Title: Symmetric informationally complete measurements: Can we make big ones out of small ones?

Date: Dec 01, 2009 04:00 PM

URL: http://pirsa.org/09120023

Abstract: For a quantum system with a d-dimensional Hilbert space, a symmetric informationally complete measurement (SIC) can be thought of as a set of d^2 pure states all having the same overlap. Constructions of SICs for composite systems usually do not make use of the composite structure but treat the system as a whole. Indeed for some cases, one can prove that a SIC cannot have the symmetry that one naturally associates with the composite structure.

In this talk I give one example showing how a SIC for three qubits can be constructed from SICs for the individual qubits. I ask whether the strategy used in this example might apply to other composite cases.

Pirsa: 09120023 Page 1/42

Symmetric informationally complete measurements: Can we make big ones out of small ones?

William K. Wootters

Williams College and

Perimeter Institute

Pirsa: 09120023 Page 2/42

Outline

- I. SICs
- II. Measurement for three qubits
- III. Other composite systems?

Pirsa: 09120023 Page 3/42

It is possible to express a quantum state via the probabilities it specifies for a sufficient number of measurement outcomes. (Minimally, d^2 outcomes for a d-dimension system.)

The expression is particularly simple if the probabilities refer to the outcomes of a symmetric measurement or set of measurements.

A complete set of mutually unbiased bases has a lot of symmetry, but such a set probably doesn't exist in every dimension.

A SIC is a single measurement with d^2 outcomes, and it is quite possible that a SIC exists in every dimension.

Pirsa: 09120023 Page 4/42

Single qubit

Pirsa: 09120023

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \ Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \ Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$|\psi\rangle = (+1)$$
-eigenstate of $(X+Y+Z)/\sqrt{3}$

The four operators

$$\frac{1}{2}\Pi_0$$
, $\frac{1}{2}\Pi_1$, $\frac{1}{2}\Pi_2$, $\frac{1}{2}\Pi_3$

where the Π 's project onto

$$|\psi\rangle$$
, $X|\psi\rangle$, $Y|\psi\rangle$, $Z|\psi\rangle$

constitute a POVM.

A qudit (*d*-dimensional object)

A SIC is a set of operators

$$\left\{ \frac{1}{d} \Pi_0, \ldots, \frac{1}{d} \Pi_{d^2 - 1} \right\}$$

where the Π 's are rank-1 projection operators satisfying

$$Tr(\Pi_j \Pi_k) = \frac{1}{d+1}$$

We can think of a set of pure states separated by equal angles.

Pirsa: 09120023 Page 7/42

A state with density matrix ρ can be described by $(p_0, ..., p_{d^2-1})$, where $p_j = (1/d) \text{Tr}(\rho \Pi_j)$.

The density matrix can be recovered from the p_j 's by the equation

$$\rho = \sum_{j} \left[(d+1)p_j - \frac{1}{d} \right] \Pi_j$$

Pirsa: 09120023 Page 8/42

Example:

 $|\psi\rangle$ itself is expressed as

 $(p_0, p_1, p_2, p_3) = (1/2, 1/6, 1/6, 1/6)$

$$|\psi\rangle = (+1)$$
-eigenstate of $(X+Y+Z)/\sqrt{3}$

Pirsa: 09120023 Page 9/42

The Weyl-Heisenberg Symmetry

Again, in the qubit case, a SIC can be obtained from

$$|\psi_j\rangle = D_j |\psi\rangle, \ \ j = 0, 1, 2, 3, \ \ \text{where} \ \ D_j \in \{I, X, Y, Z\}$$

In the qudit case, it has been fruitful to look for SICs based on

$$|\psi_j\rangle = D_j|\psi\rangle, \quad j = 0, 1, \dots, d^2 - 1,$$

where
$$D_j \in \{X^a Z^b \mid a, b = 0, 1, \dots, d-1\}$$

Here
$$X|m\rangle = |m+1 \pmod{d}\rangle$$
 $Z|m\rangle = e^{2\pi i m/d}|m\rangle$

The starting state $|\psi\rangle$ is called a fiducial vector.

Pirsa: 09120023 Page 10/42

Examples of fiducial vectors (Renes, Blume-Kohout, Scott, Caves)

d=3:
$$\frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1\\0 \end{pmatrix} \qquad d=4: \left(\frac{(1-1/\sqrt{5})}{\sqrt{(2\sqrt{2}-\sqrt{2})}} \right)$$
$$\frac{i}{2}\sqrt{1+1/\sqrt{5}} + \sqrt{1/5+1/\sqrt{5}}$$
$$i(1-1/\sqrt{5}) \left(\sqrt{\sqrt{2}-1} \right) / (2\sqrt{2})$$
$$\frac{i}{2}\sqrt{1+1/\sqrt{5}} - \sqrt{1/5+1/\sqrt{5}}$$

Such vectors have been found analytically for d = 1-15, 19, 24, Pirsa: 09120023 nd numerically for $d \le 67$.

Page 11/42

The Born rule in terms of a SIC (Fuchs and Schack, 2009)

upper path

$$P_{\uparrow} = p_0 \ r_{\uparrow|0} + p_1 \ r_{\uparrow|1} + p_2 \ r_{\uparrow|2} + p_3 \ r_{\uparrow|3}$$
$$= (1/2)(1) + (1/6)(1/3) + (1/6)(1/3) + (1/6)(1/3) = 2/3$$

lower path Pirsa: 09120023

$$P_{\uparrow} \!=\! \left[\!\! \left[\!\! \left[\!\! \left(\frac{1}{2} \right) - \left(\frac{1}{2} \right) \right] \!\! \left(\!\! \left[\!\! \left(1 \right) \right] + \left[\!\! \left[\!\! \left[\frac{1}{6} \right) - \left(\frac{1}{2} \right) \right] \!\! \left(\frac{1}{3} \right) + \left[\!\! \left[\!\! \left[\frac{1}{6} \right) - \left(\frac{1}{2} \right) \right] \!\! \left(\frac{1}{3} \right) + \left[\!\! \left[\!\! \left[\frac{1}{6} \right) - \left(\frac{1}{2} \right) \right] \!\! \left(\frac{1}{3} \right) \right] \right] \right]$$

$$= 1(1) + 0(1/3) + 0(1/3) + 0(1/3) = 1$$

The Born rule in terms of a SIC (Fuchs and Schack, 2009)

In general, the standard formula

$$P_{\alpha} = \sum_{j} p_{j} \, r_{\alpha|j}$$

is replaced, when the SIC is counterfactual, with

$$P_{\alpha} = \sum_{j} \left[(d+1)p_{j} - \frac{1}{d} \right] r_{\alpha|j}$$

Probabilities larger than average (i.e., larger than $1/d^2$) are replaced by larger numbers.

Probabilities smaller than average are replaced by smaller numbers.

Pirsa: 09120023 Page 13/42

Composite Systems---Example: Three Qubits

For three qubits, we could define a POVM using

$$|\psi_{jk\ell}\rangle = |\psi_j\rangle \otimes |\psi_k\rangle \otimes |\psi_\ell\rangle$$
 $|\psi_j\rangle = D_j|\psi\rangle$

but it would not be a SIC.

Can we find a SIC having the following symmetry?

$$|\psi_{jk\ell}\rangle = D_j \otimes D_k \otimes D_\ell |\psi\rangle, \quad j, k, \ell = 0, 1, 2, 3.$$

If so, the p_{jkl} will presumably reflect the three-qubit structure.

Pirsa: 09120023 Page 14/42

The good news: For three qubits, yes!

And it even uses the properties of single-qubit SICs.

First, a few more facts about single-qubit SICs:

$$|\phi_{+}\rangle = (+1)$$
-eigenstate of $(X + Y + Z)/\sqrt{3}$

$$|\phi_{-}\rangle = (-1)$$
-eigenstate of $(X + Y + Z)/\sqrt{3}$

Those two vectors define two distinct SICs (dual tetrahedra). Inner products:

$$\langle \phi_+ | D_j | \phi_+ \rangle = 1/\sqrt{3}, \quad j = 1, 2, 3.$$

$$\langle \phi_{-}|D_{j}|\phi_{-}\rangle = -1/\sqrt{3}, \quad j = 1, 2, 3.$$

Pirsa: 09120023

$$\langle \phi_+ | D_j | \phi_- \rangle = -\sqrt{2/3} e^{2\pi i j/3}, \qquad j = 1, 2, 3.$$

A simple fiducial vector for three qubits

$$|\psi\rangle = a |\phi_+, \phi_+, \phi_+\rangle + b |\phi_-, \phi_-, \phi_-\rangle$$

 $a^2 + b^2 = 1$ $a^2 - b^2 = 1/\sqrt{3}$

Claim:

$$\left| \langle \psi | D_j \otimes D_k \otimes D_\ell | \psi \rangle \right| = \frac{1}{3} \quad \text{if } (j,k,l) \neq (0,0,0).$$

Pirsa: 09120023 Page 16/42

A simple fiducial vector for three qubits

$$|\psi\rangle = a |\phi_+, \phi_+, \phi_+\rangle + b |\phi_-, \phi_-, \phi_-\rangle$$

 $a^2 + b^2 = 1$ $a^2 - b^2 = 1/\sqrt{3}$

Claim:

$$\left|\langle \psi|D_j\otimes D_k\otimes D_\ell|\psi\rangle\right|=\frac{1}{3} \text{ if } (j,k,l)\neq (0,0,0).$$

If all three D's are not the identity,

$$\begin{split} \langle \psi | D_j \otimes D_k \otimes D_\ell | \psi \rangle &= (a^2 - b^2) \langle \phi_+ | D_j | \phi_+ \rangle^3 \\ + 2ab \operatorname{Re} \langle \phi_+ | D_j | \phi_- \rangle \langle \phi_+ | D_k | \phi_- \rangle \langle \phi_+ | D_\ell | \phi_- \rangle \end{split}$$

 $\frac{2}{9}$ or $-\frac{4}{9}$

1/9

Pirsa: 09120023

The OK news: A very similar SIC had been found before.

(Hoggar, 1998)

Our fiducial vector in the standard basis:

$$|\psi\rangle = \frac{1}{\sqrt{6}} \left[\sqrt{2} |000\rangle + q(|100\rangle + |010\rangle + |001\rangle) + q^3 |111\rangle \right]$$

$$q = \frac{1+i}{\sqrt{2}}$$

Hoggar's fiducial vector (thanks to Åsa Ericsson):

$$|\eta\rangle = \frac{1}{\sqrt{6}} \left[\sqrt{2} |011\rangle + q(|100\rangle + |110\rangle + |101\rangle) + q^3 |111\rangle \right]$$

How they are related (not locally equivalent):

The bad news: Three qubits is a special case

Theorem (Godsil and Roy, 2008):

For *n* qubits, if there is a SIC with states of the form

$$|\psi_{j_1,\ldots,j_n}\rangle = D_{j_1}\otimes\cdots\otimes D_{j_n}|\psi\rangle$$

then *n* must be either 1 or 3.

This leaves open the possibility of other "composite" SICS, e.g., in 3x3, or 2x2x3, or 2x2x4, or 2x19.

Pirsa: 09120023 Page 19/42

But the above construction for d=8 is special in several ways.

There are two orthogonal fiducial vectors for d=2.
 (Also true for d=3.)

• $\frac{\langle \phi_+|D_j|\phi_+\rangle}{\langle \phi_-|D_j|\phi_-\rangle}$ is independent of j Not true for d=3.

• $(2+1)^2 = 2^3 + 1$ $(d_1+1)(d_2+1) \neq d_1d_2d_3 + 1$ unless each $d_j = 2$.

Pirsa: 09120023 Page 20/42

The bad news: Three qubits is a special case

Theorem (Godsil and Roy, 2008):

For *n* qubits, if there is a SIC with states of the form

$$|\psi_{j_1,\ldots,j_n}\rangle = D_{j_1}\otimes\cdots\otimes D_{j_n}|\psi\rangle$$

then *n* must be either 1 or 3.

This leaves open the possibility of other "composite" SICS, e.g., in 3x3, or 2x2x3, or 2x2x4, or 2x19.

Pirsa: 09120023 Page 21/42

But the above construction for d=8 is special in several ways.

There are two orthogonal fiducial vectors for d=2.
 (Also true for d=3.)

• $\frac{\langle \phi_+|D_j|\phi_+\rangle}{\langle \phi_-|D_j|\phi_-\rangle}$ is independent of j Not true for d=3.

• $(2+1)^2 = 2^3 + 1$ $(d_1+1)(d_2+1) \neq d_1d_2d_3 + 1$ unless each $d_j = 2$.

Pirsa: 09120023 Page 22/42

Suppose one does have three qubits.

• A

State description:
$$p_{jk\ell} = \frac{1}{8} \langle \psi_{jk\ell} | \rho | \psi_{jk\ell} \rangle$$

One can easily get certain properties of the components, e.g.,

$$\operatorname{Tr} \rho_{ABC}^2 = 72 \sum_{jk\ell} p_{jk\ell}^2 - 1$$

$$\operatorname{Tr} \rho_{AB}^2 = 36 \sum_{jk} p_{jk}^2 - 2 \qquad p_{jk} = \sum_{\ell} p_{jk\ell}$$

$$\operatorname{Tr} \rho_A^2 = 18 \sum_j p_j^2 - 4 \qquad p_j = \sum_k p_{jk}$$

Pirsa: 09120023

Example: The GHZ state $(|000\rangle+|111\rangle)/\sqrt{2}$

$$= 1/96$$

$$= 5/96$$

$$p_{jk} = (1/24) \times \begin{bmatrix} 2 & 1 & 1 & 2 \\ 1 & 2 & 2 & 1 \\ 1 & 2 & 2 & 1 \\ 2 & 1 & 1 & 2 \end{bmatrix}$$

$$p_j = (1/4) \times \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}$$

But it seems that such "composite" SICs may be rare.

So consider again a POVM made from a product of two SICs:

$$|\psi_{jk}\rangle = |\phi_j^A\rangle \otimes |\phi_k^B\rangle, \ j = 0, \dots, d_A^2 - 1; \ k = 0, \dots, d_B^2 - 1.$$

The description of a state:

$$p_{jk} = \frac{1}{d_A d_B} \left\langle \psi_{jk} | \rho | \psi_{jk} \right\rangle$$

Pirsa: 09120023 Page 25/42

The Born rule in terms of this POVM

$$P_{\alpha} = \sum_{ik} \left[(d_A + 1)(d_B + 1)p_{jk} - \left(\frac{d_A + 1}{d_B} \right) p_j^A - \left(\frac{d_B + 1}{d_A} \right) p_j^B + \frac{1}{d_A d_B} \right] r_{\alpha|jk}$$

Pirsa: 09120023 Page 26/42

How to get this rule by replacing probabilities

Start with
$$P_{\alpha} = \sum_{jk} p_{jk} r_{\alpha|jk} = \sum_{jk} \left[\left(p_{jk} - p_j^A p_k^B \right) + p_j^A p_k^B \right] r_{\alpha|jk}$$

$$= \sum_{jk} \left[C_{jk} + p_j^A p_k^B \right] r_{\alpha|jk}$$

Make these substitutions: $p_j^A \rightarrow (d_A + 1)p_j^A - \frac{1}{d_A}$ $p_j^B \rightarrow (d_B+1)p_j^B - \frac{1}{d_B}$ $C_{ik} \rightarrow (d_A+1)(d_B+1)C_{ik}$

$$\text{Get}_{\text{Pirsa: 09120023}} \quad P_{\alpha} = \sum_{jk} \left[(d_A + 1)(d_B + 1)p_{jk} - \left(\frac{d_A + 1}{d_B}\right)p_j^A - \left(\frac{d_B + 1}{d_A}\right)p_j^B + \frac{1}{d_A d_B} \right] r_{\alpha|jk}$$

The Born rule in terms of this POVM

$$P_{\alpha} = \sum_{jk} \left[(d_A + 1)(d_B + 1)p_{jk} - \left(\frac{d_A + 1}{d_B}\right)p_j^A - \left(\frac{d_B + 1}{d_A}\right)p_j^B + \frac{1}{d_A d_B} \right] r_{\alpha|jk}$$

Pirsa: 09120023 Page 28/42

How to get this rule by replacing probabilities

Start with
$$P_{\alpha} = \sum_{jk} p_{jk} r_{\alpha|jk} = \sum_{jk} \left[\left(p_{jk} - p_j^A p_k^B \right) + p_j^A p_k^B \right] r_{\alpha|jk}$$

$$= \sum_{jk} \left[C_{jk} + p_j^A p_k^B \right] r_{\alpha|jk}$$

Make these substitutions: $p_j^A \rightarrow (d_A + 1)p_j^A - \frac{1}{d_A}$ $p_j^B \rightarrow (d_B+1)p_j^B - \frac{1}{d_B}$ $C_{ik} \rightarrow (d_A+1)(d_B+1)C_{ik}$

$$\text{Get}_{\text{Pirsa: 09120023}} \quad P_{\alpha} = \sum_{jk} \left[(d_A + 1)(d_B + 1)p_{jk} - \left(\frac{d_A + 1}{d_B}\right)p_j^A - \left(\frac{d_B + 1}{d_A}\right)p_j^B + \frac{1}{d_A \log 29/42} r_{\alpha|jk} \right]$$

For each particle, large probabilities are replaced by larger numbers, and small probabilities are replaced by smaller numbers.

Correlations get larger.

Make these substitutions:
$$p_j^A o (d_A+1)p_j^A - \frac{1}{d_A}$$

$$p_j^B o (d_B+1)p_j^B - \frac{1}{d_B}$$

$$C_{jk} o (d_A+1)(d_B+1)C_{jk}$$

$$\text{Get}_{\text{Pirsa: 09120023}} \quad P_{\alpha} = \sum_{jk} \left[(d_A + 1)(d_B + 1)p_{jk} - \left(\frac{d_A + 1}{d_B}\right)p_j^A - \left(\frac{d_B + 1}{d_A}\right)p_j^B + \frac{1}{d_A \log 30/42} r_{\alpha \mid jk} \right]$$

Conclusions

- There exists a SIC for three qubits with the Pauli-Pauli-Pauli symmetry, whose structure can be seen as arising from the properties of SICs for a single qubit.
- It seems unlikely that the same strategy will work for many other composite systems. (And we know it won't work for other numbers of qubits.)
- But products of SICs may be a good way of describing systems in situations where the composition is important.

Pirsa: 09120023 Page 31/42

Another way in which three qubits seem to be special: Rotationally invariant states in discrete phase space.

Pirsa: 09120023 Page 32/42

Phase Space for a Single Qubit

q and p take values in $\{0,1\}$, with arithmetic mod 2. Each point can be associated with a Pauli operator X^qZ^p .

Pirsa: 09120023 Page 33/42

A Wigner Function on this Phase Space

Page 34/42

Phase Space for Two Qubits

Each point is associated with Pisa 0_{12002} perator $X^{q_1}Z^{p_1} \otimes X^{q_2}Z^{p_2}$

$$1+1 = \omega + \omega = \omega^2 + \omega^2 = 0$$

$$1+\omega = \omega^2$$
Page 35/42

A Wigner Function for Two Qubits

Pirsa: 09120023

Rotations and Rotationally Invariant States

Choose a good quadratic polynomial, e.g., $q^2 + qp + \omega p^2$.

A rotation (around the origin) is a linear transformation *R* that preserves these circles.

One can find a unitary *U* associated with this rotation.

Pirsa: 09120023 The eigenstates of this U are "rotationally invariant states. Page 37/42

Do there exist rotationally invariant states with a positive Wigner function?

Like a coherent state in the continuous case.

Pirsa: 09120023 Page 38/42

Daniel Sussman and I found such a state (rotationally invariant and positive) only for one qubit and for three qubits.

Rotationally invariant three-qubit state with positive Wigner function:

$$|\psi\rangle = a |\phi_+, \phi_+, \phi_+\rangle + b |\phi_-, \phi_-, \phi_-\rangle$$

$$a^2 + b^2 = 1$$
 $a^2 - b^2 = 1/3$

Not quite the same as our fiducial state!

Pirsa: 09120023

Pirsa: 09120023 Page 40/42

How to get this rule by replacing probabilities

Start with
$$P_{\alpha} = \sum_{jk} p_{jk} r_{\alpha|jk} = \sum_{jk} \left[\left(p_{jk} - p_j^A p_k^B \right) + p_j^A p_k^B \right] r_{\alpha|jk}$$

$$= \sum_{jk} \left[C_{jk} + p_j^A p_k^B \right] r_{\alpha|jk}$$

Make these substitutions: $p_j^A \rightarrow (d_A + 1)p_j^A - \frac{1}{d_A}$ $p_j^B \rightarrow (d_B+1)p_j^B - \frac{1}{d_B}$ $C_{ik} \rightarrow (d_A+1)(d_B+1)C_{ik}$

$$\text{Get}_{\text{Pirsa: 09120023}} P_{\alpha} = \sum_{jk} \left[(d_A + 1)(d_B + 1)p_{jk} - \left(\frac{d_A + 1}{d_B}\right)p_j^A - \left(\frac{d_B + 1}{d_A}\right)p_j^B + \frac{1}{d_A p_{\text{age 41/42}}} r_{\alpha|jk} \right]$$

The Born rule in terms of this POVM

$$P_{\alpha} = \sum_{jk} \left[(d_A + 1)(d_B + 1)p_{jk} - \left(\frac{d_A + 1}{d_B} \right) p_j^A - \left(\frac{d_B + 1}{d_A} \right) p_j^B + \frac{1}{d_A d_B} \right] r_{\alpha|jk}$$

Pirsa: 09120023