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Motivation and Basic Idea

+ Cosmic strings can be produced in phase transitions in the early universe
# Their density scale to the dominant fluid in the universe
+ Many observational probes and they have a rich phenomenology!

@ generically produced but in many models, particularly in string theory, they are
often unstable ---> different possibilities, here we will look at breakage.

Q. Can we observe today the remnants of
a decay of an unstable network of strings?
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Typical example: Break a U(1) symmetry -> vortices (cosmic strings)

Vortices In
superfluid
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Instability to breakage

Local U(1) string

The string
can break on
monopoles

Breakage is a
tunneling event
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no long range axion force,
no detectable charge at infinity
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Standard GUT Scenario/Hybrid defects
G—-HxU(l) - H

monopola monopoles’ flux
i}
—o= = :

BN - £

So we can break on monopoles if U(1) is
embedded in a bigger gauge group in
the UV completed theory
P om0 Langacker-&-+



Inflationary Scenario, long lived network

@ |f inflation occurs below the GUT scale then monopoles are diluted away

G—-HxU(l)— H

monopoles monopoles’ flux
produced
\\L/ _~ Inflation
“/IN>
—_———

m2 For a network with Gu~10-7, we
need, k>84 for t- > to.

1
N — t* R
Iz VT Som=10u"?is a
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Cosmic Strings are a potent
source of GW. (stochastic and
bursts)

GW bursts

Sharp step in time domain,
mean long tail in frequency
domain

advanced LIGO

frico ~ 100Hz
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Inflationary Scenario, long lived network
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Cosmic Strings are a potent
source of GW. (stochastic and

bursts)

GW bursts

Sharp step in time domain,
mean long tail in frequency
domain

advanced LIGO

frico ~ 100Hz
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Stochastic Background

unresolved bursts
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Power Radiated--- Flat Spectrum
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Power per log interval
AG 12 (nPr) is quasi constant
S E flat spectrum!

P ZP ~ 8Gu* In g nearly independent of
oooooooooooooo mass












Rate of Bursts

Let n(l,t)dl be the number density of segment of
length | at time t. (length is max length = E/p)

There is one burst 1
per oscillation, T~ v(l,t)dl ~ Zn(l, t)dl

; : 1
Beaming fraction = A(.f.2) ~ ;a0 - DO +2)f1-1)

= ~ Ho (1+2)"ov(2)v(l,.2)A( . 2)
'"' \
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Rate of Bursts

Let n(l,t)dl be the number density of segment of
length | at time t. (length is max length = E/p)

There is one burst 1
per oscillation, T~ v(l,t)dl ~ T”l(l t)dl

: - 1
Beaming fraction = A(.f.2) ~ a7 ®0e —1)O((1+2)f1 - 1)

~ H;3(1+2) tov(2)v(l, 2)A, f, 2)
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Summary of properties of the gravitational radiation

®The power radiated is approximately independent of the
length of the segment

#®The power radiated is approximately independent of the mass
of the bead

#The radiation is scale invariant for < fi "“5

@strong 1/f burst
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#Basic idea. We form the network with some initial density of
cosmic strings, it reaches the scaling solution quickly.
Segment starts decaying right away but their average length
Is greater than Hubble horizon.

@At t=t", the typical segment length becomes sub-horizon, the
strings start oscillating, emits GW, no more scaling.

@®At t=t™, the network is gone into radiation.

Let n(l,t)dl be the number density of segment of
length | at time t. (length is max length = E/p)

/ n(l,t)uldl = p.s

J ()
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Simplistic derivation P(l,t)dl = [zt exp(—T2lt)dl

n(l.t)dl = P(l, t)dl—PeD)
(AT)ke—AT> GOd =P =pw rar

Pi(A) =

s n(l.t)dl = I'5exp (—ItTs)dl
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#Basic idea. We form the network with some initial density of
cosmic strings, it reaches the scaling solution quickly.
Segment starts decaying right away but their average length
Is greater than Hubble horizon.

@At t=t", the typical segment length becomes sub-horizon, the
strings start oscillating, emits GW, no more scaling.

@At t=t™*, the network is gone into radiation.

Let n(l,t)dl be the number density of segment of
length | at time t. (length is max length = E/p)

/ n(l, t)uldl = pcs
0
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Simpilistic derivation P(l,t)dl = T'at exp(—T2lt)dl

n(L.t)ydl = P(l, t)dl——Pe=)
(AT5)*eA4T: God =P =pw oyurar

" n(l.t)dl = T'5exp (—Itls)dl

Pi(A) =

7
Pes (t) s t_g'
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The real thing, solving the Boltzmann Equation

on(l,t) d /- a
| | (In(l.t)) 3=n(l,t) + g
ot ol a I
loss/gain of length production/annihilation
of an individual segment of new string
We can characterize explicit terms within g as being one of three
lypes: loop producing, segment intercommutation, and segment breaking.
— Gloop + Gic T Joreak
if g=0, p~1/a? and strings dominate
if goreak = O, we should reach scaling
So we can infer the effects of loops and [ = lg+ hoop
"rifftEfCommutation by requiring scaling 21 Page 44/01

= 3HI— — (scaling solution)



Geadl = I3 (2 / n(l’, t)dl —ln(l.t)) dl
[

The breakage rate of strings of length | is 'z |, which explains
the last term. The first term can be understood by considering
the process by which n(l.t)dl increases.This is entirely due to
longer strings, those of length I' > |. The rate at which longer
strings break to produce those of length between | and | + dl
is given by the number of longer strings present (hence the
integral), and the measure of string where a break yields a
shorter string of length between | and | + dl, i.e. 2dl.

So we obtain an integro-differential equation

on(lt) D[y A\ 0]
S [(3Hl t)n(l.t)] 3Hn(l.t) + goreax
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*When the strings become sub-Hubble (t*), they start oscillating.

@Is loop production still strong enough to ensure scaling?? We will assume not
but this should be checked (the answer does not change much). As the
strings get shorter they actually start behaving like matter (which increase
their density in the rad era)

* They start radiating bursts and losing energy to GW

P ~ 81n(70)Gp” lgw ~ —81n(70)G

I'he string oscillate until some t™ where the
whole network is gone to GW radiation

tee = t./\/8ImyGp = 1/v/8Im~Il2Gu
note that lighter string will oscillate longer and produce a lot more bursts!!

*xpl——r“' f" } t* <L E< tgyg@l
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Bursts LIGO
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Most of the signal
comes from z*
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Advanced LIGO
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Bursts LIGO

Most of the signal
comes from z*

Log,,Gu
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0 20 20 60 80 100

Because of the non-
Q,. x (Gu)3* scaling between t* and t**
get more radiation-==-



Spectrum at LIGO frequency
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Because of the non-
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get more radiation-=-



Spectrum at LIGO frequency
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TenTTr

Spectrum at Pulsar Timing frequency
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Conclusion

#*BBN constraints give a model independent constraint on
cosmic strings, whether meta-stable or stable (for any bead

== Gu <107°

#®The remaining observables depend upon the degree to
which cosmic strings are stable. Theories of cosmic strings
can only rarely claim the strings to be absolutely stable.We

find interesting phenomenology for meta-stable strings with
bead mass within the range

—

e

1()() .

s M
[
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a stochastic background is detectable by

For bead mass range Advanced LIGO for tensions

40 < m*/p < 80 Gu > 10~

a burst signal detectable by Advanced LIGO

70 <m~/pu < 80 Cu>lo"™
#High Frequencies. dilaton? KK modes emission?

'hing to do  *®study of domain wall/string network (the other
instability)
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®Analyze the data to search for a 1/f burst.






