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Abstract: The BCFW recursion relations define Yang-Mills and gravity amplitudes in terms of lower-point amplitudes. | will discuss several
connections between the internal consistency of this recursive definition and the allowed interactions of massless, higher-spin particles.
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Outline

Motivation (then and now)

- Simplicity of Massless Scattering Amplitudes

- Checking BCFW recursion without a QFT

- Why are massless S-matrices simple?

The Four-Particle Test
A Spin-1 Tree S-Matrix from BCFW
Gravity’s Hidden Relations

See also: Benincasa and Cachazo.
He and Zhang 0811.3210
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Scattering Amplitudes
are simple

A=c,ITrhTz---T,]|Aco.(1,2,...,n) + perm’s

—

T

color-ordered amplitude

Yang Mills n-gluon amplitudes are zero if they contain
<2 gluons of helicity +1.

For 2 helicity +1 gluons 7 and j (Maximal Helicity Violating).

A |-.3 o (pi *PJ')JE
< A 0. =i
Pirsa: 09120098 (I’Jl 'I)g)(pz '!):;) =kl ([)H'pl) Pﬂfke.Tﬁ}’nge£7§26



Simple Amplitudes:
BCFW Recursion

Any n-gluon scattering amplitude can be written in
terms of lower-point scattering amplitudes.
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Simple Amplitudes:
BCFW Recursion

Any n-gluon scattering amplitude can be written in
terms of lower-point scattering amplitudes.
’ 1
-2 ‘P2
Two complex ¢g's such that
g° =pa.gq=pp.q=0

e.g. if pas=(1£1.00), g=(00,1 %i)

A
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Simple Amplitudes:
BCFW Recursion

Any n-gluon scattering amplitude can be written in
terms of lower-point scattering amplitudes.

B(z")

1
S
i Z P(z") P2
. A(Z7)
Two complex ¢’s such that Thﬁ;ltl :
f[.l = PpPA.g = PRB.q = () p_—l(:] — PA T 29
| ooy )
e.g. if paus=(1+1.00). g=(00.1 +i) pp(z) =pB — 2¢"

are null and
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Simple Amplitudes:
BCFW Recursion

-~

¢° =pa.q=pp.q=0|

p'4(z) = pa + 24"
P

-‘H

)

) =pB — 2q"

Pirsa

— )

%A(j;)

if A falls as //z or
faster at large z

e Solve for A(O) as

sum of other poles.

..... p:l.....pg) —)
A(z) = Alp1,...,pa(2),...,pB(2))
»
A
99— >
. L ]
factorization poles

Britto

assoclated w/ on-shell
intermediate line
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Simple Amplitudes:
BCFW Recursion

Proofs of BCFW:

e Show that A(z) ~ 1/z:

- Diagrammatic: build collections of Feynman diagrams
where 1/z or faster fall-off 1s manifest

- Background fields: Determine z-scaling of M, from
symmetry in convenient gauge, contract with €4(z)e"(z)

Pirsa: 09120098 Page 32/82



Simple Amplitudes:
BCFW Recursion

T
p's(2) = pa + 24"

pp(z) = pB — 2q"

4 =pPa-q=pp.q=10)

A(z)

/=

if A falls as //z or
faster at large z

—0

it SOLVE for A(O) as
sum of other poles.

A(p1,.... PAs---- pB) —
A(z) = Alp1,...,pa(2),...,p8(2))
A
»
Al |
- ®
factorization poles

assoclated w/ on-shell
intermediate line
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Simple Amplitudes:
BCFW Recursion

Proots of BCFW:

e Show that A(z) ~ 1/z:

- Diagrammatic: build collections of Feynman diagrams
where 1/z or faster fall-off 1s manifest

- Background fields: Determine z-scaling of M, from
symmetry in convenient gauge, contract with €4(z)e"(z)
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Simple Amplitudes:
BCFW Recursion

Proofs of BCFW:
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Simple Amplitudes:
BCFW Recursion

Proofs of BCFW:

e Show that A(z) ~ 1/z:

- Diagrammatic: build collections of Feynman diagrams
where 1/z or faster fall-off 1s manifest

- Background fields: Determine z-scaling of M, from
symmetry in convenient gauge, contract with €4(z)e"(z)
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Simple Amplitudes:
BCFW Recursion

Proofs of BCFW:

e Show that A(z) ~ 1/z:

- Diagrammatic: build collections of Feynman diagrams
where 1/z or faster fall-off 1s manifest

- Background fields: Determine z-scaling of M, from
symmetry in convenient gauge, contract with €4(z)e"(z)

% A(‘_:) g

e All poles of tree amplitudes correspond to factorization
weomrthannels — BCEFW torm of A(0O) tollows from integraf*d@bove




A wide range of theories have BCFW recursion
relations:

® Gauge theory:

- Valid if ha=-1 or hg=+1, for pure gauge theory
[Britto, Cachazo. Feng, Witten]

- Same conditions, where the other marked leg 1s matter
[Cheung]

(.anreduce any amplitude with gauge bosons

t loavvear-maaint amnlitinidac
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A wide range of theories have BCFW recursion
relations:

® Gauge theory:

- Valid if ha=-1 or hg=+1, for pure gauge theory
[Britto, Cachazo, Feng, Witten]

- Same conditions, where the other marked leg 1s matter
[Cheung]

e Gravity: analogous
enincasa, Cachazo, Verroneau; Arkani-Hamed, Kaplan; Cheung]

- In fact, all of these amplitudes ~//z2, so both

j{AS") — (0  and j{A(,:) =0

® (Generalizations when A(z) -> const. at infinity.
[Benincasa, Cachazo; |

(.anreduce any amplitude with gauge bosons (gravitQns)

tx laavvear-maaint amnlitiidac



Simple Amplitudes:
BCFW Recursion

Proofs of BCFW:

e Show that A(z) ~ 1/z:

- Diagrammatic: build collections of Feynman diagrams
where 1/z or faster fall-off 1s manifest

- Background fields: Determine z-scaling of M, from
symmetry in convenient gauge, contract with €4(z)&e"(z)
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A wide range of theories have BCFW recursion
relations:

¢ Gauge theory:

- Valid if ha=-1 or hg=+1, for pure gauge theory
[Britto, Cachazo, Feng, Witten]

- Same conditions, where the other marked leg 1s matter
[Cheung]

e Gravity: analogous
enincasa, Cachazo, Verroneau; Arkani-Hamed, Kaplan; Cheung]

- In fact, all of these amplitudes ~//z°, so both

jffﬂi“’) —0  and j{A(,—:) =0

® Generalizations when A(z) -> const. at infinity.
[Benincasa, Cachazo; |

(.anreduce any amplitude with gauge bosons (gravitQns)

ty lavear-maaint amnlitiideac



Motivation

® 3-point amplitudes & BCFW define (tree)
S-matrices for YM and gravity without
reference to a Lagrangian.

e [ogical completion: Show consistency,
again without reference to Lagrangians!

e (Can we define other “S-matrix theories™
that have no gauge-inv. Lagrangian
irsa: 09120098 descriptioni? (E_g. ﬂﬂti-bﬁlf—dual 3-t‘0fm iﬂ 6d) Page 42/82



N=4/8 Amplitudes even simpler

Pirsa:

00000000

Generalized BCFW for all diagrams (involves
SUSY transf. as well as p-shift)

Simple loop expansion — entirely in terms of
“box” diagrams

General formulas for N=4 amplitudes in
twistor space.

Conformal & dual superconformal invariance



Simple S-Matrices:

e Accidentally inherited from SUSY
theories?

Pure gauge/gravity tree amplitudes ~ SUSY amplitudes
(other states appear in pairs)

® Or general properties, with extra
simplification in SUSY?

BCFW with matter — not obviously derived from SUSY

Connection between BCFW at 4-point and elementary
consistency conditions on interactions
Pirsa: 09120098 (.Jacobi idE‘ﬂtity, equivaleﬂce___). Page 44/82
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Outline

Motivation (then and now)

The Four-Particle Test

“4-point amplitudes alone constrain
interactions and BCFW shifts™ [Benincasa, Cachazo]

A Spin-1 Tree S-Matrix from BCFW

“Simple arguments and 1dentities from 4-point ensure
that BCFW amplitudes have all factorization poles.”

Gravity’s Hidden Relations
“1/z2 fall-off 1s needed to see that BCFW amplitudes
have all factorization poles.”
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Symmetry Properties of
the S-Matrix

e [ orentz Invariance

¢ Little-Group Covariance

Spinor-Helicity: Paa = f}'“ﬁpﬂ pi =0:det P=0—->P. .= _f\c.y;’irij
Real p, — A = Y e

PaPF  A-adWy  AaeaW)

T — | l‘Jl.l ’\il' I | 150 T = = ( J\.i}!‘t ) b
- — € e € — £ [
( jr. A ) o=

(X, 2, Bs) = AT

o Unltarlty (at tree level Factorization)

Sy L —




3-Point Amplitudes

[Benincasa and Cachazo]

e Exist for complex momenta (indep. A, \)

® Two degenerate momentum configs:

i }1. g .:\ _ “ T:" = Jr' . . 4’- - — zi-[- . f-\
YP=0,P2=0—-{. 7 ") \/ invariants - i
Xi-X; =0 Wi, 3 (i7) = M - A

 Helicity+finite real-p limit fixes amplitudes

(no scalar invariants)

A(1+1 o—1 9—1y _ (23)° s AL
:1(].{1 ‘-Zb .._‘3{_, )— Kabe (12)(31) Or h'f:br‘ ]

A, 2 31T) = Mane(12)(13)(23)
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Symmetry Properties of
the S-Matrix

e | orentz Invariance

¢ Little-Group Covariance

Spinor-Helicity: o = (}'f:ﬁ!}“ pi =000 F =0 —F.i = _.;\{_t?r\,-tj
Real p, — A = A i

PP A—e??d A—e™%)

T . L ;\l- ¥ LS 1 o ( 11"*)“1 \ — B E50) - —
- — . € € € — ; o €
je. A L RN

M, A Bg) ~ AT

e Unitarity (at tree level Factorization)

e (SO = T e e




3-Point Amplitudes

[Benincasa and Cachazo]

e Exist for complex momenta (indep. A, \)

® Two degenerate momentum configs:

‘ }”. A =10 il \
S P, =0,P2 =07 7 _'* ’ w/ invariants .[f"'_l

e Helicity+finite real-p limit fixes amplitudes
(no scalar invariants)

A(1+1 9—1 a—1y _ (23)°
:1(].‘1 "zb '} ) Kabe 7 (12)(31) Or hub:

Al - 30y = X (213302
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Gauge 3-Point Amplitudes

A(R) (141 o—1 -1\ _ .. (23)° %1
ACHEE 2 %) —h;ug,,_.(lz)()gl) ([z7] = 0)

AL, 2, 3) = Rase gty (i) =0)

Scalar matter:

(h) = S . ! 12)(13
A1, 29 39) = g o

A\ (1]

ol

1 90 90\ __ r.a 12]] 3]
. _[;J-u ‘{r'} T A[J_Jr' ;s;

(k must satisty Jacobi 1dentities,
x must form representation)
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All others zero



4-Point Amplitudes

A(1h1 2h2 3hs ghe) — H(1,2,3,4) x f(s,t,u)

particular solution with correct
helicity transformations

e.g. H(1—,2—,3+,4+) = (12)%[34]°

f1sn’t constrained by little group (scalar) or LI, but restricted
by factorization at complex momenta:

lims x A(1,2,3,4) ZA 2, —P,")A(3,4, Pp)

s—0

In fact, (12) — 0 and [12] — 0 are distinct configurations,

Pirsa: 09120098 Page 51/82

should both satisfy this limit.



Jacobi1 from Factorization

e Impose r and u-channel factorization

- the individual 3-point amplitudes are singular!

st S

r’l(l_. 2—_3-1’—.4—-) UL <12)‘2[34}2 |:h3,3135,342 o K314K332 |

e When [12] —0:
sA(17,27,3",47) — (12)%[34]

2 [ KR313K342 n KR314K332
t

Compare to factorization limit:
sA(1~,27,3",47) — (12)%[34]

2 R12aFh 34
f_
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Factorization in BCFW

Consider BCFW, where we shift p; and p> by zg
with ¢ = |1)|2], i.e.

1] — |1](2) = |1] + 2|2]
2) — [2)(2) = [2) — 2[1)
Two terms:
3 4 :
1 1
PEEIES 4
t u
1 3 1 2
Controlled by factorization as [13]. (24) — 0 and 14, (23) — 0

— generates ansatz on previous shde.

Momentum-dependence of 3-point amplitudes (s>0) allows BCFW
tersvork and imposes consistency conditions on 3-point couphses.



Jacobi1 from Factorization

e Impose f and u-channel factorization

- the individual 3-point amplitudes are singular!

A(1~,27,37,47) = <12)?[34F{“-“"‘:3*“2 SRR
S SU

e When [12] —0 :
sA(17,27,3%,4%) — (12)%[34]?

K313K 342 Y K314k 332
t

Compare to factorization limit:
sA(1~,27,3",4%) — (12)%134]

2 R12aFh 34
f_

Pirsa: 09120098
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Factorization in BCFW

Consider BCFW, where we shift p; and p> by zg
with ¢ = |1)|2], i.e.

11] — |1](2) = |1] + 2|2]
2) — [2)(2) = [2) — 2[1)
Two terms:
3 4
1 1
(h) " (a) + & - (a)
t u
1 2 1 2
Controlled by factorization as [13]. (24) — 0 and [14]. (23) — 0

— generates ansatz on previous shide.

Momentum-dependence of 3-point amplitudes (s>0) allows BCFW
termvork and imposes consistency conditions on 3-point coupdisgs.



Factorization from BCFW

Schematically (for gauge theory)

|
+  (h)»—
R14a
1 . 1
lim (12)[12]Agcr(17,27,37,47) =

_12._‘”

19\2124121 7, o=y : —
rJ.._.}f ‘L";ll T(h 13a/24a T K14aKR32a )

o e LTS
Factorization: (12)*[34] ~ (K124731a)
Requires K124K34a + K13aK24a + K14aK320 = 0 |

Similar areuments: interaction vertices of matter w/
<nin-1 furni<sh renre<entation<: charoce concervation
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Gauge 4-Point Amplitudes:
Good and Bad BCFW

This procedure works (if Jacobi 1s satisfied)
for |—-],|-); |+],|+) ; and |—], |+) shifts

These are the shifts for which 3-point amplitudes
vanish identically or approach 0 at large 7!

e BCEF shift [37].[17) gives clearly unphysical answer

Pirsa: 09120098

9 {
1
(h) — a) +
u
- e )
3 1 :

ABCF;[SI)(]'_T 2_1 3+3 4*)




Gravity 4-Point Amplitudes:
Commutation!

Apcr(172,272,
Must cancel double pole and reproduce correct single pole as s—>0,
for any kinematics

s+t = —u: consistentif K13¢K24a = K14aK23a = K12aK34a

Pirsa: 09120093 (Commutative, associative algebra raeses

—~ interaction<e can he diancanalized)



A Remarkably Powertul Condition

1. Pick particles & non-zero 3-point vertices
2. Consider BCFW shift of given-helicity legs

- Bad shifts: BCFW produces clear nonsense (can never
reproduce other poles)

- Good shifts: BCFW can reproduce the “missing™ pole,
if 3-point amplitudes satisfy conditions.

These conditions mimic most of the known

constraints on higher-spin mteractions!
(spin-1: Jacobi, matter reps & charge conservation:
spin-2: commutative, equivalence; spins 2&3/2: supergravity)

3. Good shifts + 3-point => ansatz for a
==attheory” (set of constructible amplitudes) ===



Outline

® Motivation (then and now)

® The Four-Particle Test
“4-point amplitudes alone constrain
interactions and BCFW shifts™

®* A Spin-1 Tree S-Matrix from BCFW

“Simple arguments and Jacobi identities ensure that
n-point BCFW amplitudes have all factorization poles.”

¢ Gravity’s Hidden Relations

“1/z2 fall-off is needed to see that BCFW amplitudes
have all factorization poles.”
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Consistency of n-Point Amplitudes

e Factorization on all physical poles

e No unphysical double poles

¢ No spurious poles, that do not correspond to
intermediate particles propagating on-shell.

- BCFW produces these poles, they always cancel.

- This cancellation 1s also non-trivial from S-matrix
perspective



What poles must we consider?

For definiteness. consider BCF where legs '1] and |2) shift

(B)

12) ar [12] —ll

Pr—0:

|_
I >. >_
Un-shifted ¥ Umquc dldar

Un-shifted pair

Exposed by

Set / of legs not
BCFW including [, 2
Pirsa: 09120098 ~ Py 199 WTI'U[];E-hE?ﬁ%BﬁV
“easy’ hard T T



n-Point Unshifted Poles

[ = set of 3 or more legs not including 1, 2

wrog, S+ ¥

l lmt P., % )

So g "
Polel BCF Scenr) % }7&

= BCF swurk Pole)

4

[{=e— x ABC‘F(: :

| <1 Page 63/82

= -.Llf""}‘ .-r T—.—-J_ZJ‘ — f.—uﬂf?



n-Point Unshifted Pair Poles
and the Jacobi Identlty

R L
: R
A e ; L i o :
BCF Z h‘i + h‘! + ;;__
L/R
lim s;; x Jl I

i|—0

Pirsa: 09120098



n-Point Unshifted Pair Poles
and the Jacobi Identlty

B L
; ; R
Aper D E 3 oo ‘
FREE K2 i K* = K?
g srend ] | f _ | i
szl ar! 1 . .
lim s;; X 4l + P =Ry
i3] —0

I’ ¥ >
P R L Py, R
o : 1 ihi 1 / - ‘
> P K2 K2 + = J
A

= @ » ’_1{?’1 I.
o >?‘-. BCF 3 4 L
; f (h) > >h () (h)
:; > e /S ™ Ki34 > Kig >KH4 0
3 Ky Page 65/82
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n-Point Unshifted Poles

[ = set of 3 or more legs not including 1,

I l'ﬂ'll P‘] , O l

So g »
Polel BCF Scen) % }7 K?

= BCF swurk Pole)

= [[=8— x ABCF(E [k ]

1 4 Page 66/82
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What poles must we consider?

For definiteness. consider BCF where legs '1] and |2) shift

12) or [12] —H

|'
"n-<hitte
Un-shifted N : Umque dmﬂr

Un-shifted pair

Exposed by

Set [ of legs not
BCFW including 1.2
Pirsa: 09120098 = o 9 er(}nﬁ-hfﬁﬁ‘ﬁ“’ft\ﬁ
easy hard I evwe Bl o it:r atr-:tl;l-\.-;ﬂfl.



n-Point Unshifted Poles

[ = set of 3 or more legs not including 1, 2

‘—-H-

S »
Polel BCF sSeenr) % }7&

= BCF swurk Pole)

= [ =e— x ABC‘F(_ ik ]

| o Page 68/82
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n-Point Unique Diagram Poles

=

NO BCFW terms have factorization Right-hand amplitudes approach
limits with 1 & 2 on same side! same Kinematics as [12]—=0
Something non-trivial must happen. Singularities from soft limits

Very reminiscent of Weinberg's soft photon and graviton
arguments — equality follows from gauge invariance/
conservation of charge.

Thedseynman diagrams w/ this pole dominate at large z, play a kearole

"y hﬂr‘L"nrnnan_ﬁ.Jir] ﬁf‘ﬁﬁ'l: nf‘ D(“E’\lf t't:‘lr"I'l‘I"E';ﬁﬁ T L ENL Ty R (N SN, CHNR, N



Wrong-Helicity Poles: Connecting

Large-z Scaling & Factorization
For BCF shifting 1]:

s ; -
E _"[] h) J_,-‘ —I.j: >’t
: 1

Ditferent 3-point kinematics and different amplitude —
factorization in 2nd case i1s not automatic'

Obvious diagram:

Not singular in this limit for spins

s> because left amplitude scales as
positive power of (1i)!
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Wrong-Helicity Poles: Connecting
Large-z Scaling & Factorization

Two possible contributions as (17) — 0 :

o/ {2 -z =0
[E! < = 2" = (21)/(Li) = as (1i)—0.

Pole if product of amplitudes grows
at large-z.

1 2 — oc

B)



Wrong-Helicity Poles: Connecting
Large-z Scaling & Factorization

Two possible contributions as (17) — 0 :

2"|1)) =
% < * = (2i)/(1 >—:-x as (1i)—0.
Pole if product of amplitudes grows

at large-z.
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Consider general spin s (finish proof for spin-1. subtlety for spin-2)



Wrong-Helicity Poles: Connecting
Large-z Scaling & Factorization

Two possible contributions as (17) — 0 :

- =) =4
h_ < — (2i)/(1i) = as (1i)—0.
Pole if product of amplitudes grows

at large-z.

-.R
i‘ f .

‘]

almmt =

[13] B FW
con m* >< S BC
5 Page 73/82




Wrong-Helicity Poles: Connecting
Large-z Scaling & Factorization

Two possible contributions as (17) — 0 :

- z7|1)) =
= < R —<)>/ } oo as (15)—0.
<z
Pole if product of amplitudes grows

at large-z.

E’.)Z

L/R




Wrong-Helicity Poles:
Gauge Theory

Two possible contributions as (1:) — 0 :

A) Pole if product of amplitudes grows at large-z (€ ~1/z)

hy ha hg| hxg | (n —1)-point Three-point | Total sealing -
e = — 1 good shifts:
I + 1/€ = i > no contribution
= 4= 4= - 3 I. L l-
+ + ¢ 3 et (Scaling
e = 7 1 ‘ 1/z for “good shifts™
X (¢) vanishes identically ¥ | -2 for “bad 'shjfl
|+ - +|+ 1/ e | — ' follows from helicity &
+ X (¢) vamshes identically PU‘FCT{QUHUHE — cdn
derive without QFT!)
. s—1 n-1)
[23] £ (:) in-ld
B) 1+:® = =A( )BCFfOf5=1

wmow  21VES correct factorization limit ¢/



Wrong-Helicity Poles:
Gravity

Two possible contributions as (12) — 0 :
A) Pole if product of amplitudes grows at large-z (€ ~1/2)

No contribution if large-z scaling of n-point amplitudes 1s like 3-point
scaling (1.e. square of gauge theory scalings)

e $=3 a0
B9 AG) _ g 2

z [13]

vanishes by
1/z2 scaling

Unlike 1/z in YM., the gravity 1/z2 is not obvious from BCFW,
~POWer counting, or any other arguments.



1/72

e Very opaque in direct Feynman diagrams
(even 1/z requires summing many diagrams)

e Discovered in background field gauge
[Arkani-Hamed and Kaplan]

Consider hard graviton in background metric £/, = f:[ Ejj h,;
“left” and “right” vielbein indices a. a don’t mix—
two separate approximate Lorentz “spin” ymmemes
together constrain amplitudes to fall as 1/z-

¢ No known analogue of the twofold “spin
Lorentz” symmetries in amplitudes

e Follows KLT relations: Agr = “(Aym)>”
e We'd like to understand origin of 1/z2 directly in S-

matrix language — in fact it’s necessary for BCFW to
e Ive sensible dmplltudeb



One More Possibility

e In YM and gravity, extra terms associated with z—x
vanish

(1. 1281\ AR
. - [13] z

® Are there theories where, instead, BCFW gives well-

Pirsa:

““behaved amplitudes because they cancel?
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Summary

Hints at much more general structure to be
understood:

e (Consistency conditions for higher-spin
interactions can be obtained from 4-point BCFW

¢ In known examples, BCFW's that work at 4-point
construct consistent n-particle amplitudes

- Spin-1: Guaranteed by simple arguments

- Spin-2: Crucially relies on 1/z% scaling
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One More Possibility

* In YM and gravity, extra terms associated with z—x
vanish

1231\ A(z)
" * 3] .

® Are there theories where, instead, BCFW gives well-

Pirsa:

““behaved amplitudes because they cancel?
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Wrong-Helicity Poles: Connecting

Large-z Scaling & Factorization
For BCF shifting '1]:

~ i =
i — 0 : : (h) sy — 0 - >1
1

Ditferent 3-point kinematics and different amplitude —
factorization in 2nd case i1s not automatic'

Obvious diagram:

Not singular in this [imit for spins

s> because left amplitude scales as
positive power of (1i)!

Page 81/82



n-Point Unique Diagram Poles

l

>— —é llljun” 1212 Y
1 (soft)

(— pi)

(— Pi2)

NO BCFW terms have factorization Right-hand amplitudes approach
limits with 1 & 2 on same side! same kKinematics as [12]—0
Something non-trivial must happen. Singularities from soft limits

Very reminiscent of Weinberg's soft photon and graviton
arguments — equality follows from gauge invariance/
conservation of charge.

Thedseynman diagrams w/ this pole dominate at large z, play a keswrole
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