Titlee Dark Matter Halos
Date: Dec 08, 2009 02:00 PM

URL: http://pirsa.org/09120104
Abstract:

Pirsa: 09120104 Page 1/72



The Handwaver’s Guaide to DM Halos

- . 4

Neal Dalal (CITA)

with Yoram Lithwick, Mastin White




Halos

* N-body sims show regularity in
halo properties:
|. profile (NFW-ish)
2. abundance (dn/dM)
3. clustering (bias)

* I'll try to give a simple way to
understand where these come
from

* Then I'll discuss variations, e.g.
what changes for cosmologies

different than ACDM
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To theorists, halos are
cosmological objects that are:

e gravitationally self-bound,
* virialized, and

* collapsed in all 3 dimensions

\, S5 “[A halo] is hard to define,
W but | know it when | see it
-- Potter Stewart, 1964
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halos observed
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Who cares?

Halo properties are important for a huge range of topics in astrophysics &
cosmology, e.g.

® sites of galaxy & star formation ® cluster abundance
® determines galaxy properties ® |arge-scale structure
e DM annihilation signal @ esr

So we'd like to understand where our predictions for halo properties come from, in
some simple robust way. The approach I'll take:

Halos come from peaks of the initial (Gaussian random) density field, so...

-

start with this end wrth this

so properties of initial peaks = final halo properties
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Self-similar calculations

To figure out what's going on, we'll examine a particular example in
great detail:

collapse of a scale-free, nonspherical profile opr7 f{0,¢)

Because this initial profile is scale-free (and gravity is scale-free), the
problem admits a self-similar solution. Self-similarity allows us to
achieve high spatial resolution just by integrating for a longer time.
Our calculations typically have a spatial dynamic range of >10'?, with

run-times many orders of magnitude faster than usual N-body
simulations.
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Spherical Selt-Similar Solution

(Fillmore & Goldreich 1984, Bertschinger 1985)




Spherical Selt-Similar Solution

(Fillmore & Goldreich 1984, Bertschinger 1985)




Spherical Self-Similar Solution

(Fillmore & Goldreich 1984, Bertschinger 1985)




Spherical Self-Similar Solution

(Fillmore & Goldreich 1984, Bertschinger 1985)




Spherical Self-Similar Solution

(Fillmore & Goldreich 1984, Bertschinger 1985)




Nonspherical Self-Similar Solution
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Halo statistics




Halo mass function

* theoretical literature is largely based on
Press & Schechter (1974), which doesn’t
work so well:

- too low at high M
- too high at low M

* nowadays we just use fitting functions,
which generally assume ‘universality’:

dn  pn dlogo (o)
dM ~ M2d log M

i.e. the shape of the mass function is
assumed to be independent of the shape

of the matter power spectrum
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Press-Schechter:

the hidden menace

e PS model: f.(>M)= f(6>6.) ~2
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E Press-Schechter:

the hidden menace

£

e PS model: f.(>M)= f(6>6.) ~2
e grossly under-predicts mass function at high M

* issues: cloud-in-cloud, sharp-k filter, ellipsoidal
collapse, no big deal

* bigger problem for high peaks:

irsa: 09120104
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halo statistics

« Basic idea: Assuming that peaks form halos, we determine which peaks
make which halos using our collapse calculation. We compute collapse
thresholds o. and relation between smoothing scale R and halo mass M, as a
function of peak parameters y.e.p.

» Then in combination with with known peak statistics, we derive halo
statistics -- mass function dn/dM, 2-point function, etc.

« This is NOT Press-Schechter

+ e.g. the mass function is dn/dM, where n is :

n=/d€dp..,/q N(v.e,p,...)dv

this is all of the work

B R - e Sl e e
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peak statistics (Gaussian)

« First step is to count the number of peaks of the linear density o
(smoothed on some scale R) as a function of height v. curvature x,
triaxiality e.p, etc..... which was alr'eady worked out by BBKS (1986), eg.:

(o }"C'\ 1”' ]
P2

»
)

(Lf:i —3w)e " /=, ¥ — OC

-"’w.pk ( 4 ) ~
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halo statistics

* Next, we use a collapse model to find a correspondence between initial
peak parameters and the final halo properties, e.g. M().

* In practice, the model should provide a collapse threshold 4., and a relation
between smoothing scale R and halo mass M, eg.:

n.:/dffdp.../ N(v.e.p....)dv

* For example, the spherical collapse model predicts o.=1.686, for all peaks

« Of course, peaks are more complicated than this. We assume that just a
few peak properties are important:

* radial slope y
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halo mass function

Example: dn/dM for scale-free cosmologies with Q.=1. P(k)xk".
Below, colors denote: our model (black)
Warren et al. (red)

Jenkins et al. (blue) fitting functions
Sheth et al. (green)
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Halo profile




Halo Profile

Slope is steep at large radii,and becomes more shallow at small r.
The rollover is very gradual, occurring over many decades in r.
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“Aquarius” (Navarro et al. 2008)

The vast majority of simulated halos behave this way; exceptions
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tend to be recent mergers or bridged halos.



concentrations

cvir=rvir/r-2 measures the extent of the outer, steep portion of the
profile.

Wechsler et al. (2002)
correlates with other parameters,
in the sense that

* old, low mass = high cvir

2 ||

* young, high mass = low cir

i 04 1.0
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Halo Profile

Slope is steep at large radii,and becomes more shallow at small r.
The rollover is very gradual, occurring over many decades in r.

IJ'DI': ' 4| — Einasto: a=0 158
s : :
= : ! T
—— [ 1 2}
v —U6f \ s
= : %=1 =
= ’ ; Einasto: a=0.158 I\ ]
12} == - s | D2
ggi}_}huﬂn {best fit) g X =
QL paC NP R T 3
= ‘}gF' 1
e -0=2C ]
ggg'ﬂi{hﬂl ht 3
3 M 3
2 1 0 1
log r/r. log r/r,

“Aquarius” (Navarro et al. 2008)

The vast majority of simulated halos behave this way; exceptions
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concentrations

cvir=rvid/ -2 measures the extent of the outer, steep portion of the
profile.

Wechsler et al. (2002)
correlates with other parameters,
in the sense that

* old, low mass = high c.ir _
<10

* young, high mass = low cvir

i 4 i.0y
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we’ll use self-similar collapse as an example
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see Fillmore &

Density profile Gormc (1989

(0
Suppose linear density profile has >
local slope v, so that
or.a)xar”
Turnaround occurs when o~1, so
ra*xa '’  (comoving)
raxa ‘" (proper)

o

Suppose (for now) that the annulus
collapsing at i, remains thereafter
at the same radius.

Background pxa~, and awnxry’' Y,
so the slope of the density is
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individual orbits

long-axis box loop

All of the orbits contract over time as the potential
deepens. However, the contraction is mostly adiabatic: the
action J;=|v; dx; is (roughly) conserved (usually).
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long-axis box loop
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adiabatic compression

® the long tails of outer shells extending to small radius
deepen the potential at small 7, causing contraction

® the effect is described well by assuming that the action
J=Iv; dx; = x; vi ~ (x7 6,®)" 2 is an adiabatic invariant. [NB
— this is not the same as conservation of angular
momentum!]

® the action can be nredicred from rhe linear densirv proﬁle
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toy model

using these observations, we can write down a simple model for profile:

® use linear profile to determine actions J;
given J's and potential @, estimate x,y,z apo’s
® assume orbits deposit uniform density inside ellipsoid bounded by the

X,),Z apo’s
® add up all the orbits to get total p and ©
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ding/dinr

Major mergers!

Our model relies upon the (rough)
conservation of the orbital actions.

p(r) /Py

If halos violently relax (e.g. in major
mergers) then there’s no reason for them
to retain their profiles

But halos have NFW profiles even
following major (1:1) mergers!

dinp/dinr

Explanation: halos do not violently relax in
major mergers, but instead retain memory
of their profiles prior to merger.

(Only a fraction of particles get kicked
onto very different orbits.) | Kazantzidis et al. (2006)

Pirsa: 09120104

p(r)/ Py,




Variations




