]l=—2F;.  [E.F]]=+2F]

¥

— annihilation creation operators
With E, = T"j ,w”EU = l\_' J’F the full algebra is:

[E,E]:—E[” - [EF*]:—F
[F*_Fﬁg] :E--'l i |Es. FL] = E

T ®
e e _"r_,_.'__.__.,_,.l'""}

'_I
g

e
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Creation D;:lentnrs a;ld -C.c-lﬁrer;t:‘ ll_'lter-!:;vil;ier';

What are Coherent Intertwiners?

We want:
@ A over complete basis of intertwiners which transforms
consistently under U(N) transformations.
@ Semi-classical intertwiners with peakedness properties.
@ A relation with the standard coherent/holomorphic

Intertwiners. =L

This will provide an explicit geometric interpretation of the U(/N)
transformations.
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Creation D;:entnrs and .Co-l'g.zrer;tj Ipte:;ﬁvir-ner';

Remember Spinors

We attach one spinor |z = 1y | to each puncture/leg of the

intertwiner. This defines a 3-vector n'. the “normal vector’ to the
ith patch, for each leg with normalization n; = (z; z

1

Zip\Zp| = ( zilzi )\ Ids — n' - E) :

—

With A(z) the "total area”, the closure constraints reads:
Z n=0= Z zi)(zil = Alz)ld. A(z) = %Z Zi | Z;
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Creation Dp-entnrs and tc-hgrer;tj lljter;;t;viﬁer';

Defining Coherent Intertwiners

We define coherent states as:

(F) | _ 1)_(0) _(0)_(1)
), wip={ZHEZ) =& & T,

i F=5F —S 9 T 5

J.Z; X

These are states with total area E = J, which behave consistently
under U(N) transformations :

ik

UlJ.z;) = |J.(u™12);). where U=exp(E,). u=e
— They cover the intertwiner space.
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Creation D;:lent:rs and -{:o-herer;t: Iptefﬁvir.ier';

Semi-classical states?

We can compute the expectation value of the Ey; :

Zi | Z]

J. zj|Ep\d. 2;) B
J.zill.z) J Alz) — i

We check that M is a rank-two projector with eigenvalues
[1.1.0...], which corresponds to our choice of U(N) irreps. So we
have the right mean values.

Then we can relate our new coherent states to the standard
coherent Intertwiners , which are known to be semi-classical:

N

1 1 :
J.Z; X _ / dgg?-@_j;.Z;
SU(2)

=, ‘v";( 212 ) - i=1
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-. A s_ir.r;q.:riedm;:d;:i FurLQG dyn:mi.ﬁ_

Dipolar Cosmology

_ . We consider the simplest class of graphs for
[ jp_ LQG with 2 vertices linked with N edges.

4

This generalizes the dipolar setting by Rovelli & Vidotto for
cosmology with some inhomogeneities.

We have two independent intertwiner spaces related by the
constraints of having a single SU(2) spin per link. We define the
u(/N) boundary deformation algebra: e; = E;/ — E.

The matching conditions are the diagonal operators ¢, = E' — E

Pirsa: 10020027 Page 33/40




A SImpie mudel ﬁ:r LQG dynamls

An ansatz for dynamics...

Two simple operators that respect the matching conditions: Ej E.

increases the spin j; by —% and decreases b by £ 5 While F F

decreases both spins j;. ;.

We introduecs f=3 . FrF. and g=EE.

Both operators are invariant under bou ndary deformations:
[E;j'. r ] — [E‘ :] = 5.

A simple ansatz for a Hamiltonian: H = \g — (of = &f7).
This generalizes the action of : -holonomv operators of the
dynamics of BF theory.
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| A s_in.'.llpie model F&-LQG dyn:mi-qs_

... An ansatz for dynamics

Some simple remarks:
@ Meaning of f'? If we apply (f7)? to the void state [0), we get
a pure state for the coupled system for a fixed boundary area J

but the totally mixed state for the individual systems o and 7.
— (") is “black hole creation operator’ .
@ Hamiltonian constraint of LQG usually “holonomy with
I e ‘ e N ik ) i} )
double graspings™: new ansatz H ~ > . E E;F;F; not
u( \/)-invariant.
— invariant under which boundary deformations?

@ A simple (cosmological) model to test LQG's dynamics |
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dynamics

A simple model for LQG

An ansatz for dynamics...

Two simple operators that respect the matching conditions: EJ EL

increases the spin j; by —% and decreases Jj by L while F FU"
decreases both spins j;. j.

We intreduce f =) . FoF, and g=E E_

Both operators are invariant under boundary deformations:
el = &l =8 |

A simple ansatz for a Hamiltonian: H = \g — (of —&f7).
This generalizes the action of %-holonomy operators of the
dynamics of BF theory.
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| A s_in.1-pie mndel F&-LQG ci'jmam.i-ﬁ_

... An ansatz for dynamics

Some simple remarks:

@ Meaning of f7? If we apply (f7)? to the void state [0), we get
a pure state for the coupled system for a fixed boundary area J
but the totally mixed state for the individual systems o and J.
— (") is “black hole creation operator’ .

@ Hamiltonian constraint of LQG usually “holonomy with

; I : . (' i} i )

doublr.e graspings : new ansatz H ~ > . E;EiFiFj; not
u( \/)-invariant.
— invariant under which boundary deformations?’

@ A simple (cosmological) model to test LQG's dynamics |
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. A s_iﬁ'ipiedm;:nd;:i F&_LQG .cijmami-s_

An ansatz for dynamics...

Two simple operators that respect the matching conditions: E} E

increases the spin j; by —3 and decreases j; by 5 while Fi FU"

decreases both spins j,-.J;:._

We introdues f=3% . FF. and g=E E_

Both operators are invariant under boundary deformations:
(el = &gl = 8.

A simple ansatz for a Hamiltonian: H= \g — (of —&f7).
This generalizes the action of %-holonom}f operators of the
dynamics of BF theory.
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;-ﬂu. E-él.TipiE mudel F&-LQG dynami.ﬁ_

... An ansatz for dynamics

Some simple remarks:

@ Meaning of f7? If we apply (f7)? to the void state [0), we get
a pure state for the coupled system for a fixed boundary area J
but the totally mixed state for the individual systems o and 7.
— (f7) is “black hole creation operator’ .

@ Hamiltonian constraint of LQG usually “holonomy with
1 i 4 e N ik ) ) )
double graspings™: new ansatz H ~ > . E; E;F;F; not
u(/)-invariant.
— invariant under which boundary deformations?

9@ A simple (cosmological) model to test LQG's dynamics |
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" A simple model for LQG dynamics

Conclusion & Outlook

©O O ©O

©

©

9o

o
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U(N) action on intertwiners at fixed nb of legs and fixed area
Area-preserving Diffeomorphisms

We computed dimp[/] with trivial punctures and D|[/] without
trivial punctures and recovered the standard entropy formula .
Defined U(N) coherent states and related them to coherent
Intertwiners

Showed how to use this framework to discuss LQG dynamics

w

Procedure works for groups U(M), U, (M) and susy groups

N — ~ limit of intertwiner space and U (/) as diffeomorphisms in
the continuum?

Dynamics of Horizons Surfaces from matrix models?
Solve and generalize dipolar cosmological model?

Use U(N) coherent states in spinfoam models? Page 40140




