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Abstract: Path integral formulations for gauge theories must start from the canonical formulation in order to obtain the correct measure. A possible
avenue to derive it is to start from the reduced phase space formulation. We review this rather involved procedure in full generality. Moreover, we
demonstrate that the reduced phase space path integral formulation formally agrees with the Dirac's operator constraint quantisation and, more
specificaly, with the Master constraint quantisation for first class constraints. For first class constraints with non trivial structure functions the
equivalence can only be established by passing to Abelian(ised) constraints which is always possible locally in phase space. With the above general
considerations, we derive concretely the path integral formulations for GR from the canonical theory. We also show that there in principle exists a
spin-foam model consistent with the canonical theory of GR.
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QOutline:
« Motivation

* Reduced phase space quantization and path integral
-— Application to Gravity (a continuum gauge fixed path-integral)

* Operator constraint quantization and path integral
-— Application to Gravity (a path-integral for spin-foam construction)

* Master constraint quantization and path integral
-— Application to Gravity (a discretized path-integral)

General idea:

——» Formally quantize a general reparametrization invariant system
— Consider gravity as a special case
MH and T. Thiemann. arXiv:0911.3428, arXiv:0911.3431

NI 2%9NEv-0911 3432, arXiv:(0911.3436 Page 3/48
|. Engle, MH and T. Thuemann. arXiv:0911.3433



Motivation:
A path integral formulation consistent with canonical LOQG

* The canonical interpretation of the path integral amplitude:
——— Physical inner product of physical states from

o Reduced phase space quantization
o Dirac quantization (operator constraint / Master constraint)

* Fixing the path integral measure ambiguity by the canonical framework

The path integral measure for a constrained system is usually not a formal
Lebesgue measure Do, but with a certain local measure factor.
Dpu = Do M(o) ( Du="Dg. || V?V? for gravity)

re M

> H. Leutwyler, Phys. Rev. 134 (1964) B1156
- E.S. Fradkin and G. A. Vilkovisky, Phys. Rev. D8 (1973) 4241
> E.S. Fradkin and G. A. Vi]knﬂskv CERN-TH-2332

For CGR, the non-covariant local measure is un-avoidable in order to be

consistent with canonical theory.
—> How to understand the local measure factor in Background

= fidependent Quantization?
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Reduced phase space quantization and path integral

The physical inner product for the physical states in
reduced phase space quantization

—_—

4

A path-integral expression for the physical inner product
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A general covariant (regular) system with the canonical coordinates
(PmPIZQH-T") I
T’s are the clock variables. Choose the gauge fixings ( 7 phase space numbers )
=T -
Abelianize the first class constraints
Cr = Pr+ hi(pa-q*. T")
guaranteed by the Abelization Theorem (M. Henneaux and C. Teitelboim 1992)
Define the Dirac observables relationally
O¢(7) == [ag(f)]as(Tr)=+1

a weak Poisson homomorphism from [the Poisson algebra of the functions on the

gauge fixed constraint surface with Dirac bracket]| to [the Possion algebra of Dirac
observables]|

In particular {P.(7),Q%(7)} =4,
The physical Hamiltonians:
{hi (Pa(7).Q%(7).7) . Of(7)} = 9::04(7)
the algebra of the physical Hamiltonians is weakly commutative.

Remark:

For GR, A preferred algebra of observables and a preferred dvnamics are defined

from the gauge fixing conditions. In contrast to the gauge invariant approach of
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Quantum algebra N of observables

|Pur). QP ()| = —id,
Choose a representation Hilbert space, e.g.

Hyea = L7(dQ)

We assume the quantum dvnamics exists and is anomalv-free, Le.
(1.) the physical Hamiltonians &, (P,. Q" 1) are self-adjoint operators.
(2.) the physical Hamiltonians form a commutative algebra [/;,/1,] = 0.
Multi-finger unitary evolution operator:

sy = I_[ Ulrr.ty)
I

. i g Fi2
Uiy, 1';] = 1+ E I—'l'lnf dT;J,f dty - f dryy hl{tiy)---hy(tin)
n=| 1":. T T

o

Given two Heisenberg states V.V’ € ‘H, .4

(PI¥")

fdQ"(r_....r)dQ”(r_\r_; ) - --dQ“ (1)) dQ"(1p)

x (P10 (ta ) (Q*(zWIQ (Tv-1)) - - - (@ (T IQ* (70)) { @ (T0)'¥")

I

by the standard skeletonization procedure.
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Theorem:
The reduced phase space physical inner product has a path-integral expression by
a standard skeletonization procedure:

(¥IP)
= f.’!)pai)q“ﬂﬁﬂ’f’ l_l IJ{P; +h;)6(T’ -r’]l e'f de[ I, porF i+ X, PUnT'(n] ‘P(Q"lr;- l) ‘P’”(Q“lr,—])

v : v !

Liouville measure Abeliamized constramt, gauge fixing conditions Boundary physical states
'y
= fnr‘m [ Vderwix*@n [ ] [ Vit on s(ciad* @) seito)| [ ] | bl on (@i o))
reln.ay ) reln.ay) rejn.ay
xexp(iS [ (n]) P(Q e 1)) ¥ (Q1x" 1)) l Dirac matrix, second-class constraint
: Original constraint, general Faddeev-Popov gauge fbang
Boundary phvsical states

which is equivalent to the Liouville path-integral on the reduced phase space:
2= f l_[ [d}itr} J|dctwg[\"if}]| ‘exp(i.&'[_r'{nll

reln a3
This reduced phase space path-integral is suggested to be a starting point for the
path-integral quantization of a general constrained system.
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M. Henneaux and C. Teitelboim, Quantization of Gauge Svstem (Princeton University Press, 1992)




Application to the case of gravity:
Z. = m”:!_)e"vv NN noif Jfﬂhft’ ne’h(*Fu-lFu)[wl

- Du”z)xf,j, [| Vv.& (e,m s - 'Ve,,ﬁ,.,) NDX l_loi.‘:‘ )

H= =M

. choice of sectors xexpffX——*Xj”AF”
) 4

The local measure factors appear in the path-integral measures:

* The path-integral measure is invariant under all the gauge transformations
generated by the canonical constraints, i.e. invariant under dynamical Bergmann-
Komar “group” BK(M). BK(M)=Diff(M) only when e.o.m. is imposed.

* But, non-invariant under non-spatial diffeomorphisms, i.e. non-spatial
diffeomorphism symmetry is anomalous in the quantization!

» This fact is consistent with canonical theory. There is no notion of local symmetry
on the phase space corresponding to the non-spatial diffeomorphism!

Lee and Wald. J. Math. Phys. 31 (1990) 725
estions

(Conceptual) Can the reduced phase space path-integral gives the solutions to all the
quantum constraints?

(Praetieal) How to remove the gauge fixings in the practical computation, where s
constructine a spin-foam model?



Operator constraint quantization, reduced phase space

quantization and path integral

Reduced phase space gquantization

physical inner product

: 09120114

—

The rigging inner product with
Abelianized .

!

A path-integral expression for the
rigging map and rigging inner
product
(answering both conceptual and
practical questions)
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Refined Algebraic Quantization (RAQ):
Solutions to the constraints are elements of the algebraic dual T of a dense domain Tg;, C Hg. What we are
looking at are states ‘¥ € T such that:
¥|C fl=Clrl=0. v¥feD
The space of solutions is denoted by T 7, . The physical Hilbert space will be a subspace of T, . Eventually, T7  will
be the algebraic dual of a dense domain T py,, € Hpy,,. which is invariant under the algebra of operators corresponding
to Dirac observables. Hence we obtain a Gel fand triple:
EF’I‘I‘I = 'H.Fﬁ"li'.i — T;‘.“

A systematic construction of the physical Hilbert space is available if we have an anti-linear ngging map:

”:Tl’m""r;ﬁ": fr=nif)
such that n( f7)[ f] is a positive semi-definite sesquilinear form on T g, If the quantum constraint algebra is generated by
self-adjoint constraints C; and their commutator algebra is a Lie algebra ie. the structure functions are constant. then we
can try to heunistically define the rigging map via the group averaging procedure:

nf) ::fdmn ce‘ﬁf‘f.. >
The physical inner product is defined by the ngging inner product

UM )) prys = WS YF. f € Titime

Then a null space R C T}, _is defined by {n(f) € T}, | I/ llpnss = 0 |. Therefore
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However, in general the constraint algebra is not a Lie algebra
€€l = f”""C;; where f}f is a structure function
The group averaging fails for C;.

Fortunately we have the Abelianization Theorem (all the first-class constraint algebra
can be locally Abelianized)

Equivalent constraints:
Cr = Pt + hi(pa.q°.T") (€1.¢,) =0

If the constraint operators are self-adjoint and anomaly-free, we define the group
averaging for the Abelianized constraints
r)

[ Tpae (£ expli 7€
fﬂ;d:" (w| exp[ii, r"C";I ‘w)

Ne(OLf] =

where [, f.@ € Dkin are kinematical states.

Pirsa: 09120114 Page 12/48



Refined Algebraic Quantization (RAQ):

Solutions to the constraints are elements of the algebraic dual T of a dense domain Tg;, C Hy;,. What we are
looking at are states ‘¥ € T such that:

v[Cfl=Celf1=0. vfeD
The space of solutions is denoted by T}, . The physical Hilbert space will be a subspace of T, . Eventually, T will
be the algebraic dual of a dense domain T py,, € Hpy,,, which is invanant under the algebra of operators corresponding
to Dirac observables. Hence we obtain a Gel fand triple:
EF’I‘I’! — 'HPh's = T;ﬁu
A systematic construction of the physical Hilbert space is available if we have an anti-linear ngging map:
N : DKin — I;hn: f = nif)

such that n( f")[ f] is a positive semi-definite sesquilinear form on T g;, If the quantum constraint algebra is generated by

self-adjoint constraints C; and their commutator algebra is a Lie algebra ie. the structure functions are constant. then we
can try to heunistically define the rigging map via the group averaging procedure:

w= [ <f >
The physical inner product is defined by the rigging inner product
O piys = MWSL YF. f € Digin-
Then a null space R C T}, _is defined by {n(f) € T}, | In(llpnss = 0 |. Therefore
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However, in general the constraint algebra is not a Lie algebra
€€ = f”"'Cg where j}f is a structure function

The group averaging fails for C}.

Fortunately we have the Abelianization Theorem (all the first-class constraint algebra
can be locally Abelianized)

Equivalent constraints:
(:'fzpf‘{"hf(‘(}n-qu.?—f) {C‘;,C’;l:{}

If the constraint operators are self-adjoint and anomaly-free, we define the group
averaging for the Abelianized constraints
f)

[ Tpde (f| expli 7€
fl'];d.r"' (w| exp[r'):; Iff;l ‘w)

N(OLf] =

where f, f.@ € Dgin are kinematical states.
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Relation with reduced phase space (path-integral) quantization:

From &7 Piy(T.Q)=u(T -1.0)

Rigging physical state

e

n:w— )T, Q)

f dr [¢7 S YT, Q)

fdr‘.r’[r] T -1,Q) = —fdthT—r}wtr.Q]

= —V{T}fdr Vir)y ' w(r,Q) = -WV(T) (7' (&) (Q)
Ul‘litar}f mﬂp v{_r' - EH"'{P;+I”IE-HJP; I
physical states in reduced
phase space quantization

Theorem

(). n(")y = o W' W)y —1,000)

1. we can identify ?(ph}._.; with H, e by the unitary map V(7 ). There is a reduced
phase space path integral directly relating to the rigging inner product.

2. All the Dirac observables on ‘H Phys can be defined by the Dirac observables on
Hyred V1a
Pirsa: 09120114 OP-‘I'TE = WV(T) Orrd Vi T}-I Page 15/48



Theorem (answering conceptual & practical questions):

There is a path-integral formula for the rigging inner product (by skeletonization):
J*n;dr’(fiexp[fz;r‘f‘f] |f)
J I, (u| exp[:‘z, I’CT';I |m)

J-DPHWBP;DTI I'Im‘I Ij{PI 2 h,) t'I tr. ilf[LP.:”"r'”‘L anf"“l }{qa.:_ T:’ lf'{q','~ Tf}

(qu'fuqu{f‘ DP.IH-: =

J'ﬂpuwﬂp"mf nu 'j(F.I' + h;) Lf | % & I, putergin+X, PUnT'in) urlq‘; T: }wilf:' Tf]'

p !

Abelianized constraints FRCMERSuS S S
1. The path integral formally solves all the quantum Abelianized constraints:

nu(f)[f'ff'] =0
thus /lw is qualified as a rigging map (the conceptual question is answered).

2. All the gauge fixings are removed. The boundary states are kinematical states
(the practical question is answered).

The path-integral formula has a direct canonical interpretation as a physical inner
product, and can be used for practical computation.
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Application to the case of gravity coupling to 4 scalar fields:

The action: . f d&*x Videtg)l ¢%3,T 35T
r:u

The diffeomorphism and Hamiltonian constraint:

™ = C+C*= ™ l‘"de' D oo BT + LP
£ = €.+, %= P,;?ar‘
The Jacobian matrix: . =
- (] 7y . S !
d{C 'C: ] - { a Ydetg o yderg
a(Po. P;) a,T° 8,1

The constraints can be locally Abelianized

C* = P+h. h=mP* q*T)
C™” = Pi+h;. h; = h(P®.4*.T.

]

’ Zr(f. [") Local measure Time-gauge
Mol M) Py - I 4
Z'rif. fll = Dﬂijﬂl'f,DT’ l_[ I’V"':Vﬂ Txc |{l. T’.q“hl tj" (l'::) [‘lﬁf t’! A -l"Jir A
,f' l'l.-" "

g

"'fu-‘-.- Videt(g)l ¢ a.,raﬁr“f(,t:, r!) f(4..T'),

Pirsa: 09120114 l
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Application to the case of gravity coupling to 4 scalar fields:

s R _ffrJ 2l 25, T 35T
]

E

The diffeomorphism and Hamiltonian constraint:

c'i'ﬂf — C + CK{I - C'E ’

O = C.+T, €% = P;a;r’

The Jacobian matrix:

f

’ (] oot Py Fi
d{C 'Cf‘ ] = l -l a ydetg ]

d(Po. P;) a,T* 8,1’
The constraints can be locally Abelianized

™ = P+h h = P*®. ¢ T
C™ = Pi+h;, h; = h(P”.4".T.

]

’ Lyl ) Local measure Tlime-gauge
el M piys = 7 P I ?
Zr(f.f) = DAY D! DT' [_“'v‘ Ve Ixcle.T'.¢ &
It= =M

X exp

det
NP PPoT' AT +

-g J d*x Vldeug)l ga,T' a1’ ‘ f(4.7"), £ (Ae.T)
W f I

Pirsa: 09120114 e l
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Application to the case of gravity coupling to 4 scalar fields:

T o f &*x Videwg)l £%3,T 35T
1]

Slf.r[T ?,ur] e
.\‘:i

The diffeomorphism and Hamiltonian constraint:

det 1
RED LT AT + =

€' = C+E™, ™ l

CF = C+E2. €F = P;aar’

The Jacobian matrix: . -
’ (] iy . e J
LHC 'C:‘ ] = I a yYdetg o y‘l.i‘.'l'-!
d(Po. P;) 3,T°  3,T’

The constraints can be locally Abelianized

™ = P+h. h=mMP®.q*T)
C™ = Pi+hj, h; = h(P”.q2.T.

]

, Zrf. 1) Toskmmeme | T grge
ol M) phes
el f N0 )) ppy S one I ’
. I
Zr'f.fll = DAﬂ’Def,I)T' [—[ "VI"'V?l Jg(;lll. Tf.q"'hl 5 (l'::) [‘I_Ef t"t A -t"ir A (tF” - —F”)]
Ih= e M M Y

A mrj d*x Jidetwg) ¢, T 35T’ mf'(ri:,-‘r!]r
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Application to the case of gravity coupling to 4 scalar fields:

The o fd‘r det(g)| g“""ﬂ.,T*ﬂﬁrf
)

Sﬂ.l’.r[T g,ur] S
f-'l

The diffeomorphism and Hamiltonian constraint:

£ = £+, l

€ = i, €T = P;r'}aT’

The Jacobian matrix:

v Py P;

d l'ﬂ" (L e — ety
{C C:‘ ] - | @ ydetg @ ydetg
d(Po. P;) T’ 4,1

The constraints can be locally Abelianized

C™ = P+h. h=NP* q*T)
C™ = Pi+h;, b = h(P=.4".T.

' Zrif. I", Local measure Time-gzauge
(ﬂu‘j "qulfl}f’hﬂ Zr{m w) I T
Z‘ﬂf. fll = DA‘?DI‘ I)T’ I—[ I'VI 'Vhl th Iﬂ' TI l‘hl O (l'"
il = €M

xX¢

2. f d*x Jidewg)l g"a,T o1

det
9D a1 o -

mhfrnr"n(

f(a.1), (A1),

Pirsa: 09120114 I
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Operator constraint quantization, Master constraint
quantization and path integral

First-class constraints '; with structure function (no group structure) J

l

Abelianization C; ______, Master constraint (1-parameter group) |
(a group structure is obtained) | (M=3%, ,K1,CCy)

Group C Group _ Direct integral
SNCRgSS 1 T averaging /7] decomposition

l-[,.eﬁi ’Hg e Hﬂf _IH.M|

Skeletonization of group
averaging formula

v
Pirsa: 09120114 Page 27/48
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Application to the case of gravity coupling to 4 scalar fields:

The action: Sl g2 fd“r detig)l g3, T a,T!
F:u
The diffeomorphism and Hamiltonian constraint:
¢ a(det ‘H‘ | 5
£ = L+, £ \/_ \ g 0.T' opT" + =

" = C,+C% C* =pax

The Jacobian matrix:

e o _._P" —-—P.
g ‘=| e
d(Po. P;) a,Tr* 8,1’

The constraints can be locally Abelianized

™ = P+h h = MP*.¢*. T
C = Pi+hy. b = h(P”.4".7T)

. ZrlF. D Local measure Time-gauge
("u‘j “qh.l'lf'}Ph"l = - f I
Zriw., w) ?
- 1
Zrf. ) = DA, Del, DT’ Hl’V'Vﬂ TG I"- TI.Q"*I o' (e)) nhf e ae n(-F” - —F”}]
I+ - M 4

ll‘
‘ d* Videwg)| g0, T a,T"

x exp |-

f (AL, :r*) (AL T’)

l Page 28/48

Pirsa: 09120114




Operator constraint quantization, Master constraint

quantization and path integral

First-class constraints C’; with structure function (no group structure)

l

Abelianization {f'{ - Master constraint (1-parameter group)
(a group structure is obtained) | (M=3%, ,K1,CCy)
Group C Group . Direct integral
averaging | 7)c, averaging /7] decompasition

Qﬁi 1-:3 |m Hg" ﬁl HM}

b

Skeletonization of group
averaging formula

Pirsa: 09120114
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Recall that:

We consider a set of Abeleanized constraints C'; . We don’t lose any generality
because of Abeleanization theorem (all first-class constraint algebra can in
principle be locally Abeleanized i.e. C'; = R;;C,; suchthat {C;.C,;} =0).

We quantize the Abeleanized constraints C; to be anomaly-free self-adjoint
operators s.t. (C;.C;| =0

[f the number of the constraints N is finite, a regularized group averaging (RGA)
is defined via
For each state ¢ in a dense subset D of Hg,,. a linear functional r;}:']'{ v') in
the algebra dual of D can be defined such that Yo € D

s ‘\"' .x, - B ~

! 1 = = {lr y o t“”’”‘"f 'f“ﬂ i
nG (¢)[6] == lim Jj‘ HL“ r 11—[:'—1 ] | ) K

S J; 11, dtr ( II,_, e*"(Cr—)|Q) kin

where 2 € Hyin i1s a reference vector. Therefore we can define the group
averaging inner product on the linear space of n§ (v) via (5§ (¥)InG(0))a =
nG (v)[@]. The resulting Hilbert space is denoted by H§

Recall that this group averaging rigging inner product is related directly to the

Pirsa: 0913114 Page 30/48
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Master constraint approach:
1. We define a single master constraint M = 5", , K;,C;C;, with K;;a positive
definite constant matrix and C'; the Abeleanized constraints.
2. We quantize the master constraint to be a positive self-adjoint operator.
3. Aregularized group averaging (RGA) is defined in the same way:
For each state v» in the same dense subset D of Hg;,. a linear functional
ey (¥) in the algebra dual of D can be defined such that Yo € D

U( ) ‘- - f-{df {L.EEIHM—{WO) Kin
¥)[d] := lim = -
T (WIOL= 0 1L at (Q]e* ™M= |Q) x,

where () € H g, is the reference vector. Therefore we can define another trmup
averaging inner product on the linear space of 13 (v’) ua (S (V) nS! (0))a
Mo M (w) )l@|. The resultant Hilbert space is denoted by 'H

It is expected that the two prescriptions are consistent in certain sense. There are two
cases:

« For N <oc : Hy =HS

» For NV = oc : take the limit V — >¢ in a specific way to obtain the consistency.

When the consistency is established, the group averaging of the Master constraint
obtains the relations to both the reduced phase space quantization and path-

Pirsa: 09120114 Page 31/48
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A finite number of Abeleanized constraints

Theorem:

In the case that there is only a finite number of constraints. We suppose
r = 0 is not contained in the continuously singular spectrum and is not a limit
point in pure point spectrum. We also assume that there exists a neighborhood
No of ¥ = 0 such that each pe. 1s continuous at ¥ = 0 and is differentiable
on Ny — {¥ = 0}. With above assumptions. the group averaging Hilbert spaces
from these two approaches, HS and HY. are unitarily equivalent with each
other.
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An infinite number of Abeleanized constraints

" ‘l' -
; [ it y - et1{Cr—ep) -
The formula Mo~ (¥)[9] ;= lim Ja ITi— dts "'HI 1 € : |0) K
er—0 J"F. Hf 1‘“’! __IH :r;:(;—”].|ﬁ)h_m
is ill-defined when NV — o0 .

f dt ( ,iF:tIM—r][‘j)H'n
However " (¥)[0] = hfj;,f dt (Qlet ™M= |0 . is well-defined.

We define a truncated master constraint M, = Z K;;CiC; ( N < 0)
I.J=1
Theorem:
Suppose M x converges to M in the strong resolvent sense as N — oc. and
My satisfies the conditions of previous theorem. For any ¢. ¢ and © in a
dense domain D C H;,. there exists sequences {vx}n. {Uy}n and {Qx}x
with Imy_ . ¥n = ¥, Imy_. Li‘fv = ¢ and Imy_ Qx = Q such that

imy .o (G, ~(UN) 06, ~(¥N)) = (05 (¥)ng (¥))-

Remark:

We have obtained the consistency between the group averaging of Abeleanized constraints and
Master constraint. The group averaging of the Master constraint is (indirectly) linked to both the
reduced Phase space quantization and path-integral quantization via the operator constraint

Pirsa: 0912011 Page 33/48
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General Master constraint and path integral

Direct Integral Decomposition The rigging inner product with a

- -

rigging map and rigging inner

A path-integral expression for the |
product
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A general Master constraint

For a general Master constraint M = K/,

1. C'; are not the Abelianized constraints, but more conveniently, the original
constraints.

2. K may depend on the phase space coordinates.
3. But the group averaging can be defined since the constraint algebra is trivially a
Lie algebra.
For example, in LQG/AQG
G;iy Gy D v D, . H,
M Z - 7 - 2, 2 2 + H-1 H T
‘/]Il)."r Vlf Vl" vl,'" V‘!;-— Vj_."-..

veV(y)

« [Its group averaging loses the manifest (indirect) link with the reduced phase
space quantization and the reduced phase space path-integral.

* However there is another way to justify the group averaging, and there is
another way to directly obtain a path-integral formulation from the Master

constraint.
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Direct integral decomposition (DID)

(B. Dittrich and T. Thiemann in CQG23 (2006) 1025)

1. Given a kinematical Hilbert space H ki , and a self-adjoint constraint operator
(e.g. the Master constraint M = K/, ,C; first class)

2. We split the kinematical Hilbert space into three mutually orthogonal sectors

with respect to different spectral types Hy,,, = H"" = H* = H™
(where 7~ = {¥ € Hiin: pw = .U:;.} x € {pp.ac.cs}. pyp(B) = (¥, E(B)¥) )

3. The direct integral decomposition of each sector

—

H = / dp®(ANYHS. * € {pp.ac.cs}

4. The physical Hilbert space is defined by a direct sum of three fiber Hilbert spaces

M_ a0 -~ ac cs
H ‘“H.\=u O TEA=Q T TL)—9

Remark:

» DID is considered as a rigorous definition of the physical Hilbert space, and less
ambiguities than RAQ.

= H“"is often absent in physical models.

sz bdbhd Tequires full knowledge of the operator spectrum (e.g. step 2.), thus is.net
practical for complicated svstems




Regularized group averaging (RGA)

Given a kinematical Hilbert space H x ., and a self-adjoint constraint operator M
(e.g. the master constraint M = K'/C;C)
Definition:
For each state v’ in a dense subset D of Hxin. a linear functional u._;-':,"[t,'} in
the algebraic dual of D can be defined such that Yo € D

P ot ot INE— '
”_1”:!-'}5—0; L IHII _’:-E iit (U e’ { ) Q}h’iﬂ
Q o S / —
&8 f:-z dt (Q]et(M—<)|Q) .

where ) € Hy i, is called a reference vector. Therefore we can define a new
inner product on the linear space of ngy (¥7) via (5 (¥)|nd! (0))a = nd! (v)[a].
The resultant Hilbert space is denoted by HJ)

Remark:

» The proposal of group averaging requires less knowledge on the operator
spectrum than the programme of direct integral decomposition.

* The reason to introducing the regularization parameter € and take the limit after
the integration is to make a consistency relation between the group averaging
Hilbert space and the “ac”-sectors in physical Hilbert space from DID.
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Theorem: we suppose zero is not a limit point in o””(M) and ¢“*(M) = @ (which
relates the argument that there is no state without physical interpretation). In
addition. if we have anv one of the following conditions

1. there exists 4 > 0 such that each pfy (duj = phrd)) is continuous on the
closed interval [0, §].

2. there exists 4 > 0 such that each p
differentiable on the open interval (0.9).

s continmous at A = 0 and is

3. there exists 4 > 0 such that N is constant on the neighborhood |0, 8).

Then there exists a dense domain D in H g,,,. such that for some certain choices
of reference vector {2 the group averaging Hilbert space Hﬁ" is unitarily equiv-
alent to the absolute continuous sector of physical Hilbert space H{Z .

Remark:
* The regularization scheme selects the “ac”-spectrum exclusively.

* All the conditions in the theorem are satisfied in the physical models tested so far
(B. Dittrich and T. Thiemann in CQG23 (2006) 1067-1162).

a¥PP

\
QE
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A path-integral from Master constraint in LQG/AQG
The non-graph-changing Master constraint operator for LQG/AQG

M := Z (G2 6Py + B B P vy + AP ) AP w))
veViy)

s Ciamrss consirant

- vd = {;FII -

E Eln— }:: H.[.hﬂ!f.ln

[ - P |

e Spatial iffcomorpiusm constranm

yrs l iey. e, 03) . . | ; . ]
D'y = o= T ', s T tr'r A - A | -lhhl( Ale . b '.}.
Liv) — dv.er.exN _ : | ]

s Eochdean Hamsisonan constram (op 1o an overadl facton

- | Ay, .00
H, (¥ = — ». - - T T.r'

Eilv) i Liv. ey =0 —_—
#y Ty - T P

A - M

.iln!l.ilr.l 'Il'“

s [orentnan Hamitoman constramt (up 1o an overall factor)

Tivy = I S‘ !.il‘..d‘;.f-lﬂ{.“l’.{.uﬂl '.[H,]'.Il e

Elv) &

P

Rex| ey, |2 ¥)

— |

"% = B tvi+ Tivic

[ |

where the matrrx € 4[] 1= the adjoint representation of ¢ € G onthe Licslgebrag V =7, § ,H'J,' =Y, .."1"1 iv) amd
l

Eiv)

o Z . lf-.-l‘:.f'-'fl'i'lin-i"f:l _'l;""1 '-nr:l{.-’.nr:l A | .l-rr-.l{-l-.lr-r N hl

The Master constraint operator has correct semiclassical limit
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The semiclassical tool: complexifier coherent states (of Thiemann & Winkler)

-
On one edge: & (hie)) = |e 7 dy (hle))
ge

)

= [t'r"l":ﬂ'm,.“ﬂfﬂl

W (e)y—eie) iler—me)

= lej, + 1) g ledelier 2, (g:ﬂhtfl_')
Je

where g(e) is the complexified holonomy g(e) = e 7/“"//2h(e) € G- = T"G.

i - . I 2
Overcompleteness: f dgle) W' )5 _|=1. dg= denth!d"p+mr”1
G< 2
On a graph y: = -
i i.= [ o,
e<Ely)

For any polynomial of holonomies and fluxes
(%
For non-polynomial operators, on a cubic graph
(B, | VR |&,) = VIRIg]+oln)
(B M|3) = Mgl +o

Pol (l(e)ectirss 1P )leckr)

in_} = Pnl(lh"l’”r-:—.f;'tyh [F;":t'”-:—.f;'lyp) + eMl)
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Skeletonization of the group averaging with Master constraint operator

Suppose f. f* € ‘Hg;, have non-trivial excitations only on a finite number of edges.

_ =} dr P ..
(’ﬂfﬂ|‘?‘fl> = ll_lﬂ {—;: j:: o (f ‘ﬂP[EﬂM — f)l f)xm
]
K r—
( fllr+; {H | f)
Kin
e B i = I "T ] — 5 o, e —il.:.- — re
= f’dg\' "'dgldgﬂ (*n I+ {'J‘O"{“ €) ".b 4>£m (lﬁ"n i 1+ (;:"JV . €) ~£‘Iah. :)xm (*lt 4 {-'t_vl‘V{M E} wh)x“

“(f]9),. (%

where the measure dg = nd,,,d";ﬂﬂtﬂuﬂfr‘ + O(r™) up 1o an overall constant.

)

Kinm

Semiclassical property:

(u‘r' {, (M—f)l@'m l) = [I+ £
F Kin

| — €+ tF'(gi, 8-y })‘ (@LI&L MKin

! ]

Fluctuation will give the kinetic term
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We define
hk =¢€

A path integral expression of the matrix element (y is a finite cubic grap)

(f|exp[i1ﬂM - )| f)
K im

- [T [ ] 2 sabn -rrn 2t it Fgf (8o)
ecEiy) i=D P Pi Slllh[..;-j 1)

APe + Pr—1)
xnp{—l 5

O-T/2

4

(O — O 11——[1;?1—.01 )7+ (B —6y)’

| — €+ tF (g 8- li]}

[t might be interesting to derive a (highly interacting) hyper-cubic spin-foam model from
this path-integral.

Make the following approximations in order to have the classical action on the
exponential

We assume the fluctuation F* i1s small and negligible. It is a non-tnivial assumption for the property of the master

constraint operator M. i.e. we should design a certain operator ordening in the defimition of the self-adjoint master

constraint operator M., such that the fluctuation F' is small and negligible. For simple system like the ordinary free

quantum field theory, such an operator ordering i1s nothing but the normal ordering of the creanon and annmihilation

operator, which results in F* = (.

We only count the paths such that the second order terms (Ap)” and (A#)” on the exponential is negligible. Note
that the gyeriap function (Jr;_lﬁ;._l}ﬁ. is sharply peaked at the point g; = g;,; with width Vi Thusmp;;gegggﬁ ~ 1
and have to be neglected if we want to have a classical action on the exponential. It is consistent if we want to have



Finally we obtain a discretized path integral for the rigging inner product:
J‘_ dr (flcm“-zllf)xm
:—-{lf_,jf (nle.m\!—nln>

J-D“ nk |‘“P{ d“Izﬂﬂ';"m*“'(;F")Ic'”'_HI — +Z.~=uyt(‘\‘ Giy + N, D;, + N, H, )]} flgn)f(go)

J--?J]J nl le‘P{ = [ZrEEw:a'{p}fmi-ﬁ -~ AT, +Zn&\i‘r|("\! Giy + vt Dn + Ny i H, )]} Ogn)gp)

(MO Ng =

Dulg. A.N”.N]
= l_l l_[ d-h d pl Ill l_[ d“:\,‘.jd;.”‘-jth\"-_; Iil I_I Iﬂ]] I_[ ill’lhtpl -p' I Il[ -I-Ju | e :4.,' ;|
e€E(y) L i=0 k=1 veViy <Viv =) e '\Il'lhl.._;i 1)
I
local measure from the phase
space dependence of K
Remarks

1. In contrast to the reduced phase space continuum path integral, this path integral, derived
from the discrete setting, is defined on a cubulation.

2 By the disceteness, this path integral formula is a mathematical well-defined quantity,
similar to the spin-foam models (the pair (N, r ) labels the triangulation-dependence).

3. In contrast to the reduced phase space quantization, this approach suggests a direct link
from canonical LQG to a well-defined path-integral formulation (hopefully a spin-foam
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We define
hk = Eﬂi'”l

A path integral expression of the matrix element (y is a finite cubic grap)

I
(f‘ﬂP[EﬂM—E)] f')
Kin
divdp; simh(p)) T < - —
I | F e
e<Eiyy i=0 - pi k=1 o Tkk-1)
(Px+ picy)
xcxp{—: e :}——[lm pe1)’ + (6 —6i1) | —€+1F (g 81 n]}

[t might be interesting to derive a (highly interacting) hyper-cubic spin-foam model from
this path-integral.

Make the following approximations in order to have the classical action on the
exponential

We assume the fluctuation F* 1s small and negligible. It is a non-tnivial assumption for the property of the master

constraint operator M. i.e. we should design a certain operator ordering in the defimition of the self-adjoint master

constraint operator M., such that the fluctuation F' is small and negligible. For simple system like the ordinary free

quantum field theory, such an operator ordering i1s nothing but the normal ordering of the creaton and annihilation

operator, which results in F* = ().

We only count the paths such that the second order terms (Ap)* and (A#)* on the exponential is negligible. Note
that the gyeriap function {ﬁ_lﬁ;_l}ﬁ. is sharply peaked at the point g; = g;_; with width Vi Thus (Ap)_ (N ~ 1
and have to be neglected if we want to have a classical action on the exponential. It is consistent if we want to have



Finally we obtain a discretized path integral for the rigging inner product:
J: dr (f|(‘!t“-“|f)km
(—-{'FJ_:df ( |E¢ﬂ“—flln)

(MO f N =

J-DH [_I.t |":lp{ — [Z{‘E!TIH.(PMIH;_"[ tr‘&Tk +Z|‘¢H}f](A‘ Gn +1\‘" Dn "!"Nr_kH )]} f‘fﬂf ‘Eﬂl

J-Dﬂ n:[:; EIP{ _?_-*"- [ZrEEijrl ﬂ'{P}t %*&Tk + Z:El’{jn (ﬁ:.'kGr'.r + -’V:.jDi_r - Nerr)” QS'N ﬂgﬂl

Dyulg. A.N*.N]
= l_l l—[dhd Pi Ill l—[ FEALEN, (AN, 4 ﬁ I—[ lﬂ'al I—[imh:p, -;,.,ll[ Thk-| ,‘L :
e€Eiy) | =0 k=1 veViy) k=1 veVi = - 5 "'lnh'-i..k 1)
1
local measure from the phase
space dependence of K
Remarks

1. In contrast to the reduced phase space continuum path integral, this path integral, derived
from the discrete setting, is defined on a cubulation.

2 By the disceteness, this path integral formula is a mathematical well-defined quantity,
similar to the spin-foam models (the pair (N, 7 ) labels the triangulation-dependence).
3. In contrast to the reduced phase space quantization, this approach suggests a direct link

from canonical LQG to a well-defined path-integral formulation (hopefully a spin-foam
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Summary and Outlook

» Reduced phase space -, operator constraint -, and Master constraint quantizations and their
relations suggest a direct link relating canonical quantization to a path-integral formulation
for a general constrained system.

* (Reduced phase space and operator constraint quantizations) - (a formal path-integral on
the continuum) = (choose a triangulation) = (a certain spin-foam model, directlv linking to
the canonical physical inner product)

* (Non-graph-changing Master constraint quantization) = (a discrete path integral
expression of the physical inner product, which is a mathematical well-defined quantity)

» The analysis for the spin-foam vertex consistent with the canonical theory is a research in
progress.

» The graph-changing Master constraint quantization might hopefully relate canonical LQG (a
background independent non-Abelian gauge theory) with a certain GFT directly, which isa
(1) both theories are triangulation independent
(2) both theories describe the interactions between spin-network vertices

- riszPigeege]ation between non-Abelian gauge theorv and GFT might be universal. Page 46/48



Thanks !
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Summary and Outlook

* Reduced phase space -, operator constraint -, and Master constraint quantizations and their
relations suggest a direct link relating canonical quantization to a path-integral formulation
for a general constrained system.

* (Reduced phase space and operator constraint quantizations) =2 (a formal path-integral on
the continuum) = (choose a triangulation) = (a certain spin-foam model, directlv linking to
the canonical physical inner product)

* (Non-graph-changing Master constraint quantization) 2 (a discrete path integral
expression of the phvsical inner product, which is a mathematical well-defined quantity)

» The analysis for the spin-foam vertex consistent with the canonical theory is a research in
progress.

» The graph-changing Master constraint quantization might hopefully relate canonical LQG (a
background independent non-Abelian gauge theory) with a certain GFT directly, whichisa
future research project.

(1) both theories are triangulation independent
(2) both theories describe the interactions between spin-network vertices

- riszPigege]ation between non-Abelian gauge theorv and GFT might be universal. Page 48/48



