Title: Concentration of measure and the mean energy ensemble

Date: Dec 07, 2009 04:00 PM

URL: http://pirsa.org/09120030

Abstract: If a pure quantum state is drawn at random, this state will almost surely be almost maximally entangled. This is a well-known example for the " concentration of measure " phenomenon, which has proved to be tremendously helpful in recent years in quantum information theory. It was also used as a new method to justify some foundational aspects of statistical mechanics.

In this talk, I discuss recent work with David Gross and Jens Eisert on concentration in the set of pure quantum states with fixed mean energy: We show typicality in this manifold of quantum states, and give a method to evaluate expectation values explicitly. This involves some interesting mathematics beyond Levy's Lemma, and suggests potential applications such as finding stronger counterexamples to the additivity conjecture.

Pirsa: 09120030 Page 1/73

Concentration of measure and the mean energy ensemble

Markus Müller

Physics Department, University of Potsdam Institute of Mathematics, TU Berlin

Joint work with David Gross and Jens Eisert.

Pirsa: 09120030 Page 2/73

Outline of the talk

Pirsa: 09120030 Page 3/73

Outline of the talk

- I. Foundations of statistical mechanics
 - Problem: How to justify stat. mech.?
 - Possible solution: Concentration of measure

Pirsa: 09120030 Page 4/73

Outline of the talk

I. Foundations of statistical mechanics

- Problem: How to justify stat. mech.?
- Possible solution: Concentration of measure

2. The mean energy ensemble

- Going beyond subspaces
- Our result, proof idea and tools
- What does it tell us about physics?

Pirsa: 09120030 Page 5/73

I. Foundations of statistical mechanics The trouble with statistical physics

Two kinds of missing information:

- Observer's lack of knowledge: knows only volume, temperature, ...
- Physical uncertainty: different cups prepared differently, time evolution, ...

Pirsa: 09120030 Page 6/73

I. Foundations of statistical mechanics The trouble with statistical physics

Two kinds of missing information:

- Observer's lack of knowledge: knows only volume, temperature, ...
- Physical uncertainty: different cups prepared differently, time evolution, ...

Statistical physics: makes objective predictions, based on subjective lack of knowledge.

Pirsa: 09120030 Page 7/73

I. Foundations of statistical mechanics The trouble with statistical physics

Two kinds of missing information:

- Observer's lack of knowledge: knows only volume, temperature, ...
- Physical uncertainty: different cups prepared differently, time evolution, ...

Statistical physics: makes objective predictions, based on subjective lack of knowledge.

"Postulate of equal apriori probabilities":

Why does it work?

I. Foundations of statistical mechanics What about ergodicity?

Idea: Time evolution explores all accessible phase space uniformly.

Problems:

- Proven only for some special systems.
- May take very long time.

Pirsa: 09120030 Page 9/73

S. Popescu, A. J. Short, A. Winter, Nature Physics 2(11), 2006

$$\mathcal{H}_R \subset \mathcal{H}_S \otimes \mathcal{H}_E$$

Pirsa: 09120030 Page 10/73

$$\mathcal{H}_R \subset \mathcal{H}_S \otimes \mathcal{H}_E$$

 \mathcal{H}_R : subspace; restricted set of physically allowed q-states; $\mathcal{H}_S \otimes \mathcal{H}_E$: the "universe".

Example: S=system, E=bath, R=subspace spanned by global energy eigenstates in $[E-\Delta E, E+\Delta E]$

Pirsa: 09120030 Page 11/73

$$\mathcal{H}_R \subset \mathcal{H}_S \otimes \mathcal{H}_E$$

 \mathcal{H}_R : subspace; restricted set of physically allowed q-states; $\mathcal{H}_S \otimes \mathcal{H}_E$: the "universe".

Example: S=system, E=bath, R=subspace spanned by global energy eigenstates in $[E-\Delta E, E+\Delta E]$

Statistical mechanics recipe: equidistribution on R gives "microcanonical ensemble" $\Omega_S := \operatorname{Tr}_E\left(\mathbf{1}_R/d_R\right)$.

Pirsa: 09120030 Page 12/73

Statistical mechanics recipe: equidistribution on R gives "microcanonical ensemble" $\Omega_S := \operatorname{Tr}_E (\mathbf{1}_R/d_R)$.

Pirsa: 09120030 Page 13/73

Given fixed $|\psi\rangle \in \mathcal{H}_R$, the reduced state is $\rho_S := \mathrm{Tr}_E |\psi\rangle\langle\psi|$

Popescu et al.:

 $\rho_S \approx \Omega_S$ for "almost all" $|\psi\rangle$.

Statistical mechanics recipe: equidistribution on R gives "microcanonical ensemble" $\Omega_S := \operatorname{Tr}_E\left(\mathbf{1}_R/d_R\right)$.

Pirsa: 09120030 Page 14/73

Given fixed $|\psi\rangle \in \mathcal{H}_R$, the reduced state is $\rho_S := \mathrm{Tr}_E |\psi\rangle\langle\psi|$

Popescu et al.:

 $ho_Spprox\Omega_S$ for "almost all" $|\psi
angle$.

Pirsa: 09120030 Page 15/73

Given fixed $|\psi\rangle \in \mathcal{H}_R$, the reduced state is $\rho_S := \mathrm{Tr}_E |\psi\rangle\langle\psi|$

Popescu et al.:

 $\rho_S \approx \Omega_S$ for "almost all" $|\psi\rangle$.

Theorem (Concentration of measure): Draw $|\psi\rangle \in \mathcal{H}_R$ randomly acc. to unitarily invariant measure. Then,

$$\operatorname{Prob}\left[\|\rho_S - \Omega_S\|_1 \ge \varepsilon + \frac{d_S}{\sqrt{d_R}}\right] \le 2\exp\left(-Cd_R\varepsilon^2\right),\,$$

where $C = 1/18\pi^3$, $d_R = \dim \mathcal{H}_R$, $d_S = \dim \mathcal{H}_S$, $\Omega_S = \operatorname{Tr}_E(\mathbf{1}_S/d_S)$.

S. Popescu, A. J. Short, A. Winter, Nature Physics 2(11), 2006

Theorem (Concentration of measure): Draw $|\psi\rangle \in \mathcal{H}_R$ randomly acc. to unitarily invariant measure. Then,

$$\operatorname{Prob}\left[\|\rho_S - \underline{\Omega_S}\|_1 \ge \varepsilon + \frac{d_S}{\sqrt{d_R}}\right] \le 2\exp\left(-Cd_R\varepsilon^2\right),\,$$

where $C = 1/18\pi^3$, $d_R = \dim \mathcal{H}_R$, $d_S = \dim \mathcal{H}_S$, $\Omega_S = \operatorname{Tr}_E(\mathbf{1}_S/d_S)$.

S. Popescu, A. J. Short, A. Winter, Nature Physics 2(11), 2006

Theorem (Concentration of measure): Draw $|\psi\rangle \in \mathcal{H}_R$ randomly acc. to unitarily invariant measure. Then,

$$\operatorname{Prob}\left[\|\rho_S - \Omega_S\|_1 \ge \varepsilon + \frac{d_S}{\sqrt{d_R}}\right] \le 2\exp\left(-Cd_R\varepsilon^2\right),\,$$

where $C = 1/18\pi^3$, $d_R = \dim \mathcal{H}_R$, $d_S = \dim \mathcal{H}_S$, $\Omega_S = \operatorname{Tr}_E(\mathbf{1}_S/d_S)$.

The perfect coffee machine

The perfect coffee machine

I. Foundations of statistical mechanics The perfect coffee machine

Reveals ho_S . But $ho_S pprox \Omega_S$ (microcanonical ensemble) for "almost all" $|\psi
angle \in \mathcal{H}_R$.

Hence, almost all coffee machines (compatible with restrictions) prepare the microcanonical ensemble.

Foundations of statistical mechanics So far: restrictions are subspaces.

- Exact form of Ω_S is not given by Popescu et al. (generality!).
- Goldstein, Lebowitz, Tumulka, Zanghi, PRL **96** (2006): no interaction $H = H_S + H_{env}$, fixed energy E, restriction \mathcal{H}_R spanned by spectral window $[E \Delta, E + \Delta]$, bath's spectral density exponential around E, then

 $\Omega_S \sim \exp(-\beta H_S).$

Pirsa: 09120030 Page 23/73

- Observers may have knowledge on systems that is different from "being element of a subspace".
- Example: given Hamiltonian H, the energy expectation value $\langle \psi | H | \psi \rangle = E$ might be known instead.

Pirsa: 09120030 Page 24/73

- Observers may have knowledge on systems that is different from "being element of a subspace".
- Example: given Hamiltonian H, the energy expectation value $\langle \psi | H | \psi \rangle = E$ might be known instead.
- Several authors (e.g. Brody et al., Proc. R. Soc. A 463 (2007)) proposed the set $M_E=\{|\psi\rangle\in\mathbb{C}^n\mid \langle\psi|H|\psi\rangle=E,\ \|\psi\|=1\}$ (not a subspace!) as a "quantum microcanon. ensemble".

Pirsa: 09120030 Page 25/73

- Observers may have knowledge on systems that is different from "being element of a subspace".
- Example: given Hamiltonian H, the energy expectation value $\langle \psi | H | \psi \rangle = E$ might be known instead.
- Several authors (e.g. Brody et al., Proc. R. Soc. A 463 (2007)) proposed the set $M_E=\{|\psi\rangle\in\mathbb{C}^n\mid \langle\psi|H|\psi\rangle=E,\ \|\psi\|=1\}$ (not a subspace!) as a "quantum microcanon. ensemble".

Goal: prove "concentration of measure" for M_E . Proof tools will be useful also for other nonlinear constraints.

Pirsa: 09120030 Page 26/73

2. The mean energy ensemble

Subspace restrictions (Popescu et al.): Lévy's Lemma

All pure quantum states in \mathcal{H}_R : sphere S^n .

-Clearly, a polar cap with $\theta = \pi/2$ has measure $\mu_n = 1/2$.

 $\theta = \pi/2$ S^n

- Observers may have knowledge on systems that is different from "being element of a subspace".
- Example: given Hamiltonian H, the energy expectation value $\langle \psi | H | \psi \rangle = E$ might be known instead.
- Several authors (e.g. Brody et al., Proc. R. Soc. A 463 (2007)) proposed the set $M_E=\{|\psi\rangle\in\mathbb{C}^n\mid \langle\psi|H|\psi\rangle=E,\ \|\psi\|=1\}$ (not a subspace!) as a "quantum microcanon. ensemble".

Goal: prove "concentration of measure" for M_E . Proof tools will be useful also for other nonlinear constraints.

Pirsa: 09120030 Page 28/73

2. The mean energy ensemble

Subspace restrictions (Popescu et al.): Lévy's Lemma

All pure quantum states in \mathcal{H}_R : sphere S^n .

-Clearly, a polar cap with $\theta = \pi/2$ has measure $\mu_n = 1/2$.

 $\theta = \pi/2$ S^n

2. The mean energy ensemble

Subspace restrictions (Popescu et al.): Lévy's Lemma

All pure quantum states in \mathcal{H}_R : sphere S^n .

Clearly, a polar cap with $\theta=\pi/2$

has measure $\mu_n = 1/2$.

As soon as the angle exceeds $\pi/2 + \varepsilon$, the cap has almost full measure 1.

$$\theta = \pi/2 + \varepsilon$$

$$\mu_n \ge 1 - \exp\left(-(n-1)\varepsilon^2/2\right)$$

All pure quantum states in \mathcal{H}_R : sphere S^n .

Clearly, a polar cap with $\theta=\pi/2$

has measure $\mu_n = 1/2$.

As soon as the angle exceeds $\pi/2 + \varepsilon$, the cap has almost full measure 1.

$$\mu_n \ge 1 - \exp\left(-(n-1)\varepsilon^2/2\right)$$

 $\theta = \pi/2$

Pirsa: 09120030

Measure is exponentially concentrated around any equator.

Consequence of geometry: Lévy's Lemma

Let
$$f: S^n \to \mathbb{R}$$
 be Lipschitz continuous with constant η , i.e. $|f(x) - f(y)| \le \eta \cdot ||x - y||$. Then,

$$\operatorname{Prob}\{|f(x) - \mathbb{E}f| > \varepsilon\} \le 2\exp\left(-c(n+1)\varepsilon^2/\eta^2\right),$$

where $c = (9\pi^3 \ln 2)^{-1}$.

Pirsa: 09120030 Page 32/73

Consequence of geometry: Lévy's Lemma

Let
$$f: S^n \to \mathbb{R}$$
 be Lipschitz continuous with constant η , i.e. $|f(x) - f(y)| \le \eta \cdot ||x - y||$. Then,
$$\operatorname{Prob}\{|f(x) - \mathbb{E}f| > \varepsilon\} \le 2\exp\left(-c(n+1)\varepsilon^2/\eta^2\right),$$
 where $c = (9\pi^3 \ln 2)^{-1}$.

Applying Lévy's Lemma to $f(|\psi\rangle) := \|\rho_S(\psi) - \Omega_S\|_1$ in the special case of $\mathcal{H}_S \otimes \mathcal{H}_{env}$ basically gives the result by Popescu et al.

Pirsa: 09120030 Page 33/73

Consequence of geometry: Lévy's Lemma

Let $f: S^n \to \mathbb{R}$ be Lipschitz continuous with constant η , i.e. $|f(x) - f(y)| \le \eta \cdot ||x - y||$. Then,

$$\operatorname{Prob}\{|f(x) - \mathbb{E}f| > \varepsilon\} \le 2\exp\left(-c(n+1)\varepsilon^2/\eta^2\right),$$

where $c = (9\pi^3 \ln 2)^{-1}$.

2. Applying Lévy's Lemma to $f(|\psi\rangle) := \|\rho_S(\psi) - \Omega_S\|_1$ in the special case of $\mathcal{H}_S \otimes \mathcal{H}_{env}$ basically gives the result by Popescu et al.

Consequence of geometry: Lévy's Lemma

Let $f: S^n \to \mathbb{R}$ be Lipschitz continuous with constant η , i.e. $|f(x) - f(y)| \le \eta \cdot ||x - y||$. Then,

$$\operatorname{Prob}\{|f(x) - \mathbb{E}f| > \varepsilon\} \le 2\exp\left(-c(n+1)\varepsilon^2/\eta^2\right),$$

where $c = (9\pi^3 \ln 2)^{-1}$.

2. Applying Lévy's Lemma to $f(|\psi\rangle) := \|\rho_S(\psi) - \Omega_S\|_1$ in the special case of $\mathcal{H}_S \otimes \mathcal{H}_{env}$ basically gives the result by Popescu et al.

2. The mean energy ensemble Beyond spheres and subspaces

Setting: We fix some Hamiltonian H on \mathbb{C}^n , and we draw vector states $|\psi\rangle\in\mathbb{C}^n$ with $\|\psi\|=1$ randomly under the constraint $\langle\psi|H|\psi\rangle=E$.

Pirsa: 09120030 Page 36/73

2. The mean energy ensemble Beyond spheres and subspaces

Setting: We fix some Hamiltonian H on \mathbb{C}^n , and we draw vector states $|\psi\rangle\in\mathbb{C}^n$ with $\|\psi\|=1$ randomly under the constraint $\langle\psi|H|\psi\rangle=E$.

 $M_E = \{ |\psi\rangle \in \mathbb{C}^n \mid ||\psi||^2 = 1, \langle \psi|H|\psi\rangle = E \}$

- Can we prove concentration of measure on M_E?
- Do typical bipartite states look like Gibbs states?

Pirsa: 09120030 Page 37/73

Main Result, Part I (concentration in general)

Theorem 1 (Main Theorem). Given $H = H^{\dagger} \geq 0$ on \mathbb{C}^n and some energy value E > 0, draw a state $|\psi\rangle \in \mathbb{C}^n$ randomly under the constraint $\langle \psi | H | \psi \rangle = E$. Suppose that the following three conditions hold:

- E is not equal to any eigenvalue of H,
- $E \leq \frac{1}{n} \operatorname{Tr}(H) \mathcal{O}\left(\left(\log n/n\right)^{1/2}\right)$,
- $E = E_H [1 + \mathcal{O}(1/\sqrt{n})].$

Then, for every function $f: M_E \to \mathbb{R}$ with $\max \|\nabla f\| \le \lambda$, we have

$$\operatorname{Prob}\left\{|f(\psi) - \bar{f}| > \varepsilon\right\} \le c' \cdot n^{3/2} \cdot e^{-cn\left(\frac{\varepsilon}{\lambda} - \frac{1}{4n}\right)^2 + \mathcal{O}(\sqrt{n})},\tag{4}$$

where \bar{f} is the median of f on M_E . Moreover, $c=3E_{min}/64E$, and c' depends on E_{max}/E and E/\bar{E} , where $E_H^{-1}=\frac{1}{n}\sum_k E_k^{-1}$ is the harmonic mean energy, $\bar{E}^{-2}=\frac{1}{n}\sum_k \frac{1}{E_k^2}$, $E_{min}=\min_k E_k$, $E_{max}=\max_k E_k$, if $\{E_k\}_{k=1}^n$ Pirsa: 09120030 are the eigenvalues of H.

Main Result, Part I (concentration in general)

Theorem 1 (Main Theorem). Given $H = H^{\dagger} \geq 0$ on \mathbb{C}^n and some energy value E > 0, draw a state $|\psi\rangle \in \mathbb{C}^n$ randomly under the constraint $\langle \psi | H | \psi \rangle = E$. Suppose that the following three conditions hold:

- E is not equal to any eigenvalue of H,
- $E \leq \frac{1}{n} \operatorname{Tr}(H) \mathcal{O}\left(\left(\log n/n\right)^{1/2}\right)$,
- $E = E_H [1 + \mathcal{O}(1/\sqrt{n})].$

Then, for every function $f: M_E \to \mathbb{R}$ with $\max \|\nabla f\| \le \lambda$, we have

$$\operatorname{Prob}\left\{|f(\psi) - \bar{f}| > \varepsilon\right\} \le c' \cdot n^{3/2} \cdot e^{-cn\left(\frac{\varepsilon}{\lambda} - \frac{1}{4n}\right)^2 + \mathcal{O}(\sqrt{n})},\tag{4}$$

where \bar{f} is the median of f on M_E . Moreover, $c=3E_{min}/64E$, and c' depends on E_{max}/E and E/\bar{E} , where $E_H^{-1}=\frac{1}{n}\sum_k E_k^{-1}$ is the harmonic mean energy, $\bar{E}^{-2}=\frac{1}{n}\sum_k \frac{1}{E_k^2}$, $E_{min}=\min_k E_k$, $E_{max}=\max_k E_k$, if $\{E_k\}_{k=1}^n$ Pirsa: 09120030 are the eigenvalues of H.

2. The mean energy ensemble Main Result, Part I (concentration in general)

- Dependence of constants on spectrum and n: can be difficult, due to "energy shift".
- Rule of thumb: if relevant energy ratios grow with dimension n slower than $\approx n^{1/4}$, concentration is strong.

Pirsa: 09120030 Page 40/73

2. The mean energy ensemble Main Result, Part I (concentration in general)

- Dependence of constants on spectrum and n: can be difficult, due to "energy shift".
- Rule of thumb: if relevant energy ratios grow with dimension n slower than $\approx n^{1/4}$, concentration is strong.
- Simplest example: $H = H_S \otimes \mathbf{1}_{env}^{(n)}$: strong concentration. Spin chain interactions: work in progress.
- How to compute the median \bar{f} ? We have a formula:

Consider the full ellipsoid $N := \{ \psi \mid \langle \psi | H | \psi \rangle \leq E(1 + 1/2n) \}$. Then, $|\bar{f} - \mathbb{E}_N f| \leq \mathcal{O}\left((\log n/\sqrt{n})^{1/2}\right)$.

Explicitly computable via spherical integration.

Pirsa: 09120030 Page 41/73

Main Result, Part I (concentration in general)

Theorem 1 (Main Theorem). Given $H = H^{\dagger} > 0$ on \mathbb{C}^n and some energy value E>0, draw a state $|\psi\rangle\in\mathbb{C}^n$ randomly under the constraint $\langle \psi | H | \psi \rangle = E$. Suppose that the following three conditions hold:

• E is not equal to any eigenvalue of H,

•
$$E \le not$$
 equal to tally eigenvalue of H ,

• $E \le \frac{1}{n} \mathrm{Tr}(H) - \mathcal{O}\left((\log n/n)^{1/2}\right)$, Can always be achieved by an energy shift $E \mapsto E + s$,

• $E = E_H \left[1 + \mathcal{O}\left(1/\sqrt{n}\right)\right]$.

• $E = E_H \left[1 + \mathcal{O}\left(1/\sqrt{n}\right)\right]$.

•
$$E = E_H [1 + \mathcal{O}(1/\sqrt{n})].$$

Then, for every function $f: M_E \to \mathbb{R}$ with $\max \|\nabla f\| \le \lambda$, we have

$$\operatorname{Prob}\left\{|f(\psi) - \bar{f}| > \varepsilon\right\} \le c' \cdot n^{3/2} \cdot e^{-cn\left(\frac{\varepsilon}{\lambda} - \frac{1}{4n}\right)^2 + \mathcal{O}(\sqrt{n})},\tag{4}$$

where f is the median of f on M_E . Moreover, $c = 3E_{min}/64E$, and c' depends on E_{max}/E and E/\bar{E} , where $E_H^{-1} = \frac{1}{n} \sum_k E_k^{-1}$ is the harmonic mean energy, $\bar{E}^{-2} = \frac{1}{n} \sum_{k} \frac{1}{E_{k}^{2}}$, $E_{min} = \min_{k} E_{k}$, $E_{max} = \max_{k} E_{k}$, if $\{E_{k}\}_{k=1}^{n}$ Pirsa: 09120030 are the eigenvalues of H .

2. The mean energy ensemble Main Result, Part I (concentration in general)

- Dependence of constants on spectrum and n: can be difficult, due to "energy shift".
- Rule of thumb: if relevant energy ratios grow with dimension n slower than $\approx n^{1/4}$, concentration is strong.
- Simplest example: $H = H_S \otimes \mathbf{1}_{env}^{(n)}$: strong concentration. Spin chain interactions: work in progress.
- How to compute the median \bar{f} ? We have a formula:

Consider the full ellipsoid $N := \{ \psi \mid \langle \psi | H | \psi \rangle \leq E(1 + 1/2n) \}$. Then, $|\bar{f} - \mathbb{E}_N f| \leq \mathcal{O}\left((\log n/\sqrt{n})^{1/2} \right)$.

Explicitly computable via spherical integration.

Pirsa: 09120030 Page 43/73

Main Result, Part II (special case: bipartite system)

Applying the previous result to the functions

$$f(\psi) := (\operatorname{Tr}_{env} |\psi\rangle\langle\psi|)_{i,j}$$

gives the typical reduced density matrix:

Theorem 2 (Typical reduced density matrix). Let $H = H_A + H_B$ be a Hamiltonian on $\mathbb{C}^A \otimes \mathbb{C}^B$ of dimension n = AB with $A, B \geq 2$ and positive energy eigenvalues $\{E_i^A\}_{i=1}^A$ and $\{E_j^B\}_{j=1}^B$ respectively. If the conditions of Theorem 1 are satisfied, the reduced density matrix $\rho_A := \operatorname{Tr}_B |\psi\rangle\langle\psi|$ for states $|\psi\rangle$ in the mean energy ensemble is typically close to

$$\rho_{c} := \frac{E}{n+1} \begin{pmatrix} \sum_{i=1}^{B} \frac{1}{E_{1}^{A} + E_{i}^{B}} & 0 & 0 \\ \vdots & \ddots & \vdots \\ 0 & 0 & \sum_{i=1}^{B} \frac{1}{E_{A}^{A} + E_{i}^{B}} \end{pmatrix}. \tag{7}$$

 ρ_A is exponentially concentrated on the "canonical state" ρ_c .

2. The mean energy ensemble Main Result, Part II (special case: bipartite system)

In general, this is not a Gibbs state. Work in progress: find special situations where this is close to Gibbs.

Theorem 2 (Typical reduced density matrix). Let $H = H_A + H_B$ be a Hamiltonian on $\mathbb{C}^A \otimes \mathbb{C}^B$ of dimension n = AB with $A, B \geq 2$ and positive energy eigenvalues $\{E_i^A\}_{i=1}^A$ and $\{E_j^B\}_{j=1}^B$ respectively. If the conditions of Theorem 1 are satisfied, the reduced density matrix $\rho_A := \operatorname{Tr}_B |\psi\rangle\langle\psi|$ for states $|\psi\rangle$ in the mean energy ensemble is typically close to

$$\rho_c := \frac{E}{n+1} \begin{pmatrix} \sum_{i=1}^B \frac{1}{E_1^A + E_i^B} & 0 & 0 \\ \vdots & \ddots & \vdots \\ 0 & 0 & \sum_{i=1}^B \frac{1}{E_A^A + E_i^B} \end{pmatrix}. \tag{7}$$

 ρ_A is exponentially concentrated on the "canonical state" ρ_c .

2. The mean energy ensemble What does it tell us about physics?

• Small system S, large bath B, Hamiltonian $H=H_S+H_B+H_I$ with small interaction $H_I\approx 0$: usual subspace restriction is a better description of physics (produces Gibbs!). Explanation: projective measurement; observer knows more than expectation value.

Pirsa: 09120030 Page 46/73

2. The mean energy ensemble What does it tell us about physics?

- Small system S, large bath B, Hamiltonian $H=H_S+H_B+H_I$ with small interaction $H_I\approx 0$: usual subspace restriction is a better description of physics (produces Gibbs!). Explanation: projective measurement; observer knows more than expectation value.
- What we do know now: In the set of q-states with fixed mean energy, almost all states behave similarly.

Pirsa: 09120030 Page 47/73

2. The mean energy ensemble What does it tell us about physics?

- Small system S, large bath B, Hamiltonian $H=H_S+H_B+H_I$ with small interaction $H_I\approx 0$: usual subspace restriction is a better description of physics (produces Gibbs!). Explanation: projective measurement; observer knows more than expectation value.
- What we do know now: In the set of q-states with fixed mean energy, almost all states behave similarly.
- •Work in progress: find a physical system where knowledge of (only!) the mean energy is natural. Possible candidate: $H = H_S + H_B + H_I$, H_I large, and highly entangled eigenstates. Observer press measures $H_S + H_B$ and waits some time.

M. Gromov, Metric Structures for Riemannian and Non-Riemannian Spaces (Birkhäuser '01).

ROMOV AWARDED 2009 ABEL PRIZE

e 2009 Abel Prize is awarded to Mikhail Leonidovich Gromov, Permanent ance, "for his revolutionary contributions to geometry." The award is 6 million

M. Gromov, Metric Structures for Riemannian and Non-Riemannian Spaces (Birkhäuser '01).

Pirsa: 09120030

M. Gromov, Metric Structures for Riemannian and Non-Riemannian Spaces (Birkhäuser '01).

Page 51/73

 $N = \{ \psi : \langle \psi | H | \psi \rangle \le E(1 + 1/2n) \}$

M. Gromov, Metric Structures for Riemannian and Non-Riemannian Spaces (Birkhäuser '01).

M. Gromov, Metric Structures for Riemannian and Non-Riemannian Spaces (Birkhäuser '01).

Pirsa: 09120030

 $N = \{ \psi : \langle \psi | H | \psi \rangle \le E(1 + 1/2n) \}$

Page 53/73

M. Gromov, Metric Structures for Riemannian and Non-Riemannian Spaces (Birkhäuser '01).

Mean energy manifold inherits concentration of measure (and expectation values) from surrounding ellipsoid.

Pirsa: 09120030

 $N = \{ \psi : \langle \psi | H | \psi \rangle \le E(1 + 1/2n) \}$

Page 54/73

Standard result: measure concentration in ellipsoid N

How to estimate the neighborhood volume

Intuition:

... long curves have large nbh.

Pirsa: 09120030 Page 55/73

M. Gromov, Metric Structures for Riemannian and Non-Riemannian Spaces (Birkhäuser '01).

Mean energy manifold inherits concentration of measure (and expectation values) from surrounding ellipsoid.

Pirsa: 09120030

 $N = \{\psi : \langle \psi | H | \psi \rangle \le E(1 + 1/2n)\}$

Page 56/73

Standard result: measure concentration in ellipsoid N

How to estimate the neighborhood volume

Intuition:

short curves have small nbh...

... long curves have large nbh.

Pirsa: 09120030 Page 57/73

How to estimate the neighborhood volume

Intuition:

short curves have small nbh...

... long curves have large nbh.

Intuition fails if curve is too "meandering":

➤ How to bound the nbh. volume from below??

Pirsa: 09120030 Page 58/73

How to estimate the neighborhood volume

Intuition:

short curves have small nbh...

Intuition fails if curve is too "meandering":

→ How to bound the nbh. volume from below??

Cauchy-Crofton formula ("Buffon's needle experiment"):

C: curve, D: domain (e.g. $D = U_{\varepsilon}(C)$)

$$\int_{\text{lines } L} \#(L \cap C) \, dL = 2 \cdot \text{length}(C)$$

$$\int_{\text{lines}} \operatorname{length}(L \cap D) dL = \pi \cdot \operatorname{area}(D)$$

- Minimum output entropy of a quantum channel \mathcal{M} : $S^{min}(\mathcal{M}) := \min S(\mathcal{M}(\rho)).$
- Additivity conjecture: $S^{min}(\mathcal{M} \otimes \mathcal{N}) \stackrel{?}{=} S^{min}(\mathcal{M}) + S^{min}(\mathcal{N})$
- M. Hastings, Nature Physics 5, 255 (2009):

Counterexample to additivity conjecture:

$$S(\mathcal{M} \otimes \bar{\mathcal{M}}(\phi_+)) < S^{min}(\mathcal{M}) + S^{min}(\bar{\mathcal{M}})$$

where ϕ_+ is a maximally entangled input state.

Pirsa: 09120030 Page 60/73

How to estimate the neighborhood volume

Intuition:

short curves have small nbh...

Intuition fails if curve is too "meandering":

→ How to bound the nbh. volume from below??

Cauchy-Crofton formula ("Buffon's needle experiment"):

C: curve, D: domain (e.g. $D = U_{\varepsilon}(C)$)

$$\int_{\text{lines } L} \#(L \cap C) \, dL = 2 \cdot \text{length}(C)$$

$$\int_{\text{lines}} \operatorname{length}(L \cap D) dL = \pi \cdot \operatorname{area}(D)$$

- Minimum output entropy of a quantum channel \mathcal{M} : $S^{min}(\mathcal{M}) := \min S(\mathcal{M}(\rho)).$
- Additivity conjecture: $S^{min}(\mathcal{M} \otimes \mathcal{N}) \stackrel{?}{=} S^{min}(\mathcal{M}) + S^{min}(\mathcal{N})$
- M. Hastings, Nature Physics 5, 255 (2009):

Counterexample to additivity conjecture:

$$S(\mathcal{M} \otimes \bar{\mathcal{M}}(\phi_+)) < S^{min}(\mathcal{M}) + S^{min}(\bar{\mathcal{M}})$$

where ϕ_+ is a maximally entangled input state.

Pirsa: 09120030 Page 62/73

- Minimum output entropy of a quantum channel \mathcal{M} : $S^{min}(\mathcal{M}) := \min S(\mathcal{M}(\rho)).$
- Additivity conjecture: $S^{min}(\mathcal{M} \otimes \mathcal{N}) \stackrel{?}{=} S^{min}(\mathcal{M}) + S^{min}(\mathcal{N})$
- M. Hastings, Nature Physics 5, 255 (2009):

Counterexample to additivity conjecture:

$$S(\mathcal{M} \otimes \bar{\mathcal{M}}(\phi_+)) < S^{min}(\mathcal{M}) + S^{min}(\bar{\mathcal{M}})$$

where ϕ_+ is a maximally entangled input state.

• Strategy: draw channel of the form $\mathcal{M}(\rho) = \sum_{k=1}^n \lambda_k U_k \rho U_k^\dagger$ randomly. Then, $S^{min}(\mathcal{M})$ will be large.

Moreover, $U \otimes \bar{U}\phi_+ = \phi_+$ yields some "conspiracy" of the two channels \longrightarrow one large output eigenvalue.

- Minimum output entropy of a quantum channel \mathcal{M} : $S^{min}(\mathcal{M}) := \min S(\mathcal{M}(\rho)).$
- Additivity conjecture: $S^{min}(\mathcal{M} \otimes \mathcal{N}) \stackrel{?}{=} S^{min}(\mathcal{M}) + S^{min}(\mathcal{N})$
- M. Hastings, Nature Physics 5, 255 (2009):

Counterexample to additivity conjecture:

$$S(\mathcal{M} \otimes \bar{\mathcal{M}}(\phi_+)) < S^{min}(\mathcal{M}) + S^{min}(\bar{\mathcal{M}})$$

where ϕ_+ is a maximally entangled input state.

• Strategy: draw channel of the form $\mathcal{M}(\rho) = \sum_{k=1}^n \lambda_k U_k \rho U_k^\dagger$ randomly. Then, $S^{min}(\mathcal{M})$ will be large.

Moreover, $U \otimes \bar{U}\phi_+ = \phi_+$ yields some "conspiracy" of the two channels \longrightarrow one large output eigenvalue.

Pirsa: 01/20030 lations of additivity are tiny. Can they be amplified? Page 64/73

- Idea: Choose two channels \mathcal{M}, \mathcal{N} randomly, but...
- ... instead of enforcing some (small) conspiracy via the choice $\mathcal{M}=\bar{\mathcal{N}}$ indirectly, ...
- ... enforce (large) conspiracy directly: Choose the channels randomly under the constraint

 $\langle \phi_+ | \mathcal{M} \otimes \mathcal{N}(\phi_+) | \phi_+ \rangle \stackrel{!}{=} \text{large}$

(or another similar, polynomial constraint).

Pirsa: 09120030 Page 65/73

Conclusions

- "Concentration of measure" holds true for the mean energy ensemble.
- Tools from "integral geometry" turned out to be useful (probably also in more general settings).

Pirsa: 09120030 Page 66/73

Conclusions

- "Concentration of measure" holds true for the mean energy ensemble.
- Tools from "integral geometry" turned out to be useful (probably also in more general settings).
- Possible applications to the additivity problem?
- Measure concentration can help to understand the foundations of statistical physics, ...
- ... but the mean energy ensemble does not reproduce Gibbs states in standard situations. Yet, it might describe physics correctly in more exotic situations.

Pirsa: 09120030 Page 67/73

- Minimum output entropy of a quantum channel \mathcal{M} : $S^{min}(\mathcal{M}) := \min S(\mathcal{M}(\rho)).$
- Additivity conjecture: $S^{min}(\mathcal{M} \otimes \mathcal{N}) \stackrel{?}{=} S^{min}(\mathcal{M}) + S^{min}(\mathcal{N})$
- M. Hastings, Nature Physics 5, 255 (2009):

Counterexample to additivity conjecture:

$$S(\mathcal{M} \otimes \bar{\mathcal{M}}(\phi_+)) < S^{min}(\mathcal{M}) + S^{min}(\bar{\mathcal{M}})$$

where ϕ_+ is a maximally entangled input state.

• Strategy: draw channel of the form $\mathcal{M}(\rho) = \sum_{k=1}^n \lambda_k U_k \rho U_k^\dagger$ randomly. Then, $S^{min}(\mathcal{M})$ will be large.

Moreover, $U \otimes \bar{U}\phi_+ = \phi_+$ yields some "conspiracy" of the two channels \longrightarrow one large output eigenvalue.

Pirsa: 0 1/2 1/30 1/30 lations of additivity are tiny. Can they be amplified? Page 68/73

- Idea: Choose two channels \mathcal{M}, \mathcal{N} randomly, but...
- ... instead of enforcing some (small) conspiracy via the choice $\mathcal{M}=\bar{\mathcal{N}}$ indirectly, ...
- ... enforce (large) conspiracy directly: Choose the channels randomly under the constraint

 $\langle \phi_{+} | \mathcal{M} \otimes \mathcal{N}(\phi_{+}) | \phi_{+} \rangle \stackrel{!}{=} \text{large}$

(or another similar, polynomial constraint).

Pirsa: 09120030 Page 69/73

M. Gromov, Metric Structures for Riemannian and Non-Riemannian Spaces (Birkhäuser '01).

Pirsa: 09120030

 $N = \{ \psi : \langle \psi | H | \psi \rangle \le E(1 + 1/2n) \}$

Page 70/73

Main Result, Part II (special case: bipartite system)

Applying the previous result to the functions

$$f(\psi) := (\operatorname{Tr}_{env} |\psi\rangle\langle\psi|)_{i,j}$$

gives the typical reduced density matrix:

Theorem 2 (Typical reduced density matrix). Let $H = H_A + H_B$ be a Hamiltonian on $\mathbb{C}^A \otimes \mathbb{C}^B$ of dimension n = AB with $A, B \geq 2$ and positive energy eigenvalues $\{E_i^A\}_{i=1}^A$ and $\{E_j^B\}_{j=1}^B$ respectively. If the conditions of Theorem 1 are satisfied, the reduced density matrix $\rho_A := \operatorname{Tr}_B |\psi\rangle\langle\psi|$ for states $|\psi\rangle$ in the mean energy ensemble is typically close to

$$\rho_c := \frac{E}{n+1} \begin{pmatrix} \sum_{i=1}^{B} \frac{1}{E_1^A + E_i^B} & 0 & 0 \\ \vdots & \ddots & \vdots \\ 0 & 0 & \sum_{i=1}^{B} \frac{1}{E_A^A + E_i^B} \end{pmatrix}. \tag{7}$$

 ρ_A is exponentially concentrated on the "canonical state" ρ_c .

2. The mean energy ensemble Main Result, Part II (special case: bipartite system)

In general, this is not a Gibbs state. Work in progress: find special situations where this is close to Gibbs.

Theorem 2 (Typical reduced density matrix). Let $H = H_A + H_B$ be a Hamiltonian on $\mathbb{C}^A \otimes \mathbb{C}^B$ of dimension n = AB with $A, B \geq 2$ and positive energy eigenvalues $\{E_i^A\}_{i=1}^A$ and $\{E_j^B\}_{j=1}^B$ respectively. If the conditions of Theorem 1 are satisfied, the reduced density matrix $\rho_A := \operatorname{Tr}_B |\psi\rangle\langle\psi|$ for states $|\psi\rangle$ in the mean energy ensemble is typically close to

$$\rho_c := \frac{E}{n+1} \begin{pmatrix} \sum_{i=1}^{B} \frac{1}{E_1^A + E_i^B} & 0 & 0 \\ \vdots & \ddots & \vdots \\ 0 & 0 & \sum_{i=1}^{B} \frac{1}{E_A^A + E_i^B} \end{pmatrix}. \tag{7}$$

 ρ_A is exponentially concentrated on the "canonical state" ρ_c .

Pirea: 00120030

Main Result, Part II (special case: bipartite system)

Applying the previous result to the functions

$$f(\psi) := (\operatorname{Tr}_{env} |\psi\rangle\langle\psi|)_{i,j}$$

gives the typical reduced density matrix:

Theorem 2 (Typical reduced density matrix). Let $H = H_A + H_B$ be a Hamiltonian on $\mathbb{C}^A \otimes \mathbb{C}^B$ of dimension n = AB with $A, B \geq 2$ and positive energy eigenvalues $\{E_i^A\}_{i=1}^A$ and $\{E_j^B\}_{j=1}^B$ respectively. If the conditions of Theorem 1 are satisfied, the reduced density matrix $\rho_A := \operatorname{Tr}_B |\psi\rangle\langle\psi|$ for states $|\psi\rangle$ in the mean energy ensemble is typically close to

$$\rho_c := \frac{E}{n+1} \begin{pmatrix} \sum_{i=1}^B \frac{1}{E_1^A + E_i^B} & 0 & 0 \\ \vdots & \ddots & \vdots \\ 0 & 0 & \sum_{i=1}^B \frac{1}{E_A^A + E_i^B} \end{pmatrix}. \tag{7}$$

 ρ_A is exponentially concentrated on the "canonical state" ρ_c .