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Provide an adequate interpretation

Explore nonclassical phenomena

Determine principles from which
quantum theory may be derived
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What's the problem?
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‘Orthodox” postulates of quantum theory

Representational completeness of . The rays of Hilbert space
correspond one-to-one with the physical states of the system.

Measurement. If the Hermitian operator A with spectral projectors {P,} is
measured, the probability of outcome kis (y|P, |v). These probabilities
are objective -- indeterminism.

Evolution of isolated systems. It is unitary, |¥) — Uly) = e T y)
therefore deterministic and continuous.

Evolution of systems undergoing measurement. If Hermitian operator A
with spectral projectors {P,} iIs measured and outcome k is obtained, the

physical state of the system changes discontinuously,

)y — ) = Pi|vy)
|?1[> |Tr A.) \/(L|PA|’L)

irsa: 09110168 Page 4/56




First problem: the term “measurement’ is not defined in terms of
the more primitive “physical states of systems”. Isn't a measurement
just anotherkind of physical interaction?

Two strategies:

(1) Realist strategy: Eliminate measurement as a primitive concept
and describe everything in terms of physical states

(2) Operational strategy: Eliminate “the physical state of a system” as a

primitive concept and describe everything in terms of operational
concepts
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“It would seem that the theory 1s exclusively concerned about
"results of measurement", and has nothing to say about
anyvthing else. What exactly qualifies some physical systems to
play the role of "measurer"?

- John Bell

“In a strict sense, quantum theory 1s a set of rules allowing the
computation of probabilities for the outcomes of tests which

-

follow specitied preparations.”

- Asher Peres
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The operational strategy
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Operational Quantum Mechanics

A
© ) ) ®
Preparation Measurement
P M
Vector Hermitian operator
A
1¥)
A= LA' “L'I)k
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Operational Quantum Mechanics
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Operational Quantum Mechanics
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P i B M
Vector Unitary map Hermitian operator
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.f'l = X;‘. u;‘.]"k

Pirsa: 09110168 Pr(k|P, T,M) = (1/)|UTPA-U|w> page 13156




Operational Quantum Mechanics
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Operational Quantum Mechanics
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Operational Quantum Mechanics
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Operational Quantum Mechanics
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Operational Quantum Mechanics
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Operational Quantum Mechanics
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Trace-preserving
, completely positive Positive operator-valued
Density operator linearmap (CP map) measure (POVM)

p ) § {E}.)
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Operational Quantum Mechanics
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Operational postulates of quantum theory

Every preparation P is associated with a density operator p

Every measurement M is associated with a positive operator-valued
measure {E,}. The probability of M yielding outcome k given a
preparationPis p,= Tr(E,p).

Every transformation is associated with a trace-preserving completely-
positive linearmap p — p' = T(p),

Every measurement outcomeKk is associated with a trace-
nonincreasing completely-positive linearmap I, such that

P — Pk = Te(PYTIT(p)].
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No mention of “physical states” or their evolution




|s the operational interpretation satisfactory?
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Operational postulates of quantum theory

Every preparation P is associated with a density operator p

Every measurement M is associated with a positive operator-valued
measure {E,}. The probability of M yielding outcome k given a
preparationPis p,= Tr(E,p).

Every transformation is associated with a trace-preserving completely-
positive linearmap p — p' = T(p),

Every measurement outcomek is associated with a trace-
nonincreasing completely-positive linearmap T, such that

P — Pk = Tu(P)/ T T (P)].
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No mention of “physical states” or their evolution




“‘Orthodox™ postulates of quantum theory

Representational completeness of w. The rays of Hilbert space
correspond one-to-one with the physical states of the system.

Measurement. If the Hermitian operator A with spectral projectors {P,} is
measured, the probability of outcome kis (y|P, |w). These probabilities
are objective -- indeterminism.

Evolution of isolated systems. It is unitary, [¥) — Uly) = e Wt |y)
therefore deterministic and continuous.

Evolution of systems undergoing measurement. If Hermitian operator A
with spectral projectors {P,} iIs measured and outcome k is obtained, the
physical state of the system changes discontinuously,

V) — - Pi|v¥)

V) = W = oimm
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Inconsistencies of the orthodox interpretation

By unitary evolution postulate

By the collapse postulate (applied to isolated system that
(applied to the system) includes the apparatus)
Indeterministic and Deterministic and
discontinuous evolution continuous evolution

Determinate properties Indeterminate properties
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Inconsistencies of the orthodox interpretation

By unitary evolution postulate

By the collapse postulate (applied to isolated system that
(applied to the system) includes the apparatus)
Indeterministic and Deterministic and
discontinuous evolution continuous evolution

Determinate properties Indeterminate properties
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The quantum measurement problem
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The quantum measurement problem

If the measurementapparatus is treated externally
a| 1Y+ b 1) — | 1) with probability |a|?
— | |) with probability [b|2
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If the measurementapparatus is treated externally
a| 1Y 45 1) — | 1) with probability |a|?
— | |) with probability |b|?

If the measurementapparatus is treated internally
| ) ®|"ready”) —U(| 1) ®|"ready”)) =|1)®|"up”)
| 1) ®|"ready”) — U(|l)®|"“ready”)) =|]) ®|“down")
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The quantum measurement problem
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The quantum measurement problem

If the measurementapparatus is treated externally
al 1) +0b| 1) — | 1) with probability |a|?
— | |) with probability |b|?

If the measurementapparatus is treated internally
I T) ® | ureadyu> ik U(l T) ® Iureadyn>) — | T) @ | uupn>
| 1) ®|"ready”) — U(|l)®|"“ready”)) =) ®|“down")

Uis a linearoperator U (a|y) + b|¢)) = aU|) + bU|¢p)
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The quantum measurement problem

If the measurementapparatus is treated externally
a| )45 ) — | 1) with probability |a|?
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The quantum measurement problem

If the measurementapparatus is treated externally
a| 7Y +b 1) — | 1) with probability |a|?
— | |) with probability |b|2

If the measurementapparatus is treated internally
| ) ®|"“ready”) —U(|1)®|"ready”)) =|1)®|"up”)
| 1) ®|"ready”) — U(]l)®|"ready”)) =]l)®|"down")
Uis a linear operator U (al|y) + b|¢)) = aU|y) + bU|¢)
“ready”
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The quantum measurement problem

If the measurementapparatus is treated externally
al 1) +0b| 1) — | 1) with probability |a|?
— | |) with probability [b|?

If the measurementapparatus is treated internally
| ) ®|“ready”) —U(|1)®|"ready”)) =|1)®|"up”)
| 1) ®|"ready”) — U(]l)®|"ready”)) =) ®|"down")
Uis a linear operator U (al|y) + b|¢)) = aU|y) + bU|¢)
“ready”

(a1t bl 1) ®|“ready”) — Ula| 1) ® | “ready”) + b| |) ® | re
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False starts on the measurement problem

* Interpret coherent superposition as disjunction
al T)®|“up”) 4+ 0| |) ® |“down")

Meanseither | T) ® | “up™)
or | |)®|"“down")

with probabilities |a|? and |b]?
respectively
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False starts on the measurement problem

* Interpret coherent superposition as disjunction
al T)®|"“up”) +b| |) ®|“down")

Means either | T) ® | “up”)
or | ])®|“down”)

with probabilities |a]? and |b|?
respectively
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False starts on the measurement problem

* Interpret coherent superposition as disjunction
IﬂI T) ® | uupn> + bl l) ® | udownn>

Meanseither | T) ® | “up”)
or | |)®|"“down")

with probabilities |al? and |b|?
respectively

This is a denial of the representational completeness of v
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False starts on the measurement problem

* Interpret the reduced density operatoras a proper mixture

a| 1) ®|“up”) 4+ b |) ® | “down™)
p = |a|?|“up”)(“up”| + |b?| “down" )( “down" |
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False starts on the measurement problem
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False starts on the measurement problem

* Interpret the reduced density operatoras a proper mixture

al 1) ®|“up”) +b| |) ® | “down”)
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False starts on the measurement problem

* Interpret the reduced density operatoras a proper mixture

al 1) ® |“up”) +b| ) &
p = lal2|“up”)(“up" | + [b]2

IldOWnll >

udOWnH ) ( “dOWI’"I” |

Either contradicts original assignment of entangled state
Or Is a denial of the representational completeness of v
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False starts on the measurement problem

* Interpret the reduced density operatoras a proper mixture

al 1) @] “up") + | 1) @ | “down’”)
p = laf2| “up”)(“up” | + [b[?] “down” ) (“down” |

Either contradicts original assignment of entangled state
Or Is a denial of the representational completeness of -
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False starts on the measurement problem

* Appeal to environment-induced decoherence
(a| ) + 0| 1)) ® | “ready”) ® | Ep)
— (a| 7) ® |“up”) +b| |) ® | “down™)) ® |Ep)

—a| 1) ®|"up”) ® |E1) +b] |) ®|"down™) ® | E3)
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False starts on the measurement problem

* Appeal to environment-induced decoherence
(a| T) + 8] 1)) ®|"ready”) ® |Ep)
— (a| T) ® |“up”) + b| |) ® [“down”)) ® | Ep)

—a| 1) ®|"up”) ® |E1) +b] |) ® ["down™) ® | Ep)
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False starts on the measurement problem

* Appeal to differences in the state of the apparatus

(a| T) + 8] 1)) ®|*“ready(1)") — | T) ® [“up”)
(a| T) + 0] 1)) ® |“ready(2)") — | |) ® |“down™)
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False starts on the measurement problem

* Appeal to differences in the state of the apparatus

(a| 1)+ b 1)) ® | “ready(1)") — | 1) ® | “up™)
(a] T) + 8] 1)) ® | “ready(2)") — | |) ® | “down”)

But for the interaction to be considered a measurement, we require

| T) ® |“ready(1)") — | 1) ® |“up”)
| 1) ® |“ready(1)") — | |) ® | “down")
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False starts on the measurement problem

* Appealto differences in the state of the apparatus

(a| 1)+ 05| 1)) ® | “ready(1)") — | 1) ® | “up™)
(a| T) + 0] 1)) ® | “ready(2)") — | |) ® | “down”)

But for the interaction to be considered a measurement, we require

| 1) ® | “ready(1)") — | T) ® | “up”)
| 1) ®|"“ready(1)") — | |) ® | “down™)

And by linearity
(al 1)+ b] 1)) ® | “ready(1)") — a| T) ® | “up”) +b| |) ® | “down”
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The postulated evolution does not correspond to a proper measurement




Responses to the measurement problem

1. Deny universality of quantum dynamics

* Quantum-classical hybrid models
» Collapse models
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Responses to the measurement problem

1. Deny universality of quantum dynamics
« Quantum-classical hybrid models
» Collapse models

2. Deny representational completeness of v

« Y-ontic hidden variable models (e.g. Bohmian mechanics)
« v-epistemic hidden variable models
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Responses to the measurement problem

1. Deny universality of quantum dynamics

* Quantum-classical hybrid models
» Collapse models

2. Deny representational completeness of v

« -ontic hidden variable models (e.g. Bohmian mechanics)
« v-epistemic hidden variable models

3. Deny that there is a unique outcome

« Everett's relative state interpretation (many worlds)

4. Deny some aspect of classical logic or classical probability theory
* Quantum logic and quantum Bayesianism

2T 'Deny some other feature of the realist framework? rege SO



