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Abstract: In quantum field theory it is possible to create negative local energy densities. This would violate the Generalized Second Law (GSL)
unless there is some sort of energy condition requiring the negative energy to be counterbalanced by positive energy. TO explore what this energy
condition is, | will assume that the GSL holds in semiclassical gravity for al future causal horizons. From CPT symmetry it follows that the
time-reverse of the GSL, properly understood, holds for all past causal horizons. These two conditions together then imply that the Averaged Null
Energy Condition (ANEC) holds on any null line, i.e. a complete achronal lightlike null geodesic. In curved spacetimes, the ANEC can be violated
on genera geodesics. But even if the ANEC only holds on null lines, theorems by Sorkin, Penrose and Woolgar, and by Graham and Olum imply
that semiclassical gravity should satisfy positivity of energy, topological censorship, and should not admit closed timelike curves. These results can
thus be seen as consequences of the GSL. However, these theorems don't apply when gravitationa fluctuations are taken into account. In that case,
the GSL argument suggests a modification to the ANEC which may make these theorems applicable to perturbative quantum gravity.
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based on:

“Proving the Achronal Averaged Null Energy Condition
from the Generalized Second Law™, arXiv:0910.5751




Qutline of Talk

Motivating the achronal Averaged Null Energy Condition (ANEC)
Defining the Generalized Second Law (GSL)
Proving the achronal ANEC from the GSL

Taking gravitational fluctuations into account




Why we would like to believe in the
Average Null Energy Condition




Suppose e access to arbitrary negative energies.
Generalized Second Law (GSL) is easy.

Then ,1olat g

Just s ndln marter *h] h contains

enough N E EN
and the area fF” shnnk vithout any

compensating increase of entropy outside

have
the G

Hawking radiation also has
negative energy but it is associated

with outgoing entropy.
Other forms of negative energy

also exist in QFT—e.q.
maoving mirrors/squeszed states.

What energy condition is required for black hole thermodynamics?




The Averaged Null Energy Condition (ANEC)

A / T, kkPd\ > 0

‘ 4 __a cov ariantly constant tangent vector

,\ —an affine parameter

energy over an entire null

‘ The integral of the null-null
geadesic must be nonnegative.

In Minkawski space, praven for:
1"' free scalars in n dimensions by Klinkhammer (1991)
2) free electromagnetism in 4 dimensions by Fr*lacr*i "1992'?
3) all thecries with a mass gap in 2 dimensions by Verch (2000)




But the ANEC does NOT hold generally in curved spacetimes.

Two counterexamples:

1. Compactity a dimension )
LR S N Boubware state of black hole. obtamed

bv removing all Hawkine quanta

Casinur effect can make
the null energy 1n the compact Everv null zeodesic on tlus
diwrection negatre spacefime violates the ANEC

Null ray goes round and round State not regular on horizon. but shouldn't
mafter for null zeodesics outside

shown by G Elmkhammer ( 1991 )
shown by ML Visszer (1996)

Both these examples have in common that the null geodesic is chronal




Null Lines

A chronal null geodesic is one which has a timelike curve
connecting two of its points.

On a typical curved spacetime,
most geodesics will be chronal.

An achronal null geodesic is one that is not chronal,
l.e. It goes “faster’ than any timelike curve.
A null line is a compliete achronal null geodesic.

Graham and Olum (2007) proposed that the ANEC should
hold on null lines for any self-consistent semiclassical state.

| will show this is true perturbatively about a dozen slides from now.
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Null Lines

A chronal null geodesic is ane which has a timelike curve
connecting two of its points.

On a typical curved spacetime,
most geodesics will be chronal.

f ronal null geodesic is one that is r‘uot chronal.
0es faster” than any timelike curv
ne is a complete achronal null g...:ideaic.

Graham and Olum (2007) proposed that the ANEC should
hold on null lines for any self-consistent semiclassical state.

| will show this is true perturbatively about a dozen slides from now.




Several pathologies require generic null lines to exist

Assume that spacetime 1= asvmptotically flat and null geodesically
complete m the relevant regions. Then spacetimes with

Traversable wormholes.

or negatrre ADN mass

all generically have a ~fastest possible™ hight curve whach goes through the

wormhole timelike loop negative energy & which 1= theretore a null ine

BUT. by the focusing thorem of Borde (1987). any null geodesic satisfying the ANEC
and the “generic condition” must have conjugate points. and thus is NOT a fastest
passible light curve and NOT a null line.

Graham and Olum (2007)
So the “achronal ANEC™ rules these out. Penrose. Sorkin. and Woalgar {1993)




What does the GSL really say?




A future “causal horizon™ means the boundary of the past of any future-infinite
worldline {shown in GREEN): i.e. an “observer’.

al Jiacx hole Je Sitter anti-ce Sitter

“Black hole thermodynamics™ isn't just about black holes!

See Jacobson (1999) for review and discussion.
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CAUSAL HORIZONS

A future “causal horizon™ means the boundary of the past of any future-infinite
warldline {shown in GREEN): i.e. an “observer’.

asvmp. fiat biack hole e Sitter anti-ce Sitter

“Black hole thermodynamics” isn't just about black holes!

See Jacobson (1999) for review and discussion.




What does the GSL really say?




A future “causal horizon™ means the boundary of the past of any future-infinite
warldline {shown in GREEN): i.e. an “observer’.

e Siter anti-ce Sitter

“Black hole thermadynamics” isn't just about black hales!

See Jacobson (1399) for review and discussion.




TIME EVOLUTION

By time evolution | mean

an arbitrarily wiggly way
of pushing a time slice
forward in time along
the harizon.




THE QUTSIDE ENTROPY

) A

e LN

At 4G h

By entropy “outside” the horizon | mean the von Neumann entropy
of the spatial slice restricted to the observer's side of the horizon:

Seue = —trip In p)

EXCEPT that this quantity is actually ill-defined due to the divergent
ultraviolet entanglement entropy due to quantum fields.

For now let's just pretend we have
| : - a well-defined renormalization scheme:
outside __ inside 'll come back to this later.




THE AREA TERM

a. -4

F v g T 'H.--:i' E'
r.l',i': Hr(-‘

Von Neumann entropy .'?'”m IS a c-number,
area should also be a c-number.

— : / A\
Should use the expectation value of the area A /

as argued by Sorkin & Sudarsky (1999).

Advantages:
1. Don't have to worry about area fluctuations.
as argued by Sorkin and Sudarsky (1999).
2. Can use the expectation value of the true Einstein equation
™ _( irr ir-l-_-'_. -— .!I:T-|}._- i o ]- -—-} .lr-' [} !4]
instead of the semiclassical Einstein equation
37G(T) = Ry — (1/2)gs R




THE OUTSIDE ENTROPY
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By entropy “outside” the horizon | mean the von Neumann entropy
of the spatial slice restricted to the observer's side of the horizon:
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| : o a well-defined renormalization scheme:
outside , inside 'll come back to this later.




THE AREA TERM
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THE AREA TERM

a ., A
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Von Neumann entropy .“:'-'”m IS a c-number,
area should also be a c-number.

Should use the expectation value of the area i._, A ._}

as argued by Sorkin & Sudarsky (1999).

Advantages:
1. Don't have to worry about area fluctuations.
as argued by Sorkin and Sudarsky {1999).
2. Can use the expectation value of the true Einstein equation
SauG{(1a) = (Bap — (1/2)gan R
instead of the semiclassical Einstein equation
STG(L ) = Koy — (1/2)g R




The Anti-GSL

eralized entropy of future causal horizons cannaot decrease,

* CPT symmetry (C and P are irrelevant)

* Generalized entropy of past causal horizons cannot /incre
(e.g. white holes)

Huh? Isn't the whole point of the Second Law of Thermodynamics

that it only holds in one direction?
Unlike the ardinary secaond law, the GSL is a time asymmetric statement.
The only form of coarse graining is the restriction to outside the harizon.

With no harizons. the fine-grained entropy neither increases nor decreases.

“Objective” coarse graining argued for in Sorkin (2005).

Thus it is not a contradiction to assume the anti-GSL.
If the GSL is always true, so is the ant-GSL.




THE AREA TERM

() A

—— + S0 ) horizon = 0
f.-".": i{r}'f

Von Neumann entropy -5',,1” IS a c-number,
area should also be a c-number.

Should use the expectation value of the area { A )

as argued by Sorkin & Sudarsky (1999).

Advantages:
1. Don't have to worry about area fluctuations.
as argued by Sorkin and Sudarsky (1999).
. Can use the expectation value of the true Einstein equation
S TH jr._,_,_ = jJ} —(1/2 r_,,’..llfil:I
instead of the semiclassical Einstein equation
ItG(Lay) = Ky — (1/2)gup 12




The Anti-GSL

* Generalized entropy of future causal horizons cannot decrease,

* CPT symmetry (C and P are irrelevant)

(e.g. white holes)
Huh? Isn't the whole point of the Second Law of Thermodynamics
that it only holds in one direction?
Unlike the aordinary second law, the GSL is a time asymmetric statement.
The only form of coarse graining is the restriction to outside the harizan.

With no horizons. the fine-grained entropy neither increases nor decreases.

“Objective” coarse graining argued for in Sorkin (2005).

Thus it is not a contradiction to assume the anti-GSL.
If the GSL is always true, so is the anti-GSL.




The GSL and anti-GSL
imply the Achronal ANEC

(semiclassically)




Gravitational Perturbation Theory

Do an expansioninh. SetG=c=1.

E*paﬂd metric as Jab = oy + Gup + Gip + O(R
& impose the Emstem —quatlon or:]er t:t; order.

B

background null line N

perturbed

* Zeroth order metric 15 some classical backzround mefric with a null line

Assume the backeround obevs the null curature conditton R, A7k

* Half order mefric pertwrbation comes from graviton fluctuations
Ignored senuclassically. Justified only with large number of species

* First order metric represents aravitational effects of quantum fields
on the classical background. Assume thus 12 a small pertwrbation




The GSL and anti-GSL
imply the Achronal ANEC

(semiclassically)




Gravitational Perturbation Theory

Do an expansioninh. SetG=c=1.

Expand metric as 9u = 9, = ot L OHR
& impaose the Emst—m —quatlon ordcr t:,: order.

background

* Zeroth order mefric 1s some classical background metric with a null lin

Asgume the backaround obevs the null curvature condition R/, A“ L

* Half order metric perturbation comes from graviton fluctuations
Ignored senuclassically. Justified only with large number of species

* First order mefric represents aravitational effectz of quantum fields
on the classical background. Assume flus 1= a small perturbation




The Classical Background

Every null geodesic generates a past and a future horizon by thinking of the null
geodesic itself as an “observer—same horizon seen by accelerating cbservers.

N is achronal so it lies on its past and future horizons

The past and future horizons coincide and are stationary
(i.e. no expansion or shear)
on any background satisfying the null energy candition
& a farm of cosmic censorship (Galloway 2000)




Perturbed Spacetime

Past and future harizons split at first order in A

asymptotic observers
unaffected by
sufficiently local
perturbation

metric perturbation
anly affects
Bekenstein-Hawking
perturbed /1 term due tothe / in
metric s ! the denominator
fl s

properties of quantum fields on background




causal diagram of the proof

P ast honizon externior

Fl
A

_-_-rr;-;"_l

tuture horizon exterior

diffeomorphism ambiguities from identifying perturbed/background
manifolds are higher order in /

GSL:

anti-GSL: -5,
(follows from
strong subadditivity)

. which implies fan = pas




Perturbed Spacetime

Past and future harizons split at first arder in A

asymptotic observers
unaffected by
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perturbation
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causal diagram of the proof

past honzon extenor

-’/z

tuture honzon exterior

diffeomorphism ambiguities from identifying perturbed/background
manifolds are higher order in j

GSL: S+ As/4h = 5, + A, /4h

antiGSL: —=-S5;— A, /4h > —55 — A3 /4h
(follows from
strong subadditivity)




Perturbed Spacetime

Past and future horizons split at first order in 7

asymptotic observers
unaffected by
sufficiently local
perturbation

metric perturbation
anly affects
Bekenstein-Hawking
perturbed I term due to the 7 in
metric . N the denominator

properties of quantum fields on background




causal diagram of the proof

past honzon externior

/z

tuture honzon exterior

diffeomorphism ambiguities from identifying perturbed/background
manifolds are higher order in j

GSL: So +Ax /40 > 5 + 44

ant-GSL: -5, — A,;/4h >

weak monotonicity: §, + (follows from

strong subadditivity)

Therefore 4> — A; > Ay — A3, which implies s > pas




So at any point X on the null line,
the first order perturbation to the metric satisfies:

1 dA

A dA

B . > = g

A
using appropriate boundary conditions for the horizons:

H‘:'__ ~ — Hltl.__‘__

and obtain

proving the ANEC holds on the null line.




causal diagram of the proof

past honizon exterior
other

/z

tuture honzon exterior

diffeomorphism ambiguities from identifying perturbed/background
manifolds are higher order in /,

22 g
ant-GSL: —

(follows from
strong subadditivity)

. which implies Fan = Opas




So at any point X an the null line,
the first order perturbation to the metric satisfies:

.. > FH

L=t

Integrate the linearized Raychaudhuri equation

using appropriate boundary conditions for the horizons:
B — @

2 sl

and obtain

proving the ANEC holds on the null line.




Gravitational Fluctuations




Limitations of the preceding result

1. Renormalization of S,,,; has been ignored. Renormalization OK if

A) regulated states *:atlsﬁ weak monotonicity, and
B) the divergences must be associated with connected companents
of region boundaries. equal on both sides of the boundary.

. Requires minimal coupling to Einstein gravity, or extra terms in
a) Einstein’s equation,
b the hoarizon entropy, & passibly
¢c) the ANEC integral itself.

3. Gravitational fluctuations neglected. But these can be important
it e.g. a black hole Hawking radiates gravitons.




What happens when gravitons are included?

Raychaudhuri equation:

L

f Il'r ; "u,

shear tensor gives rate at which circle deforms into ellipse
with respect to first order change in )\

When thc gravitons are quantized. . is order 4!/~
so o0 is order h (67 is still Hcg|[dlb|5*

Renormalized o,,0"" can be negative
Candelas & Sciama (1977).

Borde's focussing result doesn't apply! To use focusing to prove theorems. need

d\ > () in generic states.




Can this shear-inclusive ANEC be proven by the same method?

Same argument gives Zrur = Fpas
but now integrating Rajchaudhum gives

To get the shear-inclusive ANEC, need to assume 7
holds at /" - order.

True for nonextremal black holes/pp-wave spacetimes. General proof?

X 1
This gives /  §e o b0 ) dA > 0 shear-inclusive ANEC

ST

b

Inequality should only be saturated when GSL itself is saturated—not generic.
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To get the shear-inclusive ANEC. need toc assume 7
holds at /" - order.
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Conclusions

1. If the GSL 1s true (and CPT,
cosmic censorship, etc., then the ANEC
holds on null lines perturbatively.

2. Thus the GSL prohibits negative mass objects,
traversable wormholes and closed timelike curves.

3. In order to be useful as an energy condition,
a shear-squared term must be added to the ANEC
when gravitational fluctuations are considered.

4. The GSL has not yet been proven semiclassically for rapidly-
changing semiclassical perturbations. Not clear whether
we must assume the achronal ANEC to prove the GSL,
or if we can prove both of them together.
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Gravitational Perturbation Theory

Do an expansioninh. SetG=c=1.
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Perturbed Spacetime

Past and future horizons split at first order in A

asymptotic observers
unaffected by
sufficiently local
perturbation

metric perturbation
only affects
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