Title: Building Massless Tree Amplitudes without a Lagrangian

Date: Dec 02, 2009 11:00 AM

URL: http://pirsa.org/09120098

Abstract: The BCFW recursion relations define Yang-Mills and gravity amplitudes in terms of lower-point amplitudes. I will discuss several connections between the internal consistency of this recursive definition and the allowed interactions of massless, higher-spin particles.

Pirsa: 09120098 Page 1/82

Pirsa: 09120098 Page 2/8.

Pirsa: 09120098 Page 3/8.

Pirsa: 09120098 Page 4/8.

Pirsa: 09120098 Page 5/8.

Pirsa: 09120098 Page 6/8.

Pirsa: 09120098 Page 7/8.

Pirsa: 09120098 Page 8/8.

Pirsa: 09120098 Page 9/8.

Pirsa: 09120098 Page 10/82

Pirsa: 09120098 Pirsa: 09120098 Pirsa: 09120098 Pirsa: 09120098 Pirsa: 09120098 Pirsa: 09120098 Pirsa: 09120098

Pirsa: 09120098 Page 12/82

Pirsa: 09120098 Page 16/82

Pirsa: 09120098 Page 17/82

Pirsa: 09120098 Page 20/82

Page 22/83

Page 23/8

Outline

- Motivation (then and now)
 - Simplicity of Massless Scattering Amplitudes
 - Checking BCFW recursion without a QFT
 - Why are massless S-matrices simple?

- The Four-Particle Test
- A Spin-1 Tree S-Matrix from BCFW
- Gravity's Hidden Relations

See also: Benincasa and Cachazo, He and Zhang 0811.3210

Scattering Amplitudes are simple

$$A = c_n Tr[T_1 T_2 \cdots T_n] \underbrace{A_{\text{c.o.}}(1, 2, \dots, n)}_{\text{color-ordered amplitude}} + \text{perm's}$$

Yang Mills *n*-gluon amplitudes are zero if they contain <2 gluons of helicity +1.

For 2 helicity +1 gluons i and j (Maximal Helicity Violating).

$$|A_{\text{c.o.}}|^2 = \frac{(p_i.p_j)^4}{(p_1.p_2)(p_2.p_3)\dots(p_n.p_1)}$$

Parke, Tayloge 27/82

Any n-gluon scattering amplitude can be written in terms of lower-point scattering amplitudes.

Pirsa: 09120098

Any n-gluon scattering amplitude can be written in terms of lower-point scattering amplitudes.

Two complex q's such that

$$q^2 = p_A.q = p_B.q = 0$$

e.g. if $p_{A/B=}(1,\pm 1,0,0), q=(0,0,1,\pm i)$

Pirsa: 09120098

Any n-gluon scattering amplitude can be written in terms of lower-point scattering amplitudes.

Two complex q's such that

$$q^2 = p_A.q = p_B.q = 0$$

e.g. if $p_{A/B=}(1,\pm 1,0,0), q=(0,0,1,\pm i)$

Then

$$p_A^{\mu}(z) = p_A + zq^{\mu}$$
$$p_B^{\mu}(z) = p_B - zq^{\mu}$$

are null and

 $(p_A(z)+P)^2$ is linear in z

Britto, Cachazo, Feng

$$p_A^{\mu}(z) = p_A + zq^{\mu}$$

$$p_B^{\mu}(z) = p_B - zq^{\mu}$$

$$q^2 = p_A \cdot q = p_B \cdot q = 0$$

$$\oint \frac{A(z)}{z} = 0$$

if A falls as 1/z or faster at large z

 $A(p_1, \dots, p_A, \dots, p_B) \to$ $A(z) \equiv A(p_1, \dots, p_A(z), \dots, p_B(z))$

Page 31/82

Britto Cachazo Feng Witten

Pirsa: 09120098 solve for A(0) as sum of other poles.

Proofs of BCFW:

- Show that $A(z) \sim 1/z$:
 - **Diagrammatic:** build collections of Feynman diagrams where 1/z or faster fall-off is manifest
 - **Background fields:** Determine z-scaling of $M_{\mu\nu}$ from symmetry in convenient gauge, contract with $\varepsilon^{\mu}(z)\varepsilon^{\nu}(z)$

Pirsa: 09120098 Page 32/82

$$p_A^{\mu}(z) = p_A + zq^{\mu}$$

$$p_B^{\mu}(z) = p_B - zq^{\mu}$$

$$q^2 = p_A \cdot q = p_B \cdot q = 0$$

$$\oint \frac{A(z)}{z} = 0$$

if A falls as 1/z or faster at large z

 $A(p_1, \dots, p_A, \dots, p_B) \to$ $A(z) \equiv A(p_1, \dots, p_A(z), \dots, p_B(z))$

Page 33/82

Britto Cachazo Feno Witten

Solve for A(0) as sum of other poles.

Proofs of BCFW:

- Show that $A(z) \sim 1/z$:
 - **Diagrammatic:** build collections of Feynman diagrams where 1/z or faster fall-off is manifest
 - **Background fields:** Determine z-scaling of $M_{\mu\nu}$ from symmetry in convenient gauge, contract with $\varepsilon^{\mu}(z)\varepsilon^{\nu}(z)$

Pirsa: 09120098 Page 34/82

Proofs of BCFW:

Pirsa: 09120098 Page 35/82

Proofs of BCFW:

- Show that $A(z) \sim 1/z$:
 - **Diagrammatic:** build collections of Feynman diagrams where 1/z or faster fall-off is manifest
 - **Background fields:** Determine z-scaling of $M_{\mu\nu}$ from symmetry in convenient gauge, contract with $\varepsilon^{\mu}(z)\varepsilon^{\nu}(z)$

Pirsa: 09120098 Page 36/82

Simple Amplitudes: BCFW Recursion

Proofs of BCFW:

- Show that $A(z) \sim 1/z$:
 - **Diagrammatic:** build collections of Feynman diagrams where 1/z or faster fall-off is manifest
 - **Background fields:** Determine z-scaling of $M_{\mu\nu}$ from symmetry in convenient gauge, contract with $\varepsilon^{\mu}(z)\varepsilon^{\nu}(z)$

$$\oint \frac{A(z)}{z} = 0$$

• All poles of tree amplitudes correspond to factorization

Pirsa: 09120098 channels – BCFW form of A(0) follows from integral above.

A wide range of theories have BCFW recursion relations:

- Gauge theory:
 - Valid if h_A =-1 or h_B =+1, for pure gauge theory [Britto, Cachazo, Feng, Witten]
 - Same conditions, where the other marked leg is matter [Cheung]

Can reduce any amplitude with gauge bosons to lower-point amplitudes

A wide range of theories have BCFW recursion relations:

- Gauge theory:
 - Valid if h_A =-1 or h_B =+1, for pure gauge theory [Britto, Cachazo, Feng, Witten]
 - Same conditions, where the other marked leg is matter [Cheung]
- Gravity: analogous
 [Benincasa, Cachazo, Verroneau; Arkani-Hamed, Kaplan; Cheung]
 - In fact, all of these amplitudes $\sim 1/z^2$, so both

$$\oint \frac{A(z)}{z} = 0$$
 and $\oint A(z) = 0$

• Generalizations when $A(z) \rightarrow const.$ at infinity. [Benincasa, Cachazo;]

Can reduce any amplitude with gauge bosons (gravitons) to lower-point amplitudes

Simple Amplitudes: BCFW Recursion

Proofs of BCFW:

- Show that $A(z) \sim 1/z$:
 - **Diagrammatic:** build collections of Feynman diagrams where 1/z or faster fall-off is manifest
 - **Background fields:** Determine z-scaling of $M_{\mu\nu}$ from symmetry in convenient gauge, contract with $\varepsilon^{\mu}(z)\varepsilon^{\nu}(z)$

Pirsa: 09120098 Page 40/82

A wide range of theories have BCFW recursion relations:

- Gauge theory:
 - Valid if h_A =-1 or h_B =+1, for pure gauge theory [Britto, Cachazo, Feng, Witten]
 - Same conditions, where the other marked leg is matter [Cheung]
- Gravity: analogous
 [Benincasa, Cachazo, Verroneau; Arkani-Hamed, Kaplan; Cheung]
 - In fact, all of these amplitudes $\sim 1/z^2$, so both

$$\oint \frac{A(z)}{z} = 0$$
 and $\oint A(z) = 0$

• Generalizations when $A(z) \rightarrow const.$ at infinity. [Benincasa, Cachazo;]

Can reduce any amplitude with gauge bosons (gravitons) to lower-point amplitudes

Motivation

- 3-point amplitudes & BCFW define (tree)
 S-matrices for YM and gravity without reference to a Lagrangian.
- Logical completion: Show consistency, again without reference to Lagrangians!
- Can we define other "S-matrix theories" that have no gauge-inv. Lagrangian description? (e.g. anti-self-dual 3-form in 6d)

N=4/8 Amplitudes even simpler

 Generalized BCFW for all diagrams (involves SUSY transf. as well as p-shift)

 Simple loop expansion – entirely in terms of "box" diagrams

- General formulas for N=4 amplitudes in twistor space.
- Conformal & dual superconformal invariance

Pirsa: 09120098

Simple S-Matrices:

 Accidentally inherited from SUSY theories?

Pure gauge/gravity tree amplitudes ~ SUSY amplitudes (other states appear in pairs)

 Or general properties, with extra simplification in SUSY?

BCFW with matter – not obviously derived from SUSY

Connection between BCFW at 4-point and elementary consistency conditions on interactions (Jacobi identity, equivalence...).

Outline

Motivation (then and now)

- The Four-Particle Test
 "4-point amplitudes alone constrain interactions and BCFW shifts" [Benincasa, Cachazo]
- A Spin-1 Tree S-Matrix from BCFW
 "Simple arguments and identities from 4-point ensure
 that BCFW amplitudes have <u>all</u> factorization poles."
- Gravity's Hidden Relations
 "1/z² fall-off is needed to see that BCFW amplitudes have all factorization poles."

Pirsa: 09120098

Symmetry Properties of the S-Matrix

- Lorentz Invariance
- Little-Group Covariance

Spinor-Helicity:
$$P_{\alpha\dot{\alpha}} = \sigma^{\mu}_{\alpha\dot{\alpha}} p_{\mu}$$

Spinor-Helicity:
$$P_{\alpha\dot{\alpha}} = \sigma^{\mu}_{\alpha\dot{\alpha}} p_{\mu}$$

$$\begin{cases} p^2 = 0 : \det P = 0 \to P_{\alpha\dot{\alpha}} = \lambda_{\alpha\dot{\lambda}} \tilde{\lambda}_{\dot{\alpha}} \\ \operatorname{Real} p_{\mu} \leftrightarrow \lambda = \tilde{\lambda}^* \end{cases}$$

$$P \to P \qquad \lambda \to e^{i\phi/2}\lambda \qquad \tilde{\lambda} \to e^{-i\phi/2}\tilde{\lambda}$$

$$\epsilon^{+} = \left(\frac{\mu_{\alpha}\tilde{\lambda}_{\dot{\alpha}}}{\mu.\lambda}\right)^{s} \to e^{is\phi}\epsilon^{+} \qquad \epsilon^{-} = \left(\frac{\lambda_{\alpha}\tilde{\mu}_{\dot{\alpha}}}{\tilde{\mu}.\tilde{\lambda}}\right)^{s} \to e^{-is\phi}\epsilon^{-}$$

$$\mathcal{M}(\lambda_{i}, \tilde{\lambda}_{i}, h_{i}) \sim \lambda_{i}^{p} \tilde{\lambda}_{i}^{(2h_{i}+p)}$$

Unitarity (at tree level: Factorization)

3-Point Amplitudes

[Benincasa and Cachazo]

- Exist for complex momenta (indep. $\lambda, \tilde{\lambda}$)
- Two degenerate momentum configs: $\sum P_i = 0, P_i^2 = 0 \rightarrow \begin{cases} \lambda_i \cdot \lambda_j = 0 & \forall i, j \\ \tilde{\lambda}_i \cdot \tilde{\lambda}_j = 0 & \forall i, j \end{cases} \text{ w/ invariants } \begin{cases} [ij] \equiv \tilde{\lambda}_i \cdot \tilde{\lambda}_j \\ \langle ij \rangle \equiv \lambda_i \cdot \lambda_j \end{cases}$
- Helicity+finite real-p limit fixes amplitudes (no scalar invariants)

$$A(1_a^{+1}, 2_b^{-1}, 3_c^{-1}) = \kappa_{abc} \frac{\langle 23 \rangle^3}{\langle 12 \rangle \langle 31 \rangle} \text{ or } \kappa'_{abc} \frac{[12][31]}{[23]^3}$$

$$A(1_a^{+1}, 2_b^{+1}, 3_c^{+1}) = \lambda_{abc} \langle 12 \rangle \langle 13 \rangle \langle 23 \rangle$$

Pirsa: 09120098

Symmetry Properties of the S-Matrix

- Lorentz Invariance
- Little-Group Covariance

Spinor-Helicity:
$$P_{\alpha\dot{\alpha}} = \sigma^{\mu}_{\alpha\dot{\alpha}} p_{\mu}$$

Spinor-Helicity:
$$P_{\alpha\dot{\alpha}} = \sigma^{\mu}_{\alpha\dot{\alpha}} p_{\mu}$$

$$\begin{cases} p^2 = 0 : \det P = 0 \to P_{\alpha\dot{\alpha}} = \frac{\lambda_{\alpha\dot{\lambda}}\tilde{\lambda}_{\dot{\alpha}}}{-\frac{1}{2} + \frac{1}{2}} \\ \operatorname{Real} p_{\mu} \leftrightarrow \lambda = \tilde{\lambda}^* \end{cases}$$

$$P \to P \qquad \lambda \to e^{i\phi/2}\lambda \qquad \tilde{\lambda} \to e^{-i\phi/2}\tilde{\lambda}$$

$$\epsilon^{+} = \left(\frac{\mu_{\alpha}\tilde{\lambda}_{\dot{\alpha}}}{\mu.\lambda}\right)^{s} \to e^{is\phi}\epsilon^{+} \qquad \epsilon^{-} = \left(\frac{\lambda_{\alpha}\tilde{\mu}_{\dot{\alpha}}}{\tilde{\mu}.\tilde{\lambda}}\right)^{s} \to e^{-is\phi}\epsilon^{-}$$

$$\mathcal{M}(\lambda_{i}, \tilde{\lambda}_{i}, h_{i}) \sim \lambda_{i}^{p} \tilde{\lambda}_{i}^{(2h_{i}+p)}$$

Unitarity (at tree level: Factorization)

3-Point Amplitudes

[Benincasa and Cachazo]

- Exist for complex momenta (indep. $\lambda, \tilde{\lambda}$)
- Two degenerate momentum configs: $\sum P_i = 0, P_i^2 = 0 \rightarrow \begin{cases} \lambda_i \cdot \lambda_j = 0 & \forall i, j \\ \tilde{\lambda}_i \cdot \tilde{\lambda}_j = 0 & \forall i, j \end{cases} \text{ w/ invariants } \begin{cases} [ij] \equiv \tilde{\lambda}_i \cdot \tilde{\lambda}_j \\ \langle ij \rangle \equiv \lambda_i \cdot \lambda_j \end{cases}$
- Helicity+finite real-p limit fixes amplitudes (no scalar invariants)

$$A(1_a^{+1}, 2_b^{-1}, 3_c^{-1}) = \kappa_{abc} \frac{\langle 23 \rangle^3}{\langle 12 \rangle \langle 31 \rangle} \text{ or } \kappa'_{abc} \frac{[12][31]}{[23]^3}$$

$$A(1_a^{+1}, 2_b^{+1}, 3_c^{+1}) = \lambda_{abc} \langle 12 \rangle \langle 13 \rangle \langle 23 \rangle$$

Pirsa: 09120098

Gauge 3-Point Amplitudes

$$A^{(h)}(1_a^{+1}, 2_b^{-1}, 3_c^{-1}) = \kappa_{abc} \frac{\langle 23 \rangle^3}{\langle 12 \rangle \langle 31 \rangle} \quad ([ij] = 0)$$
$$A^{(a)}(1_a^{-1}, 2_b^{+1}, 3_c^{+1}) = \bar{\kappa}_{abc} \frac{[23]^3}{[12][31]} \quad (\langle ij \rangle = 0)$$

Scalar matter:

$$A^{(h)}(1_a^{-1}, 2_b^0, 3_c^0) = k_{bc}^a \frac{\langle 12 \rangle \langle 13 \rangle}{\langle 23 \rangle}$$
$$A^{(a)}(1_a^{+1}, 2_b^0, 3_c^0) = \bar{k}_{bc}^a \frac{[12][13]}{[23]}$$

(k must satisfy Jacobi identities, κ must form representation)

4-Point Amplitudes

$$A(1^{h_1}, 2^{h_2}, 3^{h_3}, 4^{h_4}) = \mathcal{H}(1, 2, 3, 4) \times f(s, t, u)$$

particular solution with correct helicity transformations

e.g.
$$\mathcal{H}(1-,2-,3+,4+) = \langle 12 \rangle^2 [34]^2$$

f isn't constrained by little group (scalar) or LI, but restricted by factorization at complex momenta:

$$\lim_{s\to 0} s\times A(1,2,3,4) = \sum_{h,a} A(1,2,-P_{12}^{-h})A(3,4,P_{12}^h)$$

In fact, $\langle 12 \rangle \to 0$ and $[12] \to 0$ are distinct configurations, Page 51/82 should both satisfy this limit.

Jacobi from Factorization

- Impose t and u-channel factorization
 - the individual 3-point amplitudes are singular!

$$A(1^{-}, 2^{-}, 3^{+}, 4^{+}) = \langle 12 \rangle^{2} [34]^{2} \left[\frac{\kappa_{\beta 13} \bar{\kappa}_{\beta 42}}{st} - \frac{\kappa_{\beta 14} \bar{\kappa}_{\beta 32}}{su} + \dots \right]$$

• When [12] ->0:

$$sA(1^-, 2^-, 3^+, 4^+) \to \langle 12 \rangle^2 [34]^2 \left[\frac{\kappa_{\beta 13} \bar{\kappa}_{\beta 42}}{t} + \frac{\kappa_{\beta 14} \bar{\kappa}_{\beta 32}}{t} + \dots \right]$$

Compare to factorization limit:

$$sA(1^-, 2^-, 3^+, 4^+) \to \langle 12 \rangle^2 [34]^2 \frac{\kappa_{12\alpha} \kappa_{\alpha 34}}{t}$$

Pirsa: 09120098

Factorization in BCFW

Consider BCFW, where we shift p_1 and p_2 by zq

with $q = |1\rangle |2|$, i.e.

$$|1] \rightarrow |\hat{1}](z) = |1] + z|2]$$

$$|2\rangle \rightarrow |\hat{2}\rangle(z) = |2\rangle - z|1\rangle$$

Two terms:

Controlled by factorization as [13], $\langle 24 \rangle \rightarrow 0$ and [14], $\langle 23 \rangle \rightarrow 0$ – generates ansatz on previous slide.

Momentum-dependence of 3-point amplitudes (s>0) allows BCFW recovered and imposes consistency conditions on 3-point couplings.

Jacobi from Factorization

- Impose t and u-channel factorization
 - the individual 3-point amplitudes are singular!

$$A(1^{-}, 2^{-}, 3^{+}, 4^{+}) = \langle 12 \rangle^{2} [34]^{2} \left[\frac{\kappa_{\beta 13} \bar{\kappa}_{\beta 42}}{st} - \frac{\kappa_{\beta 14} \bar{\kappa}_{\beta 32}}{su} + \dots \right]$$

• When [12] ->0:

$$sA(1^-, 2^-, 3^+, 4^+) \to \langle 12 \rangle^2 [34]^2 \left[\frac{\kappa_{\beta 13} \bar{\kappa}_{\beta 42}}{t} + \frac{\kappa_{\beta 14} \bar{\kappa}_{\beta 32}}{t} + \dots \right]$$

Compare to factorization limit:

$$sA(1^-, 2^-, 3^+, 4^+) \to \langle 12 \rangle^2 [34]^2 \frac{\kappa_{12\alpha} \kappa_{\alpha 34}}{t}$$

Pirsa: 09120098

Factorization in BCFW

Consider BCFW, where we shift p_1 and p_2 by zq

with $q = |1\rangle |2|$, i.e.

$$|1] \rightarrow |\hat{1}](z) = |1] + z|2]$$

$$|2\rangle \rightarrow |\hat{2}\rangle(z) = |2\rangle - z|1\rangle$$

Two terms:

Controlled by factorization as [13], $\langle 24 \rangle \rightarrow 0$ and [14], $\langle 23 \rangle \rightarrow 0$ – generates ansatz on previous slide.

Momentum-dependence of 3-point amplitudes (s>0) allows BCFW programmers and imposes consistency conditions on 3-point couplings.

Factorization from BCFW

Schematically (for gauge theory)

$$\lim_{[12]\to 0} \langle 12 \rangle [12] A_{BCF}(1^-, 2^-, 3^+, 4^+) =$$

$$\langle 12 \rangle^2 [34]^2 \frac{1}{t} (\kappa_{13a} \overline{\kappa}_{24a} + \kappa_{14a} \overline{\kappa}_{32a})$$

Factorization:
$$\langle 12 \rangle^2 [34]^2 \frac{1}{t} (\kappa_{12a} \overline{\kappa}_{34a})$$

Requires
$$\kappa_{12a}\overline{\kappa}_{34a} + \kappa_{13a}\overline{\kappa}_{24a} + \kappa_{14a}\overline{\kappa}_{32a} = 0$$
!

Similar arguments: interaction vertices of matter w/

Gauge 4-Point Amplitudes: Good and Bad BCFW

- This procedure works (if Jacobi is satisfied)
 for |-], |-⟩; |+], |+⟩; and |-], |+⟩ shifts
 These are the shifts for which 3-point amplitudes vanish identically or approach 0 at large z!
- BCF shift |3⁺], |1[−]⟩ gives clearly unphysical answer

$$A_{BCF;[31\rangle}(1^-, 2^-, 3^+, 4^+) \propto \langle 12 \rangle^2 [34]^2 \frac{t^3}{s^4 n}$$

Gravity 4-Point Amplitudes: Commutation!

$$A_{BCF}(1^{-2}, 2^{-2}, 3^{+2}, 4^{+2}) = [34]^4 \langle 12 \rangle^4 \left(\frac{\kappa_{13\alpha} \overline{\kappa}_{24\alpha}}{s^2 t} + \frac{\kappa_{14\alpha} \overline{\kappa}_{23\alpha}}{s^2 u} \right)$$

Must cancel double pole and reproduce correct single pole as s->0, for any kinematics

$$s+t=-u$$
: consistent if $\kappa_{13a}\overline{\kappa}_{24a}=\kappa_{14a}\overline{\kappa}_{23a}=\kappa_{12a}\overline{\kappa}_{34a}$

(Commutative, associative algebra Page 58/82 => interactions can be diagonalized)

A Remarkably Powerful Condition

- 1. Pick particles & non-zero 3-point vertices
- 2. Consider BCFW shift of given-helicity legs
 - Bad shifts: BCFW produces clear nonsense (can never reproduce other poles)
 - Good shifts: BCFW can reproduce the "missing" pole,
 if 3-point amplitudes satisfy conditions.
 - These conditions mimic most of the known constraints on higher-spin interactions! (spin-1: Jacobi, matter reps & charge conservation; spin-2: commutative, equivalence; spins 2&3/2: supergravity)
- 3. Good shifts + 3-point => ansatz for a

 Pirsa: 09120096 theory" (set of constructible amplitudes)

Outline

Motivation (then and now)

- The Four-Particle Test
 "4-point amplitudes alone constrain
 interactions and BCFW shifts"
- A Spin-1 Tree S-Matrix from BCFW
 "Simple arguments and Jacobi identities ensure that n-point BCFW amplitudes have all factorization poles."
- Gravity's Hidden Relations
 "1/z² fall-off is needed to see that BCFW amplitudes have all factorization poles."

Pirsa: 09120098

Consistency of n-Point Amplitudes

- Factorization on all <u>physical</u> poles
- No unphysical double poles
- No <u>spurious</u> poles, that do not correspond to intermediate particles propagating on-shell.
 - BCFW produces these poles, they always cancel.
 - This cancellation is also non-trivial from S-matrix perspective

Pirsa: 09120098 Page 61/82

What poles must we consider?

For definiteness, consider BCF where legs $|1\rangle$ and $|2\rangle$ shift

(cubtle for growity **)

n-Point Unshifted Poles

 $I = \text{set of 3 or more legs } \underline{\text{not}} \text{ including } 1, 2$

$$A_{BCF} \supset \sum_{L/R}$$

$$\downarrow (\lim_{P_I^2 \to 0} P_I^2 \times \ldots)$$

Pole(BCF sum) = BCF sum(Pole)

$$I\{ > - \times A_{BCF} \left(\begin{array}{c} P_1 \\ P_2 \\ \end{array} \right)$$

Pirsa: 09120098

Page 63/82

n-Point Unshifted Pair Poles and the Jacobi Identity

Pirsa: 09120098 Page 64/82

n-Point Unshifted Pair Poles and the Jacobi Identity

(Jacobi: $\kappa_{12a}\kappa_{34a} + \kappa_{13a}\kappa_{24a} + \kappa_{14a}\kappa_{32a} = 0$)

Pirsa: 09120098

n-Point Unshifted Poles

 $I = \text{set of 3 or more legs } \underline{\text{not}} \text{ including } 1, 2$

$$= I\{ \Longrightarrow X \land A_{BCF} \Big(P_{I})$$

Pirsa: 09120098

Page 66/82

What poles must we consider?

For definiteness, consider BCF where legs $|1\rangle$ and $|2\rangle$ shift

(cubtle for growity **)

n-Point Unshifted Poles

 $I = \text{set of 3 or more legs } \underline{\text{not}} \text{ including 1, 2}$

$$A_{BCF} \supset \sum_{L/R}$$

$$\bigvee_{l} \left(\lim_{P_{l}^{2} \rightarrow 0} P_{l}^{2} \times \ldots \right)$$

Pole(BCF sum) = BCF sum(Pole)

$$= I\{ \Longrightarrow X \land A_{BCF} \Big(\bigvee_{P_1} \bigvee_{P_2} \bigvee_{P_3} \bigvee_{P_4} \bigvee_{P_4$$

Pirsa: 09120098 Page 68/82

n-Point Unique Diagram Poles

NO BCFW terms have factorization limits with 1 & 2 on same side! *Something non-trivial must happen.*

Right-hand amplitudes approach same kinematics as [12]–>0
Singularities from **soft** limits

Very reminiscent of Weinberg's soft photon and graviton arguments – equality follows from gauge invariance/conservation of charge.

This con 12008 ynman diagrams w/ this pole dominate at large z, play a keesys role n background-field proof of BCFW recursion [Arkani Hamad Kaplan].)

For BCF shifting [1]:

Different 3-point kinematics and different amplitude – factorization in 2nd case is not automatic!

Obvious diagram:

Pirsa: 09120098

Not singular in this limit for spins s>0 because left amplitude scales as positive power of $\langle 1i \rangle$!

Two possible contributions as $\langle 1i \rangle \rightarrow 0$:

$$\langle i | (|2\rangle - z^* | 1\rangle) = 0$$

 $\Rightarrow z^* = \langle 2i \rangle / \langle 1i \rangle \rightarrow \infty \text{ as } \langle 1i \rangle \rightarrow 0.$

Pole if product of amplitudes grows at large-z.

B)

Two possible contributions as $\langle 1i \rangle \rightarrow 0$:

$$\langle i | (|2\rangle - z^* | 1\rangle) = 0$$

 $\Rightarrow z^* = \langle 2i \rangle / \langle 1i \rangle \rightarrow \infty \text{ as } \langle 1i \rangle \rightarrow 0.$

Pole if product of amplitudes grows at large-z.

Pirsa: 09120098

Consider general spin s (finish proof for spin-1, subtlety for spin-2)

Two possible contributions as $\langle 1i \rangle \rightarrow 0$:

$$\langle i | (|2\rangle - z^* | 1\rangle) = 0$$

 $\Rightarrow z^* = \langle 2i \rangle / \langle 1i \rangle \rightarrow \infty \text{ as } \langle 1i \rangle \rightarrow 0.$

Pole if product of amplitudes grows at large-z.

B)
$$\sum_{L/R} \frac{1}{K^2} \underbrace{\frac{1}{K^2}}_{\frac{fact}{limit}} \underbrace{\frac{1}{k^2}}_$$

Two possible contributions as $\langle 1i \rangle \rightarrow 0$:

$$\langle i | (|2\rangle - z^* | 1\rangle) = 0$$

 $\Rightarrow z^* = \langle 2i \rangle / \langle 1i \rangle \rightarrow \infty \text{ as } \langle 1i \rangle \rightarrow 0.$

Pole if product of amplitudes grows at large-z.

B)
$$\sum_{L/R} \frac{1}{\tilde{K}^2} \underbrace{\frac{1}{K^2}}_{\tilde{l}} \underbrace{\frac{1}{\tilde{K}^2}}_{\tilde{l}} \underbrace{\frac{1}{\tilde{k}^2}}_{\tilde{l}}$$

Pirsa: 09120098
$$\longrightarrow \oint \left(1+z\frac{[23]}{[13]}\right)^{s-1}\frac{A(z)}{z}$$

Wrong-Helicity Poles: Gauge Theory

Two possible contributions as $\langle 1i \rangle \rightarrow 0$:

A) Pole if product of amplitudes grows at large-z ($\epsilon \sim 1/z$)

h_1	h_2	h_3	h_K	(n-1)-point	Three-point	Total scaling
+	+	+	-	ϵ	$1/\epsilon$	1
+	+	-	+	$1/\epsilon^3$	ϵ^3	1
-	+	+	-	ϵ	$1/\epsilon$	1
-	+	-	+	ϵ	ϵ^3	ϵ^4
-	-	+	+	ϵ	$1/\epsilon$	1
-	-	-	X	(c) vanishes identically		
+	-	+	+	$1/\epsilon^3$	$1/\epsilon$	€-4
+	-	-	X	(c) vanishes identically		

good shifts: no contribution

(Scaling
1/z for "good shifts"
z³ for "bad shift"
follows from helicity &
power-counting – can
derive without QFT!)

B)
$$\oint \left(1 + z \frac{[23]}{[13]}\right)^{s-1} \frac{A^{(n-1)}(z)}{z} = A^{(n-1)}(0)_{BCF} \text{ for } s=1$$

gives correct factorization limit 🗸

Wrong-Helicity Poles: Gravity

Two possible contributions as $\langle 1i \rangle \rightarrow 0$:

A) Pole if product of amplitudes grows at large-z ($\epsilon \sim 1/z$)

No contribution if large-z scaling of n-point amplitudes is like 3-point scaling (i.e. square of gauge theory scalings)

B)
$$\oint \left(1+z\frac{[23]}{[13]}\right)^{s-1}\frac{A(z)}{z} = A_{\mathrm{BCF}}^{(n-1)}(0) + \frac{[23]}{[13]}\oint A(z)$$
 vanishes by $1/z^2$ scaling

Unlike 1/z in YM, the gravity $1/z^2$ is not obvious from BCFW, power counting, or any other arguments.

$1/z^{2}$

- Very opaque in direct Feynman diagrams (even 1/z requires summing many diagrams)
- Discovered in background field gauge [Arkani-Hamed and Kaplan]

Consider hard graviton in background metric $h_{\mu\nu}=e^a_{\mu}\tilde{e}^{\tilde{a}}_{\nu}h_{a\tilde{a}}$

"left" and "right" vielbein indices a, \tilde{a} don't mix two separate approximate Lorentz "spin" symmetries together constrain amplitudes to fall as $1/z^2$

- No known analogue of the twofold "spin Lorentz" symmetries in amplitudes
- Follows KLT relations: A_{GR} = "(A_{YM})²"
- We'd like to understand origin of 1/z2 directly in S-matrix language in fact it's <u>necessary</u> for BCFW to
 Pirsa: 09120098 ive sensible amplitudes

One More Possibility

In YM and gravity, extra terms associated with z→∞ vanish

B)
$$\sum_{L/R} \frac{1}{K^2} \underbrace{\frac{1}{K^2} \underbrace{\frac{R}{\text{fact.}}}_{\text{fimit}} \oint \left(1 + z \frac{[23]}{[13]}\right)^{s-1} \frac{A(z)}{z}}_{\text{fimit}}$$

• Are there theories where, instead, BCFW gives wellbehaved amplitudes because they cancel?

Summary

Hints at much more general structure to be understood:

- Consistency conditions for higher-spin interactions can be obtained from 4-point BCFW
- In known examples, BCFW's that work at 4-point construct consistent n-particle amplitudes
 - Spin-1: Guaranteed by simple arguments
 - Spin-2: Crucially relies on 1/z² scaling

Pirsa: 09120098

One More Possibility

In YM and gravity, extra terms associated with z→∞ vanish

B)
$$\sum_{L/R} \frac{1}{K^2} \underbrace{\frac{1}{K^2}}_{\frac{\hat{1}}{\text{limit}}} \oint \left(1 + z \frac{[23]}{[13]}\right)^{s-1} \frac{A(z)}{z}$$

• Are there theories where, instead, BCFW gives wellbehaved amplitudes because they cancel?

For BCF shifting [1]:

Different 3-point kinematics and different amplitude – factorization in 2nd case is not automatic!

Obvious diagram:

Pirsa: 09120098

Not singular in this limit for spins s>0 because left amplitude scales as positive power of $\langle 1i \rangle$!

n-Point Unique Diagram Poles

NO BCFW terms have factorization limits with 1 & 2 on same side! *Something non-trivial must happen.*

Right-hand amplitudes approach same kinematics as [12]–>0
Singularities from **soft** limits

Very reminiscent of Weinberg's soft photon and graviton arguments – equality follows from gauge invariance/conservation of charge.

This con 12008 ynman diagrams w/ this pole dominate at large z, play a keesys role n background-field proof of BCFW recursion [Arkani Hamad Kaplan].)