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My belief

Holography is one of the fundamental
properties of quantum gravity

It is a good strategy to constrain
candidates of quantum gravity

from holography




Objective

« Show gravity dual of Polchinski's theorem
In string/M-theory

» Discuss consistency/constraint of quantum
gravity from holography

 String Landscape/ Swampland

— Bad examples: spontaneous Lorentz
symmetry breaking, ghost condensation




Theorem (Polchinskil): the scale invariant

theory is conformal (in 1+1 dimension)

I Gravity dual

Scale inv field configuration =
automatically conformal inv (AdS isometry)




Gravy dual of
Polchinskr's theorem




Theorem (Polchinski, 1988):
the scale invariant theory is
conformal (in 1+1 dimension)
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Scale inv vs conformal inv

« Scale invariance I i
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— trace of EM tensor is total derivative

o
TH = 9*A,

» Special conformal invariance
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Theorem (Polchinski):
the scale invariant theory is
conformal (in 1+1 dimension)
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1. Tensor structure is simple
2. C-theorem
3. No counterexample in higher dim




Field theory proof
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Gravity counterpart

Scale inv geometry = conformal inv (AdS)

Consider string/M-theory compactification

The following discussion applies to string
theory as well....
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Gravity counterpart

Scale inv geometry = conformal inv (AdS)

Consider string/M-theory compactification

The following discussion applies to string
theory as well....




Conjecture

Most general scale inv configuration:
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Proof
We impose gauge condition h; (&) = f(£)9;A(€)
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Conjecture

Most general scale inv configuration:
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Conjecture

Most general scale inv configuration:
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Proof

We impose gauge condition h;(&) = f(£)9;A(€)
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Conjecture

Most general scale inv configuration:
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Proof

We impose gauge condition h;(&) = f(£)9;A(€)
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More generally

Nontrivial h gives additional terms:
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Null energy condition gives positive definite in
LHS...but non-trivial h can compensate.

Effective violation of null-energy condition?

—Most probably EOM for flux + other Einstein
equations makes it vanish...

Should be true at least in (1+2) d.
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More generally

Nontrivial h gives additional terms:
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Conjecture

Most general scale inv configuration:
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Proof

We impose gauge condition h; (&) = f(£)9;A(€)
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More generally

Nontrivial h gives additional terms:
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Null energy condition gives positive definite in
LHS...but non-trivial h can compensate.

Effective violation of null-energy condition?

—Most probably EOM for flux + other Einstein
equations makes it vanish...

Should be true at least in (1+2) d.




Comments

» Similar evidence can be presented in
string theory (or any gravity theory
with null/weaker energy condition)

* Does not depend on the dimension

— Polchinski's theorem was only
proved in 1+1 d.

(but no counterexamples...)
» Suggests higher dim generalization?
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Comments

» Similar evidence can be presented in
string theory (or any gravity theory
with null/weaker energy condition)

* Does not depend on the dimension

— Polchinski’'s theorem was only
proved in 1+1 d.

(but no counterexamples...)
» Suggests higher dim generalization?




Forbidden Landscape




Comments

» Similar evidence can be presented in
string theory (or any gravity theory
with null/weaker energy condition)

* Does not depend on the dimension

— Polchinski's theorem was only
proved in 1+1 d.

(but no counterexamples...)
» Suggests higher dim generalization?




Forbidden Landscape




So far so good

Question: is effective field
theory consistent as
quantum gravity?




Spontaneous Lorentz Symmetry
breaking model
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« EOM is solved by AdS; and the vector

condensation
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* EM tensor is proportional to g,/




This solution Is bad...
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« Scale Invariant but not conformal invariant
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S0
spontaneous Lorentz symmetry

breaking based on the action
is forbidden
In any consistent quantum theories
of gravity




Ghost condensation model

« EOM is solved by AdS; and the scalar
condensation

o — clog z

* EM tensor is proportional to g,/




Again the solution Is bad...

e o(x)~ o(x)+ A so that scale invis OK

* These scale inv but non-conformal
fleld configurations are forbidden in
quantum gravity (in 1+2D)




Ghost condensation model

« EOM is solved by AdS; and the scalar
condensation

o= clog z

 EM tensor is proportional to g,/




Ghost condensation model

« EOM is solved by AdS; and the scalar
condensation
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+ EM tensor is proportional to g,/




Again the solution Is bad...

¢ = clog z

e o(x)~ o(x)+ A so that scale inv is OK

* These scale inv but non-conformal
fleld configurations are forbidden in
quantum gravity (in 1+2D)




S0,
the ghost condensation

based on the action
is forbidden
In any consistent quantum theories
of gravity




Higher dimension

» My discussions do not depend on any
dimensionality!

» But Polchinski's theorem is only
proved in (1+1) dimension

* Though no counterexamples in higher
dimension

* To be investigated!




Again the solution is bad...

¢ = clog z

e o(x)~ o(x)+ A so that scale invis OK

* These scale inv but non-conformal
fleld configurations are forbidden in
quantum gravity (in 1+2D)




Ghost condensation model

« EOM is solved by AdS; and the scalar
condensation
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This solution Is bad...
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Higher dimension

* My discussions do not depend on any
dimensionality!

» But Polchinski’'s theorem is only
proved in (1+1) dimension

* Though no counterexamples in higher
dimension

* To be investigated!
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S0,
the ghost condensation

based on the action

In any consistent quantum theories
of gravity




Again the solution Is bad...

¢ = clog z

e o(x)~ o(x)+ A so that scale inv is OK

» These scale inv but non-conformal
fleld configurations are forbidden in
quantum gravity (in 1+2D)




This solution Is bad...
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2

\ ¢ b 2
0r, = 2x,(€ xp) — (27 + 7)€,

gn—2ele x|




So,
spontaneous Lorentz symmetry

breaking based on the action
IS forbidder
In any consistent quantum theories
of gravity




Higher dimension

» My discussions do not depend on any
dimensionality!

» But Polchinski’'s theorem is only
proved in (1+1) dimension

* Though no counterexamples in higher
dimension

* To be investigated!




Comparison to c-theorem

Recall the proof of c-theorem and Pochinski's
theorem is almost identical in (1+1) dim.

Both gravity dual can be proved in any
dimension

Null (weaker) energy condition should be
assumed.

My proof is as good as theirs;)
Deeper relation between them?7?
Counter examples??




Higher dimension

* My discussions do not depend on any
dimensionality!

» But Polchinski’'s theorem is only
proved in (1+1) dimension

* Though no counterexamples in higher
dimension

* To be investigated!




Comparison to c-theorem

Recall the proof of c-theorem and Pochinski's
theorem is almost identical in (1+1) dim.

Both gravity dual can be proved in any
dimension

Null (weaker) energy condition should be
assumed.

My proof is as good as theirs;)
Deeper relation between them?7?
Counter examples??




Thank you!




Ghost condensation model

« EOM is solved by AdS; and the scalar
condensation

o= clogz

* EM tensor is proportional to g,




Again the solution Is bad...

e o(x)~ o(xz)+ A so that scale invis OK

» These scale inv but non-conformal
fleld configurations are forbidden in
quantum gravity (in 1+2D)
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« EOM is solved by AdS; and the scalar
condensation
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Ghost condensation model
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This solution Is bad...
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Spontaneous Lorentz Symmetry
breaking model
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So far so good

Question: is effective field
theory consistent as
quantum gravity?




