Title: Concentration of measure and the mean energy ensemble
Date: Dec 07, 2009 04:00 PM
URL: http://pirsa.org/09120030

Abstract: If a pure quantum state is drawn at random, this state will almost surely be amost maximally entangled. Thisis awell-known example for
the & quot;concentration of measure& quot; phenomenon, which has proved to be tremendously helpful in recent years in quantum information
theory. It was also used as a new method to justify some foundational aspects of statistical mechanics.

In this talk, | discuss recent work with David Gross and Jens Eisert on concentration in the set of pure quantum states with fixed mean energy: We
show typicality in this manifold of quantum states, and give a method to evaluate expectation values explicitly. This involves some interesting
mathematics beyond Levy's Lemma, and suggests potential applications such as finding stronger counterexamples to the additivity conjecture.
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Outline of the talk

| . Foundations of statistical mechanics
* Problem: How to justify stat. mech.?
e Possible solution: Concentration of measure
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Outline of the talk

| . Foundations of statistical mechanics
* Problem: How to justify stat. mech.?
e Possible solution: Concentration of measure

2. The mean energy ensemble
* Going beyond subspaces
® Our result, proof idea and tools
* What does it tell us about physics?
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| . Foundations of statistical mechanics
The trouble with statistical physics

Two kinds of missing information:
® Observer's lack of knowledge: knows
only volume, temperature, ...
® Physical uncertainty: different cups
prepared differently, time evolution, ...
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| . Foundations of statistical mechanics
The trouble with statistical physics

Two kinds of missing information:
® Observer's lack of knowledge: knows
only volume, temperature, ...
® Physical uncertainty: different cups
prepared differently, time evolution, ...

Statistical physics: makes objective predictions,
based on subjective lack of knowledge.
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| . Foundations of statistical mechanics
The trouble with statistical physics

Two kinds of missing information:
e Observer's lack of knowledge: knows
only volume, temperature, ...
® Physical uncertainty: different cups
prepared differently, time evolution, ...

Statistical physics: makes objective predictions,
based on subjective lack of knowledge.

"Postulate of equal apriori probabilities™:

Why does it work?
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| . Foundations of statistical mechanics
What about ergodicity?

Idea: Time evolution explores all accessible
phase space uniformly.
Problems:

* Proven only for some special systems.

* May take very long time.
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|. Foundations of statistical mechanics
S. Popescu, A. |. Short, A.Winter, Nature Physics 2(1 1), 2006

Hr CHs @ Hg E
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|. Foundations of statistical mechanics
S. Popescu, A. |. Short, A.Winter, Nature Physics 2(1 1), 2006

Hr CHs @ Hg E

H r: subspace; restricted set of
physically allowed g-states;
Hs @ HEg: the "universe”.

Example: S=system, E=bath, R=subspace spanned by global
energy eigenstates in [ — AE . E + AFE]
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|. Foundations of statistical mechanics
S. Popescu, A. |. Short, A.Winter, Nature Physics 2(1 1), 2006

Hr CHs®HE E

H g: subspace; restricted set of
physically allowed g-states;
Hs @ HEg: the "universe".

Example: S=system, E=bath, R=subspace spanned by global
energy eigenstates in [ — AE . E + AFE]

Statistical mechanics recipe: equidistribution on R gives
"microcanonical ensemble” (g := Trg (1 /dRg) .
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|. Foundations of statistical mechanics
S. Popescu, A. |. Short, A.Winter, Nature Physics 2(1 1), 2006

E

Statistical mechanics recipe: equidistribution on R gives
"microcanonical ensemble” ()¢ := Trg (1 /dR) .
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|. Foundations of statistical mechanics
S. Popescu, A. |. Short, A.Winter, Nature Physics 2(1 1), 2006

Given fixed |v’) € Hpg. the E
reduced state is ps := Trg|v) (¢

Popescu et al.:
ps =~ (s for "almost all" |v).

Statistical mechanics recipe: equidistribution on R gives
"microcanonical ensemble” (g := Trg (1r/dR) .
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Given fixed |¢’) € Hpg. the =
reduced state is ps = Trg|v) (¢

Popescu et al.:
ps =~ (s for "almost all" |).
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|. Foundations of statistical mechanics
S. Popescu, A. |. Short, A.Winter, Nature Physics 2(1 1), 2006

Given fixed [¢) € HRg, the -
reduced state is ps = Trg|v) (¢
Popescu et al.:

ps =~ s for "almost all" |v).

Theorem (Concentration of measure): Draw ) € Hp /
randomly ace. to unitarily invariant measure. Then.

dg R
Prob |||ps — Qs|l1 =+ —b] < ‘ZEKD(-CdRE") .

Vdr

where C' = 1/187°, dgp = dim Hg, dg = dim Hg, Qs = Trg (15/ds). :
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|. Foundations of statistical mechanics
S. Popescu, A. |. Short, A.Winter, Nature Physics 2(1 1), 2006

E

Theorem (Concentration of measure): Draw ) € Hp ]
randomlyv ace. to unitarily invariant measure. Then.

dg ‘
Prob |||ps — Qs|l1 > =+ —b] < 2exp (—-CdR;-‘:z) .

VdR
where C' = 1/187%. dp = dimHpg. dg¢ = dimHg. Qs = Trg (15/ds). |
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|. Foundations of statistical mechanics
S. Popescu, A. |. Short, A.Winter, Nature Physics 2(1 1), 2006

Theorem (Concentration of measure): Draw ) € Hp f
randomly ace. to unitarily invariant measure. Then.

lps — Qg||; large

dg :
Prob |||ps — Q|1 > =+ —L] < ‘Zexp(—CdREZ) : {
Vdg !

where C' = 1/187°. dp = dimHpg, ds = dimHg, Qs = Trg (1s/ds). |
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The perfect coffee machine
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| . Foundations of statistical mechanics
The perfect coffee machine

Reveals 2S.But ps = {lg (microcanonical ensemble)
for "almost all" |v') € Hp.

Hence, almost all coffee machines (compatible with
|restrictions) prepare the microcanonical ensemble.

1

measurements ("coffee tomography")

1
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|. Foundations of statistical mechanics
So far: restrictions are subspaces.

* Exact form of {15 is not given by Popescu et al.
(generality!).

* Goldstein, Lebowitz, Tumulka, Zanghi, PRL 96 (2006):
no interaction H = Hg + H,.,,, fixed energy FE.
restriction H r spanned by spectral window [E — A, E + Al
bath's spectral density exponential around E, then

(s ~ exp(—[Hs).
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2. The mean energy ensemble
Reasons for going beyond subspaces

* Observers may have knowledge on systems that is
different from "being element of a subspace”.

* Example: given Hamiltonian H, the energy expectation
value (¥ |H|v) = E might be known instead.
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2. The mean energy ensemble
Reasons for going beyond subspaces

* Observers may have knowledge on systems that is

different from "being element of a subspace”.

* Example: given Hamiltonian H, the energy expectation

value (¥|H|vw) = E might be known instead.

® Several authors (ez srody ccai. Proc R soc A 463 2007 proposed the set
Mg ={lv) e C" | WH|Y) =E, ||¢|=1;

(not a subspace!) as a "quantum microcanon. ensemble”.

irsa: 09120030 Page 25/73



2. The mean energy ensemble
Reasons for going beyond subspaces

* Observers may have knowledge on systems that is

different from "being element of a subspace”.

* Example: given Hamiltonian H, the energy expectation

value (¢v|H|v) = E might be known instead.

® Several authors (eg srody ccai. Proc R soc A 463 2007 proposed the set
Mg ={l¥) e C" | (¥|H|Y) = E, ||¢] =1}

(not a subspace!) as a "quantum microcanon. ensemble”.

Goal: prove "concentration of measure” for Mg. Proof tools
will be useful also for other nonlinear constraints.

irsa: 09120030 Page 26/73



2.The mean energy ensemble
Subspace restrictions (Popescu et al.): Lévy's Lemma

All pure quantum states in Hy:sphere S™.

Clearly, a polar cap with § = 7 /2
has measure i, = 1/2.
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Reasons for going beyond subspaces

* Observers may have knowledge on systems that is

different from "being element of a subspace”.

* Example: given Hamiltonian H, the energy expectation

value (¢/|H|v) = E might be known instead.

* Several authors (cz srody eral. Proc R Soc A 463 2007) pI'OpOSEd the set
Mg =1{lv) e C" | W|H|Y) =E, ||¢| =1}

(not a subspace!) as a "quantum microcanon. ensemble”.

Goal: prove "concentration of measure” for M g. Proof tools
will be useful also for other nonlinear constraints.
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2.The mean energy ensemble
Subspace restrictions (Popescu et al.): Levy's Lemma

All pure quantum states in Hy:sphere S™.

Clearly, a polar cap with = 7 /2
has measure i, = 1/2.
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2.The mean energy ensemble
Subspace restrictions (Popescu et al.): Lévy's Lemma

All pure quantum states in Hy:sphere S™.

Clearly, a polar cap with 6§ = 7 /2
has measure i, = 1/2.

As soon as the anglé
exceeds 7/2 + =, the
cap has almost full
measure |.

pn=>1—exp(—(n—1)c

I

/2)
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2.The mean energy ensemble
Subspace restrictions (Popescu et al.): Levy's Lemma

All pure quantum states in Hy:sphere S™.

Clearly, a polar cap with = 7 /2
has measure i, = 1/2.

As soon as the anglé
exceeds 7/2 + =, the
cap has almost full
measure |.

tn >1—exp(—(n—1)e%/2)

Y 1 Measure is exponentially

vn concentrated around any
equator.
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2.The mean energy ensemble
Subspace restrictions (Popescu et al.): Lévy's Lemma

Consequence of geometry: Léevy's Lemma

Let f : S™ — R be Lipschitz continuous with constant 7,
Le. [f(z) — f(y)| < n-|lz —yll- Then,

Prob{|f(z) —Ef| > ¢} < 2exp (—ec(n + 1)*/n°),

where ¢ = (97°In2) .

Applying Lévy's Lemma to f(|¢)) := [lps(¥) — Qslls
in the special case of Hs @ H.,. basically gives the
result by Popescu et al.
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Subspace restrictions (Popescu et al.): Lévy's Lemma

Consequence of geometry: Lévy's Lemma

|. | Let f: S™ — R be Lipschitz continuous with constant 7,
Le. |[f(z) — f(y)| < n-|lz — y||- Then,

Prob{|f(z) —Ef| > ¢} < 2exp (—e¢(n + 1) /n°),

l where ¢ = (97°In2) L.

2. Applying Lévy's Lemma to f(|¢)) := |lps(¥) — Qs
in the special case of Hs @ H.,... basically gives the
result by Popescu et al.
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2.The mean energy ensemble
Subspace restrictions (Popescu et al.): Lévy's Lemma

Consequence of geometry: Lévy's Lemma

|. | Let f: S™ — R be Lipschitz continuous with constant 7,
ie. |[f(z) — f(y)| < n-|lx — y||- Then.

Prob{|f(z) —Ef| > ¢} < 2exp (—e¢(n + 1)*/n°),

l where ¢ = (97°In2) L.

2. Applying Lévy's Lemma to f(|¢)) := [lps(v¥) — Qs
in the special case of Hs @ H.,. basically gives the
result by Popescu et al.
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2.The mean energy ensemble
Beyond spheres and subspaces

Setting: We fix some Hamiltonian H on C" ,and we
draw vector states [¢)) € C" with |[¢] =1
randomly under the constraint (¢'|H|¢) = E.

Mg = {jv) e C* | ||[¥lI* =1, (¥|H|¥) = E}
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2.The mean energy ensemble
Beyond spheres and subspaces

Setting: We fix some Hamiltonian H on C" ,and we
draw vector states |¢)) € C" with |[¢] =1
randomly under the constraint ()| H|y) = E.

Mg = {|¢) € C" | |[¥||* =1, (v|H|¢)) = E}

* Can we prove concentration of
measure on Mg?

* Do typical bipartite states look like
Gibbs states?
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2.The mean energy ensemble
Main Result, Part | (concentration in general)
Theorem 1 (Main Theorem). Given H = H' > 0 on C™ and some en- .
ergy value E > 0, draw a state |v)) € C" randomly under the constraint |
(Y|H|¢Y) = E. Suppose that the following three conditions hold:

e E is not equal to any eigenvalue of H,
¢« E<1Tr(H)-0O ((logn/n)lﬂ),
e E=Eg[l1+0(1/Vn)]
Thows, fow every fimction § = My — Rowitk aax V1 < X, we have .
Prob {|f(¥) — fl > e} <& -n¥2.e~n(E-F)+oWm (g

where [ is the median of f on M. Moreover, ¢ = 3Em,-n/64E, and ¢’ de-
pends on E, .../ E andE'/E where E;* = £ 3", Ej'is the harmonic mean
energy, E e Zk _i'r Emin = ming Ej, Ema:r = maxy Eg, ‘f{Ek}k_ |
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2.The mean energy ensemble
Main Result, Part | (concentration in general)

Theorem 1 (Main Theorem). Given H = H' > 0 on C™ and some en-
ergy value E > 0, draw a state |¢)) € C" randomly under the constraint
(Y|H ) = E. Suppose that the following three conditions hold:

e E is not equal to any eigenvalue of H,

¢« E<LTr(H)-0O ((1ogn/n)”2),
e E=Ey(1+0(1/y/n)]. .
Then, for every function f : Mg — R with max ||V f|| < A, we have
Prob {|f(¥) — fl > e} <& -n¥2.e~n(f-F)+ovm ]

where f is the median of f on Mg. Moreover; == 3Em,-n/64E, and ¢ de- |
pendson E,.../E andE/E’ where E;'! = 1 D E}'is the harmonic mean
energy, E%Z=_ Zk EZ’ Emin = ming Eg, Ema:r = maxi Ek, "f{Ek}k—
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2.The mean energy ensemble
Main Result, Part | (concentration in general)

* Dependence of constants on spectrum and n: can be
difficult, due to "energy shift".

* Rule of thumb: if relevant energy ratios grow with
dimension n slower than ~ »'/*, concentration is strong.
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2.The mean energy ensemble
Main Result, Part | (concentration in general)

* Dependence of constants on spectrum and n: can be
difficult, due to "energy shift".

e Rule of thumb: if relevant energy ratios grow with
dimension n slower than =~ »'/*, concentration is strong.

e Simplest example: H = Hs ® 1!} : strong concentration.
Spin chain interactions: work in progress.

e How to compute the median / ? We have a formula:
Consider the full ellipsoid N := {v | (¢|H|v) < E(1+ 1/2n)}.
Then, |f —Exf| < (9( log n//n) I“‘)

Explicitly computable via spherical integration.
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2.The mean energy ensemble
Main Result, Part | (concentration in general)

Theorem 1 (Main Theorem). Given H = H' > 0 on C™ and some en-
ergy value E > 0, draw a state |¢) € C" randomly under the constraint |
(Y|H|¢Y) = E. Suppose that the following three conditions hold:

e FE is not equal to any eigenvalue of H,

1 e Can always be achieved by an
e E< Tr(H)-O ((lﬂgﬂy-/ energy shift £ +— E + s.

H— H+s-1.
e E=Ex(1+0(1/y/n)]. |

Then, for every function f : Mg — R with max ||V f|| < A, we have
Prob{|f(¥) — fl >} < -n%? -e_m(i'ﬁ)ho(m, (4)

where f is the median of f on M. Mareover; e= 3Em,-n/64E, and ¢ de-
pends on Em,_./EandE/E where E;* = £ 3", Ej'is the harmonic mean |

W"gy E e 2 Zk _Tr Enmin = ming Ek: Ema:r = maxy Ej, lf{Ek}k— |

are the e:genvalues of H. |
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2.The mean energy ensemble
Main Result, Part | (concentration in general)

* Dependence of constants on spectrum and n: can be
difficult, due to "energy shift".

e Rule of thumb: if relevant energy ratios grow with
dimension n slower than =~ »'/*, concentration is strong.
 Simplest example: H = Hs ® 1\ : strong concentration.
Spin chain interactions: work in progress.

e How to compute the median / ? We have a formula:
Consider the full ellipsoid N := {L | (¥|H|Y) < E(1+1/2n)}.
Then, |[f —Exf| <O ( og n/\/n)"

Explicitly computable via spherical integration.
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2.The mean energy ensemble
Main Result, Part |l (special case: bipartite system)

Applying the previous result to the functions
F(¥) = (Treno|¥)(¥1);
gives the typical reduced density matrix:

Theorem 2 (Typical reduced density matrix). Let H = H 4 + Hp be a Hamil-
tonian on C* @ CP of dimension n = AB with A, B > 2 and positive energy
eigenvalues {E{*};L, and {E7}7., respectively. If the conditions of Theo-
rem 1 are satisfied, the reduced density matrix p 5 := Trg |¢) (| for states |1)
in the mean energy ensemble is typically close to

(Z:-lﬂm 0 0 \
E

e -t : E : ' -

B 1
= 7 0 2= 5EF

pA is exponentially concentrated on the “canonical state” p..
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2.The mean energy ensemble
Main Result, Part |l (special case: bipartite system)

In general, this is not a Gibbs state.Work in progress: find
special situations where this is close to Gibbs.

Theorem 2 (Typical reduced density matrix). Let H = H 4 + Hp be a Hamil-
tonian on C* @ CP of dimension n = AB with A, B > 2 and positive energy
eigenvalues {E{*}{L, and {E7}7., respectively. If the conditions of Theo-
rem | are satisfied, the reduced density matrix p 5 := Trp |¥) (Y| for states |¢)
in the mean energy ensemble is typically close to

= >=%- - » )

e A+l : : : ' D

. B 1
.- = 0 2i=1 574EF

pA is exponentially concentrated on the “canonical state” p..
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2.The mean energy ensemble
What does it tell us about physics?

* Small system S, large bath B, Hamiltonian H = Hs + Hp + H;
with small interaction H; =~ 0: usual subspace restriction is

a better description of physics (produces Gibbs!).

Explanation: projective measurement; observer knows

more than expectation value.
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2.The mean energy ensemble
What does it tell us about physics?

® Small system S, large bath B, Hamiltonian H = Hg + Hp + H;
with small interaction H; = 0: usual subspace restriction is

a better description of physics (produces Gibbs!).

Explanation: projective measurement; observer knows

more than expectation value.

* What we do know now: In the set of g-states with fixed
mean energy, almost all states behave similarly.
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2.The mean energy ensemble
What does it tell us about physics?

* Small system S, large bath B, Hamiltonian H = Hs + Hp + H;
with small interaction H; =~ 0: usual subspace restriction is

a better description of physics (produces Gibbs!).

Explanation: projective measurement; observer knows

more than expectation value.

* What we do know now: In the set of g-states with fixed
mean energy, almost all states behave similarly.

*Work in progress: find a physical system where

knowledge of (only!) the mean energy is natural.

Possible candidate: H = Hs + Hp + H;.

H large, and highly entangled eigenstates. Observer
—Jneasures Hs + Hp and waits some time.



2.The mean energy ensemble
Idea of proof: integral geometry

M. Gromov, Metric Structures for Riemannian
and Non-Riemannian Spaces (Birkhauser '01).

IOMOV AWARDED 2009 ABEL PRIZE
e 2009 Abai Prize 13 awarded to Mikhail Leonidovich Gromov, Permaneant|

. o na '] § 1 ~ B -y ==} i
ance, “for his revolutionary contnbutions o geomedry ne awand 1s o mihon
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2.The mean energy ensemble
Idea of proof: integral geometry

M. Gromov, Metric Structures for Riemannian
and Non-Riemannian Spaces (Birkhauser '0l).

ROMOV AWARDED 2009 ABEL PRIZE
e 2009 Abe! Prize i3 awarded to Mikhail Leonidovich Gromov, Fermanent
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2.The mean energy ensemble
Idea of proof: integral geometry

M. Gromov, Metric Structures for Riemannian
and Non-Riemannian Spaces (Birkhauser '01).

IOMOV AWARDED 2009 ABEL PRIZE
e

2009 Apei Prize is awarded to Mikhail Leonidovich Gromov
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2.The mean energy ensemble
Idea of proof: integral geometry

M. Gromov, Metric Structures for Riemannian
and Non-Riemannian Spaces (Birkhauser '01l).

tOMQOV ANARC:D 2:29 ABEL PRIZE

@ 2009 Abal Prize 13 awarded to Mikhail Leonidovich Gromov, Parmanent|
ance, “for his revoiutionary contributions to geometry * The award is B

# 0 e el ) - bt s s
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2.The mean energy ensemble
Idea of proof: integral geometry

M. Gromov, Metric Structures for Riemannian
and Non-Riemannian Spaces (Birkhauser '01l).

tOMOV A

&l Prize iz awarded to Mikhail Leonidovich Gromov ranent|
gnce, “for his revolutionary contributions to geometry.” The award
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2.The mean energy ensemble
Idea of proof: integral geometry

M. Gromoyv, Metric Structures for Riemannian
and Non-Riemannian Spaces (Birkhauser '0l).

Mean energy manifold inherits concentration

of measure (and expectation values) from

surrounding ellipsoid.
MOV AWARDED 2009 ABEL PRIZE

o

g Abpal Prize is awarded to Mikhail Leonidovich Gromov, Parmanant
ance, “for his revolutionary contnbutions to geometn

The award

s & milliaon

covers a large part of N if
s E, EH ~ 1.

E.\:| X

L
-
- -
-
-
-----
-
-
-
-
-
-
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2.The mean energy ensemble
Idea of proof: integral geometry

M. Gromoyv, Metric Structures for Riemannian
and Non-Riemannian Spaces (Birkhauser '01l).

Mean energy manifold inherits concentration
of measure (and expectation values) from
surrounding ellipsoid.

tOMOV AWARDED 2009 ABEL PREEE
@ 2009 Abal Prnze 15 awarded to Mikhail Leonidovich Gromov, Permanent|
ance, “for his revolutionary contnibutions to geometry.” The awanrd is 6 million
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covers a large part of N if
E_'-..;| zii" = E EH ~ 1.
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2.The mean energy ensemble
How to estimate the neighborhood volume

Intuition:

short curves have small nbh...
... long curves have large nbh.

Intuition fails if curve is too "meandering™:

. — How to bound the nbh. volume from below??
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2.The mean energy ensemble
How to estimate the neighborhood volume

Intuition: \

short curves have small nbh...

... long curves have large nbh.
Intuition fails if curve is too "meandering™:

— How to bound the nbh. volume from below??

Cauchy-Crofton formula ("Buffon's needle experiment”):
C: curve, D: domain (e.g. D = U_(())

[ 4(L N C)dL = 2- length(C)
lines L

f length(L N D)dL = = - area(D)
lines L

and nica that 7. N L0 = lenoth(F. I (") > 9=
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3. Stronger additivity counterexamples?’
Apply "concentration under constraints” in general

* Minimum output entropy of a quantum channel M:
ST (M) = ]IHIIS(JM( )).
* Additivity con;ecture STP(MRN) = L gmin (M) + S™™(N)
* M. Hastings, Nature Physics 5, 255 (2009):
Counterexample to additivity conjecture:
S(M @ M(o4)) < S™™(M) + S™™(M)
where @+ isa maximally entangled input state.
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2.The mean energy ensemble
How to estimate the neighborhood volume

Intuition: \

short curves have small nbh...

... long curves have large nbh.

Intuition fails if curve is too "meandering"™:

— How to bound the nbh. volume from below??

Cauchy-Crofton formula ("Buffon’'s needle experiment”):
C: curve, D: domain (e.g. D = U_(())

/ 4(L N C)dL = 2 - length(C)
lines L

/ length(L N D)dL = = - area(D)
lines L
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3. Stronger additivity counterexamples?’
Apply "concentration under constraints” in general

* Minimum output entropy of a quantum channel M:
S™M (M) := min S(M(p)). :
* Additivity conj'(écture: Sren( MM @ N} — S™"(M) + S™"(N)
* M. Hastings, Nature Physics 5, 255 (2009):
Counterexample to additivity conjecture:
S(M @ M(o4)) < S™™(M) + 5™ (M)
where @ is a maximally entangled input state.
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3. Stronger additivity counterexamples?
Apply "concentration under constraints” in general

e Minimum output entropy of a quantum channel M:
S™" (M) == min S(M(p)). |
e Additivity con]ecture S™MP(MRIN ) = S™"(M) + S™P(N)
* M. Hastings, Nature Physics 5, 255 (2009):
Counterexample to additivity conjecture:
S(M @ M(o+)) < S™™(M) + S™™(M)
where @ is a maximally entangled input state.

e Strategy: draw channel of the form M(p) = Y A\UipU}
randomly. Then, S"" (M) will be large. k=1
Moreover, [/ @ U¢. = ¢. Yyields some "conspiracy” of the
two channels == one large output eigenvalue.
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3. Stronger additivity counterexamples?
Apply "concentration under constraints” in general

e Minimum output entropy of a quantum channel M:
STHM) = mmS(.eVl( )). _
e Additivity ccn]ecture S SN — S (M) - S™"(N)
* M. Hastings, Nature Physics 5, 255 (2009):
Counterexample to additivity conjecture:
S(M @ M(o+)) < S™™(M) + 8™ (M)
where @ is a maximally entangled input state.

* Strategy: draw channel of the form M(p) = Z MUrpU]
randomly. Then, S™"" (M) will be large. k=1
Moreover, 7 @ U¢. = ¢. Yyields some "conspiracy” of the
two channels == one large output eigenvalue.

"Nfolations of additivity are tiny. Can they be amplified?*"



3. Stronger additivity counterexamples?
Apply "concentration under constraints” in general

* |dea: Choose two channels M. AN randomly, but...

* _..instead of enforcing some (small) conspiracy via the
choice M = A\ indirectly, ...

* _..enforce (large) conspiracy directly: Choose the
channels randomly under the constraint

(0L | M RN (0L)|oL) = large
(or another similar, polynomial constraint).
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Conclusions

* "Concentration of measure” holds true for the mean
energy ensemble.

* Tools from "integral geometry” turned out to be
useful (probably also in more general settings).

* Possible applications to the additivity problem?

* Measure concentration can help to understand the
foundations of statistical physics, ...

e ...but the mean energy ensemble does not
reproduce Gibbs states in standard situations.Yet, it
might describe physics correctly in more exotic
situations.
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3. Stronger additivity counterexamples?
Apply "concentration under constraints” in general

* Minimum output entropy of a quantum channel M:
§™" (M) = min S(M(p)). == _
e Additivity con]ecture S™ =AM @ N) =S (M) + S™(N)
e M. Hastings, Nature Physics 5, 255 (2009):
Counterexample to additivity conjecture:
S(M @ M(o+)) < S™™(M) + S™™(M)
where @+ is a maximally entangled input state.

e Strategy: draw channel of the form Mi(p) = Z AUk pUy,
randomly. Then, S™( M) will be Iarge

Moreover, 7 @ U¢. = ¢. Yields some "conspiracy” of the
two channels == one large output eigenvalue.

"¥folations of additivity are tiny. Can they be amplified?*"



3. Stronger additivity counterexamples?
Apply "concentration under constraints” in general

* |dea: Choose two channels M. A randomly, but...

* _..instead of enforcing some (small) conspiracy via the
choice M = N indirectly, ...

* _..enforce (large) conspiracy directly: Choose the
channels randomly under the constraint
(0| M RN (0L)|dL) = large

(or another similar, polynomial constraint).
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2.The mean energy ensemble
Idea of proof: integral geometry

M. Gromov, Metric Structures for Riemannian
and Non-Riemannian Spaces (Birkhauser '0l).

OMOV AWARDED 2009 ABEL PRIZE

e 2009 Abe! Pnze is awarded to Mikhail Leonidovich Gromov, Permanent
ance, “for his revolutionary contributions to geometry " The award is 6 million
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2.The mean energy ensemble
Main Result, Part |l (special case: bipartite system)

Applying the previous result to the functions
f(¥) == (Treno|¥)(V]),
gives the typical reduced density matrix:

Theorem 2 (Typical reduced density matrix). Let H = H 4 + Hp be a Hamil-
tonian on C* @ CP of dimension n = AB with A, B > 2 and positive energy
eigenvalues {E{*};L, and {E7}7. | respectively. If the conditions of Theo-
rem | are satisfied, the reduced density matrix p 5 := Trp |¢) (Y| for states |¢)
in the mean energy ensemble is typically close to

(Tmgmer ¢ 0 )

E . _ .
= : : : : (7

_ B 1
\ 0 0 2.i=1 E21EF )

pA is exponentially concentrated on the “canonical state” p..
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2.The mean energy ensemble
Main Result, Part Il (special case: bipartite system)

In general, this is not a Gibbs state.Work in progress: find
special situations where this is close to Gibbs.

Theorem 2 (Typical reduced density matrix). Let H = H 5 + Hp be a Hamil-
tonian on C* @ CB of dimension n = AB with A, B > 2 and positive energy
eigenvalues {E{'};L, and {E7}7., respectively. If the conditions of Theo-
rem | are satisfied, the reduced density matrix p 5 := Trp |¢) (Y| for states |¢)
in the mean energy ensemble is typically close to

(Z::IW 0 0 \

E : : .
Po = : - : : ™

B 1
e 0 2i=1 5EF

pA is exponentially concentrated on the “canonical state” p..

Pirsa: 09120030 Page 72/73



2.The mean energy ensemble
Main Result, Part |l (special case: bipartite system)

Applying the previous result to the functions
F(¥) = (Treno|¥)(¥]);
gives the typical reduced density matrix:

Theorem 2 (Typical reduced density matrix). Let H = H 4 + Hp be a Hamil-
tonian on C* ® CP of dimension n = AB with A, B > 2 and positive energy
eigenvalues {E{'};L, and {E7}7., respectively. If the conditions of Theo-
rem 1 are satisfied, the reduced density matrix p 5 := Trp |¢) (Y| for states | )
in the mean energy ensemble is typically close to

y (Pt )

e : : : i D

' B
T 0 Y 57457

pA is exponentially concentrated on the “canonical state” p..
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