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Abstract: <span>After a review of the axiomatic formulation of quantum theory, the generalized operational structure of the theory will be
introduced (including POVM measurements, sequential measurements, and CP maps). There will be an introduction to the orthodox (sometimes
called Copenhagen) interpretation of quantum mechanics and the historical problems/issues/debates regarding that interpretation, in particular, the
measurement problem and the EPR paradox, and a discussion of contemporary views on these topics. The maority of the course lectures will
consist of guest lectures from international experts covering the various approaches to the interpretation of quantum theory (in particular,
many-worlds, de Broglie-Bohm, consistent/decoherent histories, and statistical/epistemic interpretations, as time permits) and fundamental
properties and tests of quantum theory (such as entanglement and experimental tests of Bell inequalities, contextuality, macroscopic quantum
phenomena, and the problem of quantum gravity, as time permits).</span>
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Introduction and Motivation

Some Introductory Thoughts

@ The purpose of this course is to gain a deeper understanding of what
kind of theory quantum theory is, and to learn what it tells us about
the world.
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Generalized Axioms for Quantum Theory  Generalized Preparations: Density Uperators

General states as mixtures of pure states

Suppose we want to describe a quantum system which is prepared
accordigg to one procedure, represented by state |¢'1), with probability p
and according to a distinct procedure, represented by state |272), with
probability po. How can we do this?

o If we are measuring the operator A =), aP, which possesses
non-degenerate eigenvalues a € R associated with orthogonal
eigenspaces P,, then the probability of obtaining outcome a given

preparation ' Is
Pr(aly) = Te(P,|¥1) (¥1)),

and similarly for preparation 2.
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Generalized Axioms for Quantum Theory  Generalized Preparations: Density Uperators

@ |f we do not know which preparation took place then the net
probability of finding outcome a is simply

Pr(a) = priPr(altn) + p2Pr(ale).

By linearity of the trace we deduce that,

N

Pr(a) = Tr(P.p)
where
p = p1|U1) (V1| + p2|t2) (¥2)

Is non-negative operator called a density operator satisfying the

normalization condition Tr(p) = 1 (which ensures that probabilities
are conserved).
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Generalized Axioms for Quantum Theory  Generalized Preparations: Density Uperators

General states as mixtures of pure states

In this way we can construct general quantum states from probabilistic
mixtures (convex combinations) of pure states as follows:

@ (i) Discrete case: p =) _.p;|tj)(¢;| with > .p; =1 and p; > 0.

o (ii) Continuous case: p = | dAp(\)[e2(N))((N)] for A € R, with
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Generalized Axioms for Quantum Theory  Generalized Preparations: Density Uperators

General states from the partial trace

Suppose we have a quantum state (density operator) p = pag on a
composite Hilbert space Hapg, where in general p need not correspond to a
pure state p = [¢')(¢’| but may be a probabilistic mixture of pure states.
How does one describe the state of subsystem A alone (with a state py) or
B alone (with a state pg) ?

@ The relationship between pa and pap is generated by the partial trace
operation:

pa = 1re(paB).

@ [he state py is called the reduced state associated with pap.
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Generalized Axioms for Quantum Theory  Generalized Preparations: Density Uperators

@ This relationship can be deduced from physical consistency of
demanding that

A )

(AR 1g) = (A)

for all Hermitian operators A and states paB- Hence,

(pa)er =Y (paB)ekerk:

-

which gives us an explicit matrix representation of pa in terms of the
matrix elements of pap via the partial trace.
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General states from the partial trace

Definition
The partial trace over a subsystem B of an operator O acting on the

composite space Hag,
Oa = Trg[Oagl.

can be defined in terms of the matrix representation,

(Oa)eer = (£]Oalt’y =Y (¢| ® (k| Oaglt') @ |K).
k

@ It should be understood that the operation Trg(-) takes as input any
linear operator on Hapg (not necessarily a density operator) and
generates a linear operator on Ha.
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Generalized Axioms for Quantum Theory  Generalized Preparations: Density Operators

Generalized states

Generalized Axiom 1: The physical configuration of a system
positive semidefinite operator p subject to the normalization
constraint Ir(p) = 1.

@ An operator P is positive semi-definite iff it is self-adjoint and satisfies
(u|P|u) = 0 for every vector u in the Hilbert space.

@ A positive semidefinite operator ( i.e., a non-negative operator) is
often just called a positive operator.
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Pure States vs Mixed States

For a state operator /) subject to the normalization condition Tr(p) =1
there are three equivalent definitions of purity:

) p%> = p, which means that p is projector.
ity Te{f®) = 1.
iil) p=|u)(x|, defining a projector onto a one-dimensional subspace of
.
Definition
If p can not be expressed in the form p = |¢')(¢| for any ©* € 'H, i.e., if pis
not a pure state, then it is called a mixed state.
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Generalized Axioms for Quantum Theory  Generalized Preparations: Density Uperators

Pure States vs Mixed States

General states obtained via partial trace are sometimes called improper
mixtures, whereas the term proper mixtures refers to general states
obtained from probabilistic mixing of pure states. These two conceptually
distinct classes of mixed states are mathematically (and operationally)
indistinguishable, as is evident from the following theorems:

Theorem
Any mixed state can be expressed as a convex combination of pure states.

Theorem

Any mixed state can be realized as the reduced state obtained from an
(entangled) pure state on an extended Hilbert space.
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Generalized Axioms for Quantum Theory  Generalized Measurements: POVMs

Generalized Measurements

Recall from standard Axiom 2 that the primitives of a measurement,
associated with a self-adjoint operator A, are the orthogonal projectors P,
(onto distinct, possibly degenerate, eigenspaces of A) in the spectral
decomposition of A.

Any set of orthogonal projectors {P,}, satisfying >, P, =1 is called a
projector valued measure, or PVM for short.

@ We can construct measurements that have a more general structure
than a PVM in two different ways.

» First, we can build up a more general measurement by considering
classical probabilistic mixtures of PVM measurements.

» Second, we can consider what structure occurs when look at the
“reduced measurement’ obtained from different kinds of PVM
measurement on an extended Hilbert space.
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Generalized Axioms for Quantum Theory  Generalized Measurements: PFOVMs

Mixtures of Projector Valued Measures

Consider two distinct PVMs, each given by a discrete set of D rank-one
orthogonal projectors:

Lo d

@ {P;}withi=1..... D and {P;} with j=1..... D, satisfying
Y.:P;=1and Zj P; = 1, where the orthogonality implies
P;Py = P;s;ir and P;Pyr = P;d;i

@ Note that in general the elements P; and 131 are non-orthogonal.
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Generalized Axioms for Quantum Theory  Generalized Measurements: PFOVMs

Mixtures of Projector Valued Measures

Suppose we have a device which performs the first PVM at random with
probability p and the second with probability 1 — p.

@ Given a preparation p on a D-dimensional Hilbert space, from Axiom
2 we know that we can represent the probability of each of the 2D
possible outcomes as follows:

Pr(i) = pTr(Pip)
Pr(j) = (1-p)T(Bpp).

irsa: 10010079 Page 16/130




Generalized Axioms for Quantum Theory  Generalized Measurements: PFOVMs

Mixtures of Projector Valued Measures

o Let E,=pP;forv=iand E, = (1 — P)bf forv=D +j.

@ Then we can describe the probabilities of the 2D possible outcomes
with the simple formula

pl‘( .U) — 11( E;,p).
where these new operators satisfy:
2.6 =1
1/
E, > foreachv.

@ Note that when p € (0.1) the operators {E, } are not projectors.
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Generalized Axioms for Quantum Theory  Generalized Measurements: PFOVMs

PVMs on a Composite System

@ [he above measurement can be expressed in the form
Pl(]") —_ rI]:[Ep].}A]

where (E, )i = >_1/(Pv)ikji(pB) Kk is an operator acting on H 4.

@ It is easy to see that the measurement operators E,, satisfy
1/
£ >0

which are the same conditions we found for mixtures of PVMs.
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Generalized Axioms for Quantum Theory  Generalized Measurements: PFOVMs

PVMs on a Composite System

@ Note that the measurement operators E, are not necessarily
orthogonal (this is an important difference from a PVM) and hence

that the number of elements in the set {E, | may be greater than the
Hilbert space dimension.

@ Indeed the measurement operators {E, } can also form a continuous
set.
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Generalized Axioms for Quantum Theory  Generalized Measurements: FOVMs

PVMs on an Extended Hilbert Space

Suppose instead now that we have a composite system represented by the
state pag @ pg and we perform a joint measurement of both systems.

@ This is represented by a PVM {P, } acting on Ha @ Hpg, with the
usual properties P, P, = P,d,, and ) _ P, = 1, and where the Greek
index run from 1 to K < MN = dim(Ha) dim(Hp).

@ The probability of outcome v is

M N
Pr(v) = Tr[P.(pa @ pB)] Z Z v )ik j1(PA)ji(PB) k-

where
(P = (il & (KI(P)L) @ 1)
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Generalized Axioms for Quantum Theory  Generalized Measurements: FOVMs

Mixtures of Projector Valued Measures

Suppose we have a device which performs the first PVM at random with
probability p and the second with probability 1 — p.

@ Given a preparation p on a D-dimensional Hilbert space, from Axiom
2 we know that we can represent the probability of each of the 2D
possible outcomes as follows:

Pr(i) = pIr{FP.p)
Pr(j)

Ll

(1 = p)Tx(Pjp).
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Mixtures of Projector Valued Measures
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Mixtures of Projector Valued Measures
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Generalized Axioms for Quantum Theory  Generalized Measurements: PFOVMs

Mixtures of Projector Valued Measures

@ Let E, =pP;forv=iand E, = (1 — p)l?’j forv=D+j.
@ Then we can describe the probabilities of the 2D possible outcomes
with the simple formula

Pr(v) = Tr(E,p).
where these new operators satisfy:
YE -
1/
E, > foreachv.

@ Note that when p € (0.1) the operators {E, } are not projectors.
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PVMs on an Extended Hilbert Space

Suppose instead now that we have a composite system represented by the
state pag @ pg and we perform a joint measurement of both systems.

@ This is represented by a PVM {P, } acting on Hpa @ Hpg, with the
usual properties P, P, = P,d,,, and }_ P, = 1, and where the Greek
index run from 1 to K < MN = dim(H,a) dim(Hp).

@ The probability of outcome v is

M N
Pr(v) = Tr[P,(pa © pB)) Z Z v )ik j1(PA)ji(PB) k-

where
(P )ikt = (il @ (k|(P) ) @ |T)
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PVMs on an Extended Hilbert Space

Suppose instead now that we have a composite system represented by the
state pag @ pg and we perform a joint measurement of both systems.

@ This is represented by a PVM {P,} acting on Ha @ Hpg, with the
usual properties P, P, = P,d,, and ) P, = 1, and where the Greek

index run from 1 to K < MN = dim(Ha) dim(Hp).

@ The probability of outcome v is

M N
Pr(v) = Te[P,(pa @ pB) = ) Y _(P.)ikji(pa)ji8) k-
=1 ki—=1

where
(P)ikj = (il ® (k|(P)l) ® |I)
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Generalized Axioms for Quantum Theory  Generalized Measurements: POVMs

PVMs on a Composite System

@ [he above measurement can be expressed in the form
Pr(v) = Tr[E,pa]

where (E, )i =Y _1(P)ikji(pB) Ik is an operator acting on Ha.

@ It is easy to see that the measurement operators E,, satisfy

MzE = I

E, > 0

which are the same conditions we found for mixtures of PVMs.
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PVMs on a Composite System

@ Note that the measurement operators E, are not necessarily
orthogonal (this is an important difference from a PVM) and hence

that the number of elements in the set {E, }| may be greater than the
Hilbert space dimension.

@ Indeed the measurement operators {E, } can also form a continuous
. ¢
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PVMs on a Composite System

Another important measurement paradigm is the following:

@ In order to measure a property of system A, prepared in state pa, we
allow it to interact in a controlled way with another system B,
which is initially prepared in some known state pg = [0)g(0|3g.

@ We then perform a measurement on the system B alone.

@ This paradigm models the important case of coupling the system to
an apparatus which is, in turn, observed directly.
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PVMs on a Composite System

@ In this measurement method, not only do we gain information about
the initial state of system A, but we can deduce also something about
the state of system B after the measurement.

@ [hat is, this paradigm provides a filtering type-measurement of
system A, which is a method of preparing a known state.

@ Note this paradigm is a model for the kind of measurement von
Neumann considered (ie, the Compton experiment set-up) when he
deduced the necessity of introducing the projection postulate as a
dynamical process associated with measurement.
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PVMs on a Composite System
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PVMs on a Composite System

How can we represent this process as a measurement operator acting on
system A alone?

@ Applying Axiom 2, we represent the direct measurement of the
apparatus system with the PVM {P,,}, where m=1..... K with
K <N =dm(Hp).

@ [his measurement can be expressed on the joint system as the PVM
{14 ® P}
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PVMs on a Composite System

@ Let U be an arbitrary unitary operator that couples the two systems.

@ [hen the probability of outcome m is

Pr(m) = Tr[(La @ Pm)U(pa @ pg)U']
E Z'iflA'rIimlBUIOZZ'B;)AEIIO|BU%|fﬁ-"A|m?‘B

= Tr[AmopaAl o] = Tr[Enpal.

where we have used the cyclic property of the trace and defined
Em — ALoAmU-
@ The operators E,, are positive (semi-definite) operators that act only
on Hp and satisfy the properties: (i) E» > 0 and (ii) ), Em = 1a.
8. These are the same conditions on the operators E,, that we found
previouslv.
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PVMs on a Composite System

@ Let U be an arbitrary unitary operator that couples the two systems.

@ [hen the probability of outcome mis

Pr(m) = Tr[(1a @ Pm)U(pa @ pg)U']
= ) (ila(m|gU|0)gpa(0|gU|i)alm)s

= Tr[AmopaAl o] = Tr[Enpal.

where we have used the cyclic property of the trace and defined
Em=A oA
@ The operators E,, are positive (semi-definite) operators that act only
on Ha and satisfy the properties: (i) E, > 0 and (i) Y Em = 1a.
@ These are the same conditions on the operators E,, that we found
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Neumark's Theorem

We've seen three measurements paradigms which motivate the following
definition and axiom:

Definition (Discrete POVM)

A discrete positive operator valued measure (POVM) is a set of operators
{E,} satisfying:
() E,>0foreachrv € {1,2,...}.

(i) ¥, E =1.

Generalized Axiom 2 (Discrete Case): A measurement procedure
with discrete outcomes is represented by a discrete POVM {E, |,
and the probability of observing outcome 1, given any preparation p,

IS

Pr(v) = Tr(Eup).
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Continuous Outcome POVMs

We can generalize the preceding to the case of continuous outcomes:

@ Let {2 be a non-empty set and F be a 7-algebra of subsets of 2 so
that (2. F) forms a measure space.

@ [hose unfamiliar with measure spaces can just think of {2 as a space
of possible outcomes, e.g., the real line, and of F as the measurable
subsets of §2, e.g., arbitrary intervals on the real line.
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Neumark's Theorem
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Neumark's Theorem

We've seen three measurements paradigms which motivate the following
definition and axiom:

Definition (Discrete POVM)

A discrete positive operator valued measure (POVM) is a set of operators
{E,} satisfying:
(i) E, >0foreachv € {1,2,...}.

(i) ¥, E =1.

Generalized Axiom 2 (Discrete Case): A measurement procedure
with discrete outcomes is represented by a discrete POVM {E, |,
and the probability of observing outcome 1, given any preparation p,
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Pr(v) = Tr(Eup).
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Continuous Outcome POVMs

We can generalize the preceding to the case of continuous outcomes:

@ Let {2 be a non-empty set and F be a 7-algebra of subsets of 2 so
that (2. F) forms a measure space.

@ Those unfamiliar with measure spaces can just think of {2 as a space
of possible outcomes, e.g., the real line, and of F as the measurable
subsets of €2, e.g., arbitrary intervals on the real line.
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POVM - general definition

Definition
A positive operator valued measure (POVM) E : F — L('H) is defined by
the properties:

(i) E(X) >0forall X € F
(i) E(Q2) =1
(iii) E(U; Xi) = >_; E(X;) for all disjoint sequences {X;} C F
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POVM as a continuous PVM

If the POVM elements satisfy E(X) = E(X)? for all X € F then the
POVM reduces to a PVM: in which case the set {2 may be taken without
loss of generality to be the real line R and the o-algebra consists of the

B(R), the Borel subsets of R.
As a result we recover a continuous PVM as a one-parameter family of

projection operators.
That is, in terms of the Borel sets we can define a PVM E : B(R) — £L(H)
by the conditions:

(i) E(X) = E3(X) for all X € B(R)
(i) E(R)=1
(i) E(U. Xi) = >_. E(X;) for all disjoint sequences {X;} C B(R),

Note that /) implies E(X (1Y) = E(X)E(Y) for all X.Y € F and also
impires that E£(X) = ET(X).
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Generalized Measurements

This gives a more general version of Axiom 2:

Generalized Axiom 2: Any measurement procedure can be
represented by a POVM E : 7 — £L(H), and tor any preparation p,
the probability of observing an outcome X < F is

Pr(X) = Tr(E(X)p).

You can think of outcome X as corresponding to a question like:
Was the position g found to be within the interval X C R?
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Non-uniqueness of purifications

So we have seen that physically realizable cases of generalized
measurement correspond to a POVM measurement.

@ But does every POVM measurement correspond to some physically
realizable measurement, and, in particular, to some realizable PVM
measurement?
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Neumark’'s Theorem

The answer to this question is given by Neumark's theorem (actually a
simplified version of it):

Theorem (Neumark)

For any POVM {E} acting on a Hilbert space Hp there exists a PVM {P}
acting on Ha @ Hp and a state |¢)(o| acting on Hp such that

Tr[(p @ |0) (0])P(X)] = Tr[E(X)p]

for any state p acting on Hp and any X € F. The PVM can always be
expressed in the form UT(14 @ P)U, i.e., the PVYM P acts only on Hp.
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Neumark’'s Theorem

Recall in the case of generalized preparations, which were given by density
operators, the sets of proper and improper mixtures were mathematically
equivalent (and hence operationally indistinguishable).

This is not the case for POVM measurements.

@ [hat is, we can define proper POVMs as those obtained from convex
combinations of PVMs.

@ Similarly, we can define improper POVMs as those obtained from a
PVM measurement on an extended Hilbert space.

@ From Neumark's theorem we know that proper POVMs must be a
subset of improper POVMs. However, they are a strict subset.

@ [his means that operationally implementing some POVM

measurements requires access to (and control over) a larger Hilbert
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Example of improper POVM

Here is a simple example of an improper POVM:

Example

Consider the trine given by the set of three projectors |y, ) (Y| acting on
C? defined by:

(U ' "u)\u =
where n1, np and m3 denote three unit vectors making angles of 120
degrees with each other. Let E, = (2/3)|x.){(xu|-

The trine is the smallest possible POVM that is not a PVM.
It also can not be generated, mathematically or operationally, from taking
convex combinations of PVMs.
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Example of improper POVM

Here is a simple example of an improper POVM:

Example

Consider the trine given by the set of three projectors |y, ) (x| acting on
C? defined by:

(J ' “v)\p = Xv
where np, n2 and m3 denote three unit vectors making angles of 120
degrees with each other. Let E, = (2/3)|x.){(xu|.

The trine is the smallest possible POVM that is not a PVM.
It also can not be generated, mathematically or operationally, from taking
convex combinations of PVMs.
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Example of improper POVM

Here is a simple example of an improper POVM:

Example

Consider the trine given by the set of three projectors |y, ) (x| acting on
C? defined by:

(0-m)xe = xu
where n1, np and m3 denote three unit vectors making angles of 120
degrees with each other. Let E, = (2/3)|x.){(xu|.

The trine is the smallest possible POVM that is not a PVM.
It also can not be generated, mathematically or operationally, from taking
convex combinations of PVMs.
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Example of improper POVM

Here is a simple example of an improper POVM:

Example

Consider the trine given by the set of three projectors |y, ) (Y| acting on
C? defined by:

(0-m)xy = xu
where n1, n2 and m3 denote three unit vectors making angles of 120
degrees with each other. Let E, = (2/3)|x.){(xu|.

The trine is the smallest possible POVM that is not a PVM.
It also can not be generated, mathematically or operationally, from taking
convex combinations of PVMs.

irsa: 10010079 Page 62/130




Generalized Axioms for Quantum Theory  Generalized Transformations: TP maps

Generalized Transformations

As with measurements and states, there are two ways to construct
generalized transformations:

e By taking convex combinations of unitary transformations.

@ By considering a unitary acting on an extended Hilbert space and
then tracing out the ancillary system.
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Generalized Transformations

As with measurements and states, there are two ways to construct
generalized transformations:

e By taking convex combinations of unitary transformations.

@ By considering a unitary acting on an extended Hilbert space and
then tracing out the ancillary system.
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Mixtures of Unitary Operators

Consider a procedure whereby we subject a preparation p to
transformation U; with probability p;.

@ The effective transformation is then given by a convex combination of
unitary operators

Ap) =) piUipU!.
:

@ Clearly this map is in general non-unitary, but it always preserves the
trace of the input state. Specifically, if o’ = A(p), from the linearity of
the trace we see that

Tep = Z pi Ir(U;p; UJ-T) =1
J

.8 By convexity, the output state will remain a positive (semi-defipite)
operator. Hence the mabo A is called positive
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Unitary acting on Extended Hilbert Space

Consider the effect of a unitary operator on extended Hilbert space
Ha @ Hp acting on an uncorrelated initial state

pa(t) = Ae(pa(0)) = Trg[U(t)pa(0) = [0)a(0lg U ()] = Y Ap(0)A]
k

where A, = (k|U(t)|0) is a linear operator acting on H4.

@ By linearity, a decomposition of the same form is obtained also in the
case that the initial environment state is an arbitrary mixed state pg.

@ [he requirement that the initial state is uncorrelated is strictly
stronger than the requirement that the state be separable.
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Unitary acting on Extended Hilbert Space

@ Clearly this map preserves the trace of the output state:

Tr))  AcpaAy] = Tr[Upa(0) ©10)5(0|gU"] = 1.
k

@ Because this holds for any pa, from the cyclic property of the trace
we deduce that |
Z A Ak = 4.
k

Hence it is easy to see from the properties of the partial trace that
this map also guarantees the positivity of the reduced state.
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Kraus Decomposition

Definition
The expression

Ap) =" Ar(0)A]
k

subject to the constraint
Y AA=1
k

is called a Kraus decomposition or an operator-sum decomposition of the
map A, and the set of (bounded) linear operators { Ay} are called Kraus
operators.

For a map A constructed from a mixture of unitary operators, one choice
for the Kraus operators is the unitary operators weighted by the

Pirsa: 10010079 Page 68/130
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Generalized Transformations

Definition
Any linear map A taking linear operators to linear operators is called a
superoperator.

Definition
Any superoperator A\ representing a dynamical transformation on the space
of quantum states is called a quantum dynamical map.

Remark: For some physicists these terms are used interchangeably.
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Generalized Transformations

Any quantum dynamical map A; describing the evolution of a quantum
state over a time t

p(0) — p(t) = Ae(p(0))

that is constructed by either of the above methods satisfies the following

properties:

(i) Convex Linear: pyp1(t) + p2p2(t) = Ae(p1p1(0) + p22(0)) where
pi(t) = Ae(pi(0)) and p; > 0

(i) Completely positive: pag(t) = A 1g(pag(0)) is positive if pag(0) is
positive — this guarantees that probabilities are positive (and hence
real) - note that it is stronger than positivity because it guarantees

that probabilities must be positive even when the map is acting on
part of an extended system provided that the initial state is

uncorrelated between the two systems.
(i} Trace preserving: Tr(p(t)) = Tr(p(0)) — this guarantees that ™*™*
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Unitary acting on Extended Hilbert Space

Consider the effect of a unitary operator on extended Hilbert space
Ha @ Hp acting on an uncorrelated initial state

pa(t) = Ae(pa(0)) = Trp[U(t)pa(0) @ 0)8 (0|8 U ()] = Y Akp(0)A;
k

where Ay = (k|U(t)|0) is a linear operator acting on H4.

@ By linearity, a decomposition of the same form is obtained also in the
case that the initial environment state is an arbitrary mixed state pg.

@ [he requirement that the initial state is uncorrelated is strictly
stronger than the requirement that the state be separable.
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Generalized Transformations

Definition
Any linear map A taking linear operators to linear operators is called a
superoperator.

Definition
Any superoperator A representing a dynamical transformation on the space
of quantum states is called a quantum dynamical map.

Remark: For some physicists these terms are used interchangeably.
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Generalized Transformations

Any quantum dynamical map A; describing the evolution of a quantum
state over a time t

p(0) — p(t) = Ae(p(0))

that is constructed by either of the above methods satisfies the following

properties:

(i) Convex Linear: pyp1(t) + p2p2(t) = Ae(p11(0) + p22(0)) where
pi(t) = Ae(pi(0)) and p; > O

(i) Completely positive: pag(t) =A@ 1g(pag(0)) is positive if pag(0) is
positive — this guarantees that probabilities are positive (and hence
real) - note that it is stronger than positivity because it guarantees
that probabilities must be positive even when the map is acting on
part of an extended system provided that the initial state is
uncorrelated between the two systems.

"(fiPy*Trace preserving: Tr(p(t)) = Tr(p(0)) — this guarantees that ™™
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Generalized Transformations

@ [he complete positivity condition implies that when the map acts on
part of composite system it still produces a positive operator.

@ [his requirement implies positivity but the converse does not hold.

@ [he partial transpose map is an example of a map that is positive but
not completely positive.
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Generalized Transformations

@ [he complete positivity condition implies that when the map acts on
part of composite system it still produces a positive operator.

@ [his requirement implies positivity but the converse does not hold.

@ [he partial transpose map is an example of a map that is positive but
not completely positive.
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Generalized Transformations

Definition
A completely positive map (CP map) is a superoperator satisfying
conditions (i) and (ii).

Definition
A completely positive trace-preserving map (CPTP map) is a
superoperator satisfying conditions (i)-(iii).
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Generalized Transformations

Any quantum dynamical map A; describing the evolution of a quantum
state over a time t

p(0) — p(t) = Ae(p(0))

that is constructed by either of the above methods satisfies the following

properties:

(i) Convex Linear: pypa(t) + papa(t) = Ae(p1a(0) + papa(0)) where
pi(t) = Ae(pi(0)) and p; > O

(i) Completely positive: pag(t) =A@ 1g(pag(0)) is positive if pag(0) is
positive — this guarantees that probabilities are positive (and hence
real) - note that it is stronger than positivity because it guarantees
that probabilities must be positive even when the map is acting on
part of an extended system provided that the initial state is
uncorrelated between the two systems.

"(fify*Trace preserving: Tr(p(t)) = Tr(p(0)) — this guarantees that ™=
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Generalized Transformations

Definition
A completely positive map (CP map) is a superoperator satisfying
conditions (i) and (ii).

Definition
A completely positive trace-preserving map (CPTP map) is a
superoperator satisfying conditions (i)-(iii).
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Kraus Representation Theorem

While the properties deduced from our derivation of quantum dynamical
maps in terms of unitary operators implied the properties for our definition
of a CPTP map, it turns out that any map satisfying these properties can
also be identified with a unitary operator on an extended space. This is
made explicit by the following representation theorem due to Kraus and
the associated dilation theorem due to Stinespring:

Theorem (Kraus Representation Theorem)

A superoperator N\ is a CPTP map iff it admits an operator-sum
decomposition.

Theorem (Stinespring Dilation Theorem)

Any CPTP map can be expressed as the reduced action of a unitary
Onerator acting on an extended Hilbert space, where the initial state jp the
ancilla Hilbert space is uncorrelated with the initial svstem state
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Generalized Transformations

Generalized Axiom 4: Over any finite time, the dynamical
transformation of a quantum system is described by a completely
positive trace-preserving map.

@ For finite dimensional systems, the maximum number of operators
{ Ak } required to represent any CP map acting on C("CD) is D?.

@ Stinespring's representation is unique up to unitary transformations
on the ancilla system.

@ For finite dimensional state spaces the theorem also comes with a
bound on the dimension of the ancilla system.
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Proper vs Improper

We can also define a notion of proper and improper CPTP maps

depending on whether they can be decomposed as a convex combination
of unitary operators.

Definition
A CPTP map is called unital if it maps the identity operator to the
identity operator.

o If the CPTP map is unital this implies the condition ), AkA? =1 on
the Kraus operators.

@ Any proper CPTP must be unital.

@ A simple example of a non-unital map is the spontaneous decay of an
atom.

"Fétfee it is clear that proper CPTP maps form a strict subset of all ©PTP
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Generalized Transformations and Decoherence

@ [he non-unitary transformations that occur in the form of CPTP
maps often produce decoherence.

@ Broadly speaking, decoherence is a dynamical process whereby the
purity of the system state decreases.

@ Often decoherence occurs due to coupling of the system of interest to
an ancillary quantum system (often the uncontrolled “environment”),
which is subsequently traced over (via the partial trace).

@ In the quantum optics community, decoherence sometimes refers
specifically to de-phasing - the attenuation of off-diagonal terms in
some fixed basis without any changes to the diagonal terms (ie, the
populations of each of the basis states).
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Generalized Transformation under Filtering Measurements

In the context of the standard axioms, it was necessary to postulate a

second kind of transformation to describe the quantum state after an ideal
“filtering” measurement.

@ A ideal “filtering” type measurement was one where the outcome
associated with the measurement is verifiable under repeated
sequential measurements -

@ However, some measurements are “destructive” and do not have this

property, eg, absorbing a photon to measure its momentum. For such
measurements the Born rule still applies, but the state update rule is
not given by the projection postulate.
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Luders’ Rule

Consider the ideal measurement of an observable A =) a,P, (with

eigenvalues a, and associated projectors P,) applied to a given preparation
p that yields the outcome a,.

@ [he post-measurement state p,,, conditional upon the outcome a,,, is
determined by Luders’ rule,

Pml’Pm
Tr(Prmp)’

P Pm=—

where the factor in the denominator is required for normalization.

@ If the observed eigenvalue is non-degenerate, then P, is rank-one,

and the state p,, = Py, = |U'm) (m| will be pure - in this special case

Luders’ rule reduces to the projection postulate considered by von
Pirsa: 100100Neumann_
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Luders’ Rule

Consider the ideal measurement of an observable A =) a,P, (with

eigenvalues a, and associated projectors P,) applied to a given preparation
p that yields the outcome a,,.

@ [he post-measurement state p,,, conditional upon the outcome a,,, is
determined by Luders’ rule,

Pm!"Pm
Tl Pmp)

P~ Pm=—

where the factor in the denominator is required for normalization.

@ If the observed eigenvalue is non-degenerate, then P, is rank-one,

and the state p,, = Py = |U'm) (¢'m| will be pure - in this special case

Luders’ rule reduces to the projection postulate considered by von
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Luders’ Rule

Consider the ideal measurement of an observable A =) a,P, (with

eigenvalues a, and associated projectors P,) applied to a given preparation
p that yields the outcome a,,.

@ [he post-measurement state p,,, conditional upon the outcome a,,, is
determined by Luders’ rule,

FmPFm
Te(Pop)

P~ Pm=

where the factor in the denominator is required for normalization.

@ If the observed eigenvalue is non-degenerate, then P, is rank-one,

and the state pp, = Py = |Um) ('m| Will be pure - in this special case

Luders’ rule reduces to the projection postulate considered by von
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| uders’ Rule

Of course it always possible to describe the system after measurement
without post-selecting based on the outcome (ie, without conditioning on
the observed eigenvalue), either by ignoring the outcome or else because
the outcome may not be observable in practice.

@ In this case we can accurately describe the post-measurement state by
simply constructing the weighted classical mixture over the set of
possible post-selected states,

PmpPm
p—p = Z Tr(Pmp) T g Z T PopP)

ml’

@ The lack of post-selection usually leads to a loss of purity. For
example, if the input state p is a pure state which is a coherent
superposition over two eigenspaces P,, and P,,, then the output
state p’ will be a mixture over those two eigenspaces.

Pirsa: 1001007
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Of course it always possible to describe the system after measurement
without post-selecting based on the outcome (ie, without conditioning on
the observed eigenvalue), either by ignoring the outcome or else because
the outcome may not be observable in practice.

@ In this case we can accurately describe the post-measurement state by
simply constructing the weighted classical mixture over the set of
possible post-selected states,

PmpPm
o— ;) - Z TI rnl) TI £ Z Tl m{)P

ml’

@ The lack of post-selection usually leads to a loss of purity. For
example, if the input state p is a pure state which is a coherent
superposition over two eigenspaces P,, and P,,, then the output
state p’ will be a mixture over those two eigenspaces.
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State Update Rule for Generalized Measurements

Recall from Neumark’'s theorem that any POVM measurement {E, | on a
Hilbert space Ha can be expressed as a PVM measurement { Py} acting

on an extended Hilbert space Ha @ Hp with a state |0)(o| representing

the initial state of Hg. Specifically,

Tr[(p @ |6)(0])Pi] = Tr[pEx]

for any state p acting on Ha and any outcome k.

@ Here for simplicity of the analysis we will assume that the POVM has

discrete outcomes.
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State Update Rule for Generalized Measurements

Hence, in order to describe the post-selected quantum state after
measurement under a POVM, we can simply apply the Luders rule to the
description given by Neumark's theorem.

Specifically, we have

Trg(Pk(p @ |0)(0|)Pk)
Tl'[Pk p & |r_') iir_}l P k]

pP— Pk =

where the denominator Tr[(p @ |0)(@|)Pg], the probability of outcome k,
is included for normalization of the conditional state.
After some algebra it is possible to show that py takes the form,

My pM;
Te[My pM]]

Pk =
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State Update Rule for Generalized Measurements

Hence, in order to describe the post-selected quantum state after
measurement under a POVM, we can simply apply the Luders rule to the
description given by Neumark's theorem.

Specifically, we have

pP— Pk = Trg(Pi(p @ |0){0])Pk)
' | T[‘[Pkp X [f_'):i i:.r_'rlpk]

where the denominator Tr[(p @ |0)(0|)Pk], the probability of outcome k,
is included for normalization of the conditional state.
After some algebra it is possible to show that py takes the form,

MHJM;
Te[My pM]]

Pk =
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State Update Rule for Generalized Measurements

The post-measurement state that describes the situation in which we do
not condition upon an observed outcome takes the form:

MipM;

w =Y (Te[MpoM! M. oM!
Pk Zk:( [My/ k])TI[Mk;JMk] zk: kPMy.
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State Update Rule for Generalized Measurements

It is worth emphasizing that the measurement operators { My} (or,
equivalently, the PVM {Py } and ancilla state |0)) are not uniquely
determined by the POVM {Ex } because different measurement procedures
in the extended Hilbert space can result in the same POVM acting on the
system Hilbert space.

Hence the post-measurement state py is not uniquely determined by
specification of the POVM; it is however uniquely determined by specifying
a particular implementation of the measurement in the extended Hilbert
space.
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Expressing Generalized Measurement as a Completely
Positive Map

If we consider the un-normalized expression for the post-measurement
state, conditioned on outcome k, we have

pk = MipM;.

Hence the state update rule with post-selection has the form of a
non-trace preserving completely positive map - just interpret the My as
Kraus operators and observe that Mf; M, < 1.

Of course, the final state without post-selection takes the form

Pk = Z Mk!’Mf(-
k

Pirsa: 100100
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Expressing Generalized Measurement as a Completely
Positive Map

If we consider the un-normalized expression for the post-measurement
state, conditioned on outcome k, we have

= T
!)k — Mk[)Mk.

Hence the state update rule with post-selection has the form of a
non-trace preserving completely positive map - just interpret the My as
Kraus operators and observe that MEM;( < 1.

Of course, the final state without post-selection takes the form

I}k — Z MHJME.
-
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Expressing Generalized Measurement as a Completely
Positive Map

If we consider the un-normalized expression for the post-measurement
state, conditioned on outcome k, we have

= T
,)k — Mk)”Mk'

Hence the state update rule with post-selection has the form of a
non-trace preserving completely positive map - just interpret the My as
Kraus operators and observe that MEM;( < i

Of course, the final state without post-selection takes the form

o = Z MipM,.
k
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Expressing Generalized Measurement as a Completely
Positive Map

Hence if we think of measurement as a transformation, it can be included
in the same mathematical formalism that accounts for the generalized

transformations generated by unitary evolution (on some extended Hilbert
space) by simply weakening the requirement that the transformation must

be trace-preserving.
Generalized Axiom 4 (revised): Over any finite time, the dynamical

transformation of quantum system is described by a completely
positive map.

irsa: 10010079 Page 106/130




Generalized Axioms for Quantum Theory  Composite Systems and Entanglement

Composite Systems and Entanglement

Axiom 3 remains unchanged in the generalized formalism. But it is
worthwhile reviewing some basic properties of entanglement.

@ An arbitrary pure state |1ag) € Hap has the form:

[VaB) = Z Ukelak) @ |be), Uke = ((ak| @ (be|)|vaB) € C.
k.f

@ An arbitrary state operator, p, acting on Hapg has the form:

p= Z Z Peerkke|ae) (aer| @ |by) by

Ek O K

where
Peerkke = (ae| @ (bi|plag) @ |byr).
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Composite Systems and Entanglement

Axiom 3 remains unchanged in the generalized formalism. But it is
worthwhile reviewing some basic properties of entanglement.

@ An arbitrary pure state |1)ag) € Hag has the form:

V'aB) = Zf-‘kf.lak?‘ 3 |be).  Uke = ((ak| @ (bel|)|’aB) € C.
k.t
@ An arbitrary state operator, /), acting on Hapg has the form:
p=2_ ) puwnlar)(ae|  |br) (bl
En EN
where
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Composite Systems and Entanglement

Axiom 3 remains unchanged in the generalized formalism. But it is
worthwhile reviewing some basic properties of entanglement.

@ An arbitrary pure state |1'ag) € Hap has the form:

Mm

[éaB) =Y Uwelak) @ |be). ke = ((ak| ® (bel)|t'aB)
k.t

@ An arbitrary state operator, p, acting on Hapg has the form:

p= Z Z peerkke |3e) (aer| @ | by ) (bye .

Ek UK

where
Peerkkr = (ag| @ (bk|plae) @ |by). age 109130
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Composite Systems and Entanglement

Definition

A pure state |y) € Hap that can be expressed as |y) = |a) @ |3) for some
la) € Ha, |3) € Hp, is called a product state, or a factorable state;
otherwise it is called entangled.

Definition
A general state p acting on Hap is called separable if and only if

PAB = Z PiPia @ PiB:
i

l.e., Iff it can be expressed as a statistical mixture of states of the form
;A @ pig: otherwise it is called entangled.
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Composite Systems and Entanglement

Definition

A pure state |y) € Hap that can be expressed as |y) = |a) @ |3) for some
la) € Ha, |3) € Hp, is called a product state, or a factorable state;
otherwise it is called entangled.

Definition
A general state p acting on Hap is called separable if and only if

PAB = Z PiPia © piB-

i

l.e., Iff it can be expressed as a statistical mixture of states of the form
PiA © pig: otherwise it is called entangled.
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Composite Systems and Entanglement

@ An entangled pure state has the property that independent
measurements on A and B exhibit correlations in the outcomes.
Entangled pure states have in a well defined sense (due to Bell-type
theorems) stronger correlations than any classical state.

@ Note that any classical correlation between A and B can be modeled
by a separable state, ie, a mixed state can exhibit correlations without
being entangled.
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Criteria for Pure-state Entanglement

How can we tell when a pure composite state is entangled?

@ If the composite system state is pure then we can compute whether it
is entangled by calculating the purity of the reduced state of either
system A or system B: a pure composite system state is entangled iff

Tl‘(/,)’%‘) < L

@ This criterion will not work if the composite system state is a mixed
state, because even a separable mixed state will produce a mixed
reduced state.

o Note also that Tr(p3) = Tr(pg) whenever the reduced states are
obtained from a pure composite system state.
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Criteria for Pure-state Entanglement

How can we tell when a pure composite state is entangled?

@ |f the composite system state is pure then we can compute whether it
is entangled by calculating the purity of the reduced state of either
system A or system B: a pure composite system state is entangled iff

Tl‘(pi) < L

@ This criterion will not work if the composite system state is a mixed
state, because even a separable mixed state will produce a mixed
reduced state.

o Note also that Tr(p3) = Tr(pg) whenever the reduced states are
obtained from a pure composite system state.
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Criteria for Pure-state Entanglement

How entangled is an entangled state?

@ We can quantify the amount of entanglement of a pure state using
the von Neumann entropy S(pa) = —Tr[pa log,(pa)] of either
reduced state.

@ Note that log,(pa) can be defined in terms of the spectral
decomposition of pg, and that A;log, A; =0 if \; = 0.
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Criteria for Pure-state Entanglement

The von Neumann entropy gives a measure of the amount ignorance one
has about a system (as encoded by the state one is using to describe the
system). It has the following properties:

1) S(p) =0 iff pis pure.
i) For p actingon H=CP,0< 5(p) < log(D), where the upper bound
Is saturated iff the state is completely mixed, ie, p = 1/D.
iii) If the composite system state is pure then S(pa) = S(pB).

iv) Concavity: S()_. pipi) = D_; piS(pi)- (Intuitively, ignorance about the
mixture must be greater than the average of the ignorance associated
with each of the component states.)
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Criteria for Pure-state Entanglement

The von Neumann entropy gives a measure of the amount ignorance one
has about a system (as encoded by the state one is using to describe the
system). It has the following properties:

1) S(p) =0 iff pis pure.
i) For p actingon H=CP,0< S5(p) < log(D), where the upper bound
Is saturated iff the state is completely mixed, ie, p = 1/D.

iii) If the composite system state is pure then S(pa) = S(pB).

iv) Concavity: S()_. pipi) = D _; piS(pi)- (Intuitively, ignorance about the
mixture must be greater than the average of the ignorance associated
with each of the component states.)
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Criteria for Pure-state Entanglement

Another useful characterization of entanglement is from the Schmidt
decomposition:

Definition
Schmidt decomposition: Given a pure state in ‘Hap, there exist ON bases
llia)} and {|ig)} of Ha and Hp respectively (called Schmidt bases) such

that
lY) = Z Ai

i

ia)|iB)

where \; are non-negative real numbers (Schmidt coefficients) satisfying
YA =1
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Criteria for Pure-state Entanglement

Another useful characterization of entanglement is from the Schmidt
decomposition:

Definition
Schmidt decomposition: Given a pure state in ‘Hapg, there exist ON bases
{lia)} and {|ig)} of Ha and Hp respectively (called Schmidt bases) such

that
) = Ailia)li)
i

where \; are non-negative real numbers (Schmidt coefficients) satisfying
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Schmidt Number

@ The Schmidt number is the number of non-zero coefficients A; in the
Schmidt decomposition. Clearly the maximum possible Schmidt
number is less than or equal to the smaller of dim(H4) and dim(Hp).

@ Clearly a state is entangled iff the Schmidt number is greater than 1.

o If N=dim(Hy) =dim(Hp), a state is called maximally entangled if
the Schmidt number is N. This holds for any state of the form

| . exp(ia,), .. .
) = Z N Ina)|ng)

=

where a, € R.
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Usefulness of the Schmidt decomposition

@ The Schmidt decomposition gives an easy way to calculate the
reduced density operators: pg = Y. A?|ia) (ia| and
pB =) ; ,\?|f3:2: (ig].

@ Note that the eigenvalues of the subsystem states are identical - this
holds whenever the composite state is pure - and hence this justifies
the earlier claim that Tr(p3) = Tr(pg) whenever the joint state is
pure.
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Usefulness of the Schmidt decomposition

@ The Schmidt decomposition gives an easy way to calculate the
reduced density operators: pg = > . ,\?|."A:;: ‘ia| and
pe =_; \ilig) (igl.

@ Note that the eigenvalues of the subsystem states are identical - this
holds whenever the composite state is pure - and hence this justifies
the earlier claim that Tr(p%) = Tr(pg) whenever the joint state is
pure.
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