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Abstract: The scaling analysis in the large spin limit of Feynman amplitudes for the Bosonic colored group field theory are considered in any
dimension starting with dimension 4. By an explicit integration of two colors, we show that the model is positive. This formulation could be useful
for the constructive analysis of thistype of models.
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Generalities

Group Field Theories (GFTs)

@ Beginning in the 90's: Boulatov [MPL A7 (1992)] and Ooguri [MPL A7
(1992)] group models.

@ ( Tensor) quantum field theories over group manifolds.

@ A fundamental framework for background free quantum gravity. [D. Oriti
in Quantum Gravity, Ed. Fauser et al (2007); gr-qc/0607032; L Freidel,
IJTP 44 (2005); C. Rovelli, Quantum Gravity (2004) chap 9].

@ Loosely speaking, background independence means that one should resum
over all geometry and topology.

Salient features

@ Gauge invariance;

@ Non locality: the arguments of the fields are paired in a specific way

dual

Gluing of simplices.
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Some known G = SU(2)-FTs
4
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Figure: 4D GFT: Ooguri propagator and vertex. Paoeais
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Intreducrion

Heuristic principles of a renormalization group analysis

O A scale analysis: To give an orientation of the RG; assignment to “low”
and “high”; “small” and “long”, “left” and “night”.

O A power counting theorem: To classify according to their topology which
of the Feynman graphs are the most divergent = a specific treatment.

& A “generalized locality” principle: A selection principle based on the
definition of scales above, stating which of the diagrams can be recast in
the form of a term already present in the theory plus a smaller “irrelevant”
remainder.
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Introducrion

First steps of a renormalization program

@ Systematic analysis of Boulatov's model [Freidel, Gurau, Oriti, PR D80

Pirsa: 09120029

(2009)]; “Type I" graphs: full contraction procedure is possible; exact
power counting= A®~!, B the number of bubbles (graph with dual
consisting in a simplex with a closed collection of surfaces); A conjecture:
Type | graphs will dominate in the large spin regime.

Scaling behaviour of Boulatov's model and its FL - constructive
regularization [Magnen, Noui, Rivasseau, Smerlak, CQG 26 (2009)];
Feynman amplitudes studied in the large cutoff limit ,-'\;“' o optimal bounds
for graphs without generalized tadpoles; the FL-model is perturbatively

more divergent AZ] than the ordinary one; Borel summability of the
connected functions in the coupling constant established.
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First steps of a renormalization program

However, some difficulties with (generalized) tadpoles: the power counting of
the most general topological models is governed by “generalized tadpoles’™.

“““““““““ & =
. ' | | _ ;I
S o e

Figure: Additional divergence of nonplanar tadpoles when inserted in more involved
graphs.

e Rough bound A*/? violated; this type of graphs O these tadpoles ~ singular

manifolds (?). =
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First steps of a renormalization program

In the meantime,
e Fermionic colored GFT model in dimension D [Gurau, 0907 .2582|:

SU(D + 1) symmetric, colored graphs have computable homology; # in general
GFT theory: the “bubbles”™ can be easily identified; and for the Colored
model. ..
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First steps of a renormalization program

In the meantime,
e Fermionic colored GFT model in dimension D [Gurau, 0907 .2582]:

SU(D + 1) symmetric, colored graphs have computable homology; = in general
GFT theory: the “bubbles” can be easily identified; and for the Colored
model. ..

No tadpoles !
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@ Bosonic version of the Gurau colored model.

@ Study perturbative bounds large spin limit in any dimension, starting by 4.

@ Explicit integration of two colors and the Matthews-Salam field
representation (revealing an interesting hidden positivity of the model

encouraging for a constructive analysis)

[BGMR, arXiv 0911.1719[hep-th]]
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Tha 40 colored Ooguri model

Outline

9 The 4D colored Oogun model
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@ Bosonic version of the Gurau colored model.

@ Study perturbative bounds large spin limit in any dimension, starting by 4.

@ Explicit integration of two colors and the Matthews-Salam field
representation (revealing an interesting hidden positivity of the model

encouraging for a constructive analysis)

[BGMR, arXiv 0911.1719[hep-th]]
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Tha 40 colored Ooguri modal

o The 4D colored Oogun model
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The 4D colored Ooguri model The modei: notations and considerations

The 4D colored Ooguri model
e The fields: dynamical variables of 4D G = SU(2)-FT:

VY = (1)

0" (g1h, g2h. gzh, gah) = _;(gbgz g.&). hegG,
o (gr1h. g&2h, gah.gah) = 0'(g1.82.83.&). h <G, (2)
'r-'):-ul_&g_n;.-‘m - f:’_{g'-u'g‘lj'g—'ta‘gﬂ#) (3)
. 4 5
- *.
Sle] = / 1—[ dag; S 1234 91321
: =1 =1
10
4
+A1 / Hd& ”1“34”456? 27, 339”96"1!3 '*1u351
;_1
| 74 =2
/nd& ®1.2.3, “—7‘456? 97389 93,6210 P10,85.1 (4)
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The 4D colored Ooguri model The modei: notations and considerations

The 4D colored Ooguri model

Partition function

Z(z\l. ,\:) == / dp‘.C[fE. t_}] e—,\1T1[‘:-‘]_-\2 r.'![-rﬁ‘ (5)

il

o duc[o. o] degenerate Gaussian measure = D[o. o] =[], do"do" + Gl
constraint + Mass terms > , 01234 ©
e The covanance (or propagator) C

’ r ! ! -5 ¢’ -
Cor(81,82.83.84:84.83.82.81) = /C"1.:.3.4 Ou 30 20 v dpclo, 9]

3 4
= b [ ob [T 5(eihle) ™)
(6)
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The 4D colored Ooguri model The model: notations and considerations

The 4D colored Ooguri model

_ Covarnance
Figure: The propagator or covariance of the colored model.

[*¥]

Pentachore [ Pentachore I1
Figure: Vertices: Pentachores | (¢°) and Il (&°).
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Tha 4D colored Ooguri modal .
Feynman graph properties

Graph properties

(1) A N-point graph with n intemal vertices: if one color is missing on the
external legs, then (a) nis a even number; (b) N is also even and external
legs have colors which appear in pair;

(11) There is no odd N < 5-point function in the colored Ooguri model.
(i1) a face (or closed cycle) is bi-colored with an even number of lines;
(iii) a chain (open cycle) of length > 1 is bi-colored.

(iv) A generalized tadpole in the colored (Ooguri) group field model.

Figure: Generalized tadpoles.

(v) For U a colored connected two-point graph, = an exhausting sequence of
cuts for U (an ordering of vertices such that each vertex can be ‘pulled’ successively

through a ‘frontier’ from a part Bg to another part Ag, without disconnecting these parts-l
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Tha 4D colored Ooguri model

P!rl:urhatlﬁ boumnds

Cutoff and main theorem in 4D

e Truncate the Peter-Weyl field expansion as

\
Ol2za= 3 tr(®f ;0" &)D(&)D?(&)D*(&)).  (T)
2.3
e da(h) = \_"""{'fj + 1) tr D/(h) and diverges as ‘ﬁ_'ﬁ‘ j: ~ A

F—' - {
4 &

There exists a constant K such that for any connected colored vacuum graph ¢
of the Ooguri model with n internal vertices, we have

,-L_.'.‘ - Knh";n :+9_ {8)

This bound is optimal in the sense that there exists a graph U, with n internal
vertices such that | Ag| ~ K"A%"/29,
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The 4D colored Ooguri model The model: notations and considerations

The 4D colored Ooguri model

_ Covanance
Figure: The propagator or covariance of the colored model.

[*¥]

Pentachore [ Pentachore I[1

e Figure: Vertices: Pentachores | (¢°) and Il (¢°). prosal. -




Tha 40 colord Ooguri model
Feynman graph properties

Graph properties

(1) A N-point graph with n internal vertices: if one color is missing on the
external legs, then (a) nis a even number; (b) N is also even and external
legs have colors which appear in pair;

(i1) There is no odd N < 5-point function in the colored Ooguri model.
(i1) a face (or closed cycle) is bi-colored with an even number of lines;
(iii) a chain (open cycle) of length > 1 is bi-colored.

(iv) ~ generalized tadpole in the colored (Ooguri) group field model.

% =

Figure: Generalized tadpoles.

(v) For G a colored connected two-point graph, 2 an exhausting sequence of
cuts for U (an ordering of vertices such that each vertex can be ‘pulled’ successively

through a '‘frontier’ from a part B¢ to another part Ag, without disconnecting these partﬁ-;
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Tha 40 colored Ooguri model

Perturbative bounds

Cutoff and main theorem in 4D

e Truncate the Peter-Weyl field expansion as

A

01234 = S tr ' ®; 5 nia DM (8)D%(g2) D2 (g3) D (ga) | - (7)
R.3.

J1d 4

e Sa(h) = SN2 + 1) tr D/(h) and diverges as Y j% ~ A,

F— - i
a -

There exists a constant K such that for any connected colored vacuum graph ¢
of the Oogurni model with n internal vertices, we have

..,'L.:: Kr‘rngﬂ .:-l-':;. (8)

This bound is optimal in the sense that there exists a graph U, with n internal
vertices such that | Ag| ~ K"A%"/29,
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Tha 40 colored Ooguri modal

Pa'turhatlﬁ boumnds

Streamlined proof

e Vertex operators from an exhausting sequence of cuts:

(9)
(G On)" < A*
Owull < A2 (10)
e Similarly tr( 02 032)*" < A*"™ and ||Ox|| < N*/2. O]
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Colored GFT In dimension D

Outline

o Colored GFT in dimension D
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Colored GFT In dimension D Se—

The action

. D D+1
SD[‘—"’] = / ndg,- Z $12..p 9D.. 21
- i=1 =1

=4 (D+1) D
+A1 / 1—[ dg;s P12 13 10+1) P(piayt (D+1R (D+1)3.... . (D+1)2 PDO+ pt p2 | pD-1

D+1
i3 2 = 1
D34 35 304131 32 923 4 oD41 21 l_[ "'(8]:{3:,'-] )
j==£1

o

] = TD+1 2,
+'\: } l_[ dgj.a’ "'31:.1'3‘_ 1{D+1) K"}{D_._l"l_{D_._]_}l_‘D_._]_|1____I|.D+]_.§D {JDD"l.Dl.D‘E... .DD—1

D+1
23 B2 5 =
reeo- @34 35 3041 31 2 P53 24 D41 ol H g (g) ) (11)
J'::'
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Propagator

Colored GFT In dimension D

and vertex
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Propagator

Figure: Propagator
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Colored GFT In dimension D

Perturbartive bounds

There exists a constant K such that for any connected colored vacuum graph ¢
of the D dimensional GFT model with n internal vertices, we have

| Ag| < K"AXO—DNO~2/4+3D—1) (12)
This bound is optimal in the sense that there exists a graph ¢, with n internal
UEf‘tiCES EUCh that |..-‘l|.; ~ KﬂﬁalD—lHD—a:n-4+3|_D—1_I+

il

For 0 < p < D, vertex operator has D + 1 — p legs in a part A and remaining p
legs in a part B, for a (A, B)-cut for G.

D+1-p
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Integration of two colors: a new represantation

@ Integration of two colors: a new representation
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Integration of two colors: a new representation
(13)

Re-expressing Z

e For ,\]_ — \_ =3
H(g1,82.83,84: &, 83
(14)

o(&1(&1) [
H"(81,82,83,84: 84, 83, 82:81) =
e & pu—E : -5 ~4
MNgalgn) ) / dgsdgedgr Oy 356 Ps22 7 DP753 1
Partition function
£LEA) = / dpclo. o] >
! ! ! P 2
: 3. 82 gl) @y 30 27 1’
(15)
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e Restriction to 4D but the result can be shown in general.
3

.
’ 1 . '
exp[—A| / ] |dg.-dg.r tirzaHa, .83, 80 84.8
S
. - ] r r I Tl
+01234 H (81.82.8.84: 84, 83.8-81) P 3 2 1]]-
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Explict integration
Integration of two colors: a new representation

Integration of two colors and Matthews-Salam determinant

e Introduce v = (Reod' . Imé". Red”, Imo™)

Z(A) = / dpc[r;f.-:r]e_hrdu. (16)
0 0 H H

. 0 0 H —H =

~F o —ar & & | (17)

—iH ~-H" 0 0

e Partition function integrated

Partition function as a MS-determinant

Z(\) — / d;f:-_".’ [£;'3,4_5‘ f_}3'¢'5] K[det(l + J\CA)]_I

— / dﬁ!:‘:r [‘;3.4.5‘ r:}3_4_5] Ke ™ log( 1+A CA'r_ (18)

-
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e CA composed by CH and CH".

Page 30/41




Explidt integration
Integration of two colors: a new representation

Integration of two colors and Matthews-Salam determinant

e CA a sum of two matrices H - H"

- I'r'| _— -
—trlog(1+A(H+H")) __ e*tr e : (E+H*)"
415 " ‘;i]_ \a—-— rﬂl+"‘ | ] a %_tr\-ﬁll x\:f—‘ .QIG‘ —erlc-gl:l—‘\ Q
— a —— — g5 P —a =< (19]

use the fact that tr((H + H")**™*) = 0 for all p;
Q =(H-+H) =HH" + HH, since H =0 = (H")".

e J i1s Hermitian

2HH™ —2iHH 0 0
& 2IHH" 2HH" 0 0 -
@ = 0 0 YHH  2HH | (20)
0 0 —2IH'H 2H"H
e () has positive real eigenvalues and —A“Q 1s positive for A = ic , c = K.
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Explidr integration
Integration of two colors: a new representation

Integration of two colors and Matthews-Salam determinant

e Introduce v = (Red' . Imé'. Red”, Imo~)

ZIiX) = / d}”:[fj }e—hrdv (16]
0 0 H iH

. 0 0 H —H =

=F w1 e

e Partition function integrated

Partition function as a MS-determinant

Z[z\) = / d}!:-_"[f_'_lld'ﬁ, E__}ZA.E] K[det(l " ;\CA}]_]-

== / dﬂ:‘:’ [{;3.4.5‘ [:}3.4.5] Ke—fr iogil—e—‘\CA}_ (18)

—4
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Explicit integration
Integration of two colors: a new represantation

Integration of two colors and Matthews-Salam determinant

e CA a3 sum of two matrices H + H"

T — % Erew '_\ n e o
—trlog(1+A(E+H")) __ = o (EHEY)”
2p = . -.-"L‘
. s 2p s
+tr Li?_1 o '[-"+:. | ] P = e%—tr ‘~__;;1 -«J { Q)" — e_%n log{ 1—A Q) (19]

use the fact that tr((H + H")**™) = 0 for all p;
Q=(H+H") =HH" + HH, since H* =0 = (H")".

e J 1s Hermitian

2HH™ —2iHH 0 0
= 2IHH" 2HH" 0 0 =
& = 0 0 2H™H 2IH"H |- e
0 0 —2iIH"H 2H™H
e Q has positive real eigenvalues and —\°Q is positive for A\ = ic , ¢ = R.
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Conclusion

Outline

o Conclusion
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Explidt integradon
Integration of two colors: a new represantation

Integration of two colors and Matthews-Salam determinant

e CA a3 sum of two matrices H + H"

_rrl:rg I+IUE_!_WE | = e—tr --:.vil ' —:|”4E+}E' L
= e"'tr :;:—1% "ﬂ"—:‘l':]"'j — e%th;1 k:- Q) = E_%“}'Z’Efl_'\:'ﬁ:’ (19}
use the fact that tr((H + H")**™) = 0 for all p;
Q=(H+H") =HH" + HH, since H* =0 = (H")".
e @ is Hermitian
ZHH™ —-2ZIiHH 0 0
2IHH" 2HH" 0 0 _
- 9
& 0 0 2H™H 2iH*H : (20)
0 0 —2IH 2H™H

e @ has positive real eigenvalues and — A" Q 1s positive for A = ic , c = E.

Pirsa: 09120029 Page 35/41




Conciusion

Outline

© Conclusion
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Results.

(1)

(1)

(1)

(1v)
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Conciusion

Perturbative bounds of a general graph of colored GFT have been
obtained in any dimension Kﬂﬁil[}—luf}—;-n_r-1-~—3|_.|':'—l:r

It may 2 bounds of Feynman amplitudes; allows to know which types of
graphs (generalized tadpoles) require a specific attention; basic topological
teatures of colored graphs; good introduction in the renormalization
domain.

The model is positive if the coupling constant is purely imaginary; No need
of a regularization procedure, such as an inclusion of a Freidel-Louapre
term.

Loop vertex expansion ~~ (at least the constant modes of the fields) a
convergent series.
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(1)

(1)

(1)
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Conciusion

Perspectives

Bounds obtained for colored GFT models should now be completed into a
more precise power counting and scaling analysis.

To start this program: e Establish the power counting of a simplified
colored Ooguri model with a commutative group. e the “linearized”
colored Oogurt model: the power counting is given by a homology formula
[work in progress]| (this should help for the more complicated study of the
“non-linear” models).

Extension to the physically more interesting models: the so called
EPRL-FK model [Engle et a/. Nucl. Phys. B799 (2008); Freidel and
Krasnov Class. Quant. Grav. 25 (2008)]:

a) to find the group field formulation of the EPRL-FK model ~~
linearization; to perform an analysis on this linear model. ..

b) ... then study the ordinary “nonlinear” models.
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Thank you
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